1
|
Hu D, Ma A, Lu H, Gao Z, Yu Y, Fan J, Liu S, Wang Y, Zhang M. LINC00963 Promotes Cisplatin Resistance in Esophageal Squamous Cell Carcinoma by Interacting with miR-10a to Upregulate SKA1 Expression. Appl Biochem Biotechnol 2024; 196:7219-7232. [PMID: 38507172 DOI: 10.1007/s12010-024-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Anqun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hongda Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiaming Fan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yancheng Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyan Zhang
- Department of Gastroenterology and Hepatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Huaiyin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Tong T, Huang M, Yan B, Lin B, Yu J, Teng Q, Li P, Pang J. Hippo signaling modulation and its biological implications in urological malignancies. Mol Aspects Med 2024; 98:101280. [PMID: 38870717 DOI: 10.1016/j.mam.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
Although cancer diagnosis and treatment have rapidly advanced in recent decades, urological malignancies, which have high morbidity and mortality rates, are among the most difficult diseases to treat. The Hippo signaling is an evolutionarily conserved pathway in organ size control and tissue homeostasis maintenance. Its downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are key modulators of numerous physiological and pathological processes. Recent work clearly indicates that Hippo signaling is frequently altered in human urological malignancies. In this review, we discuss the disparate viewpoints on the upstream regulators of YAP/TAZ and their downstream targets and systematically summarize the biological implications. More importantly, we highlight the molecular mechanisms involved in Hippo-YAP signaling to improve our understanding of its role in every stage of prostate cancer, bladder cancer and kidney cancer progression. A better understanding of the biological outcomes of YAP/TAZ modulation will contribute to the establishment of future therapeutic approaches.
Collapse
Affiliation(s)
- Tongyu Tong
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Mengjun Huang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Binyuan Yan
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bingbiao Lin
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qiliang Teng
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jun Pang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
4
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
5
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
6
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
7
|
Wei C, Deng X, Gao S, Wan X, Chen J. Cantharidin Inhibits Proliferation of Liver Cancer by Inducing DNA Damage via KDM4A-Dependent Histone H3K36 Demethylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2197071. [PMID: 35860003 PMCID: PMC9293552 DOI: 10.1155/2022/2197071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
Abstract
Objective To investigate the effect of cantharidin on DNA damage in hepatocellular carcinoma cells and its possible mechanism. Methods Cell proliferation assay and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used to analyze the effects of cantharidin on cell proliferation and apoptosis of hepatocellular carcinoma cells. The expression levels of DNA damage markers H2AX and P21 were analyzed by qRT-PCR. The expression of KDM4A and H3K36me3 was observed by western blot. The expression of KDM4A was regulated by siRNA or plasmid transfection. The effect of KDM4A on DNA damage induced by cantharidin in liver cancer was observed after overexpression and addiction of KDM4A. Results Cantharidin can significantly inhibit the growth of hepatocellular carcinoma cells and induce apoptosis of hepatocellular carcinoma cells. Cantharidin enhances the chemotherapy sensitivity of liver cancer by targeting the upregulation of KDM4A and the regulation of DNA damage induced by H3K36me3. Overexpression of KDM4A enhances DNA damage induced by cantharidin in HCC. KDM4A silencing attenuated the damage of cantharidin to the DNA of HCC cells. Conclusion Cantharidin can inhibit the growth and promote apoptosis of hepatocellular carcinoma cells. Meanwhile, cantharidin can induce DNA damage in HCC cells. Mechanism studies have shown that cantharidin induces DNA damage through the demethylation of KDM4A-dependent histone H3K36.
Collapse
Affiliation(s)
- Chao Wei
- Infectious Disease Department, Qijiang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 401420, China
| | - Xiangui Deng
- Infectious Disease Department, Wenlong Hospital of Qijiang, Chongqing 401420, China
| | - Shudi Gao
- Infectious Disease Department, Taiyuan Hospital of Traditional Chinese Medicine, Taiyuan 030009, Shanxi Province, China
| | - Xuemei Wan
- Infectious Disease Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Jing Chen
- Infectious Disease Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| |
Collapse
|
8
|
Han L, Luo J, Qu S, Shi X, Zhang J, Han B. kdm4aa is required for reproduction and development of zebrafish. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
del Moral-Morales A, Salgado-Albarrán M, Ortiz-Gutiérrez E, Pérez-Hernández G, Soto-Reyes E. Transcriptomic and Drug Discovery Analyses Reveal Natural Compounds Targeting the KDM4 Subfamily as Promising Adjuvant Treatments in Cancer. Front Genet 2022; 13:860924. [PMID: 35480330 PMCID: PMC9036480 DOI: 10.3389/fgene.2022.860924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
KDM4 proteins are a subfamily of histone demethylases that target the trimethylation of lysines 9 and 36 of histone H3, which are associated with transcriptional repression and elongation respectively. Their deregulation in cancer may lead to chromatin structure alteration and transcriptional defects that could promote malignancy. Despite that KDM4 proteins are promising drug targets in cancer therapy, only a few drugs have been described as inhibitors of these enzymes, while studies on natural compounds as possible inhibitors are still needed. Natural compounds are a major source of biologically active substances and many are known to target epigenetic processes such as DNA methylation and histone deacetylation, making them a rich source for the discovery of new histone demethylase inhibitors. Here, using transcriptomic analyses we determined that the KDM4 family is deregulated and associated with a poor prognosis in multiple neoplastic tissues. Also, by molecular docking and molecular dynamics approaches, we screened the COCONUT database to search for inhibitors of natural origin compared to FDA-approved drugs and DrugBank databases. We found that molecules from natural products presented the best scores in the FRED docking analysis. Molecules with sugars, aromatic rings, and the presence of OH or O- groups favor the interaction with the active site of KDM4 subfamily proteins. Finally, we integrated a protein-protein interaction network to correlate data from transcriptomic analysis and docking screenings to propose FDA-approved drugs that could be used as multitarget therapies or in combination with the potential natural inhibitors of KDM4 enzymes. This study highlights the relevance of the KDM4 family in cancer and proposes natural compounds that could be used as potential therapies.
Collapse
Affiliation(s)
- Aylin del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| |
Collapse
|
10
|
Wang Y, Li N, Tian D, Zhou CW, Wang YH, Yang C, Zeng MS. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:6451-6471. [PMID: 34429653 PMCID: PMC8379396 DOI: 10.2147/cmar.s322179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction N6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal roles in the progression of hepatocellular carcinoma (HCC). However, how their interaction is involved in the prognostic value of HCC and immune checkpoint inhibitors (ICIs) therapy remains unclear. Methods The RNA sequencing and clinical data of HCC patients were collected from TCGA database. The prognostic m6A-related lncRNAs were screened out with Pearson correlation test, univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. Patients with HCC were classified into 2 subtypes by consensus clustering. Survival analyses were performed to assess the prognostic value of different clusters and risk models. Potential tumor correlated biological pathways correlated with different clusters were explored through gene set enrichment analysis. We also identified the relationship of the risk model and clusters with response to immune checkpoint inhibitors (ICIs) therapy and tumor microenvironment (TME). Furthermore, the prognostic value of the 9 m6A-related lncRNAs was validated in the external cohort. Finally, the role of SNHG4 was explored by silencing and overexpression of SNHG4 through conducting proliferation, migration and invasion experiments. Results Patients from 2 clusters and different risk groups based on m6A-related lncRNAs had significantly different clinicopathological characteristics and overall survival outcomes. Tumor-correlated biological pathways were found to be correlated with Cluster 2 through GSEA. Moreover, we found that patients from different clusters and risk groups expressed higher levels of immune checkpoint genes and had distinct TME and different responses for ICIs therapy. Prognostic value of this risk model was further confirmed in the external cohort. Finally, consistent with the discovery, SNHG4 played an oncogenic role in vitro. Conclusion Our study demonstrated that the 9 m6A-related lncRNA signature may serve as a novel predictor in the prognosis of HCC and optimize (ICIs) therapy. SNHG4 plays an oncogenic role in HCC.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Na Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Di Tian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Chang-Wu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - You-Hua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| |
Collapse
|
11
|
TCF21 regulates miR-10a-5p/LIN28B signaling to block the proliferation and invasion of melanoma cells. PLoS One 2021; 16:e0255971. [PMID: 34424910 PMCID: PMC8382182 DOI: 10.1371/journal.pone.0255971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Background and aim Some research has suggested that miRNA-10a (miR-10a-5p) had an inhibitory function in proliferation and invasion of cancers. Whereas the role of miR-10a-5p in melanoma has not been fully explored. This study aims to confirm LIN28B as the targeted gene of miR-10a-5p which was explored in melanoma cells. In addition, upstream regulatory molecule of miR-10a-5p was also investigated in melanoma cells. Methods Real-time Quantitative polymerase chain reaction (RT-qPCR) was adopted to analyze miR-10a-5p expression level in melanoma and the normal human epidermal melanocyte cells. Several biological assays were performed to evaluate miR-10a-5p influences on cell proliferation, migration and invasion ability in A375 and B16-F10 cells. Gene prediction of miRNA targeting and a dual luciferase assay were applied to assess miR-10a-5p-targeted LIN28B. Western blot assessed the impacts of miR-10a-5p on the protein expression of LIN28B. Western blot analyzed the TCF21 effects on the expression of LIN28B and RT-qPCR assessed the influence of TCF21 on the expression level of miRNA-10a. In addition, Chromatin Immunoprecipitation (ChIP) Assay and JASPAR databases were employed to explore the regulatory relationship between TCF21 and miR-10a-5p. Results We discovered that miR-10a-5p expression was lower in melanoma cells and high expression of miR-10a-5p suppressed the proliferation, migration and invasion abilities of melanoma cells. We also discovered that miR-10a-5p targeted the LIN28B mRNA 3′UTR area and diminished LIN28B protein expression. We found that LIN28B expression was strongly decreased by TCF21 upregulation in the two melanoma cells. The qRT-PCR assay showed that miR-10a-5p expression level was obviously boosted by increased TCF21 expression. The results also demonstrated that TCF21 directly regulated miR-10a-5p at transcript levels. Conclusion TCF21 induced miRNA-10a targeting LIN28B could affect the progression and growth of melanoma.
Collapse
|
12
|
Jin JQ, Jia XN, Xuan JY. Changes of intestinal flora and miR-10a expression after radical resection of colorectal cancer: Effect of microecological enteral nutrition intervention. Shijie Huaren Xiaohua Zazhi 2021; 29:356-365. [DOI: 10.11569/wcjd.v29.i7.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radical resection is an important method for the treatment of rectal cancer, but the imbalance of intestinal flora and changes in gene expression caused by surgery are not conducive to the improvement of prognosis. It is of great value to explore the changes of intestinal flora and related gene expression after surgery for the formulation of intervention measures.
AIM To investigate the changes in intestinal flora and microRNA-10a (miR-10a) expression after radical resection of colorectal cancer, and to analyze the effect of microecological enteral nutrition intervention.
METHODS From July 2017 to June 2020, 107 patients with colorectal cancer undergoing radical resection at our hospital were selected as research subjects. The intestinal flora and miR-10a expression changes of patients with different intestinal flora were compared, and the relationship between the intestinal flora, miR-10a expression, and dysbacteriosis was analyzed. Microecological enteral nutrition intervention was carried out for patients with intestinal flora disorders, and the intestinal flora and miR-10a expression of patients before and after the intervention were compared. Clinical data, intestinal flora, and miR-10a expression of patients with different curative effects were compared. Factors affecting the efficacy of microecological enteral nutrition intervention were analyzed, as well as the value of intestinal flora and miR-10a expression in evaluation of efficacy of microecological enteral nutrition intervention. The correlation between the intestinal flora and the expression of miR-10a in patients with dysbacteriosis was analyzed.
RESULTS The numbers of colonies of Lactobacillus, Bifidobacterium, and Eubacterium, and miR-10a expression were higher in patients with normal flora after radical resection of colorectal cancer than those in patients with dysbacteriosis degrees Ⅰ and Ⅱ, and in patients with dysbacteriosis degree Ⅰ than in those with dysbacteriosis degree Ⅱ. The number of Enterococcus was lower in patients with normal flora after radical resection of colorectal cancer than in those with dysbacteriosis degrees Ⅰ and Ⅱ, and in patients with dysbacteriosis degree Ⅰ than in those with dysbacteriosis degree Ⅱ (P < 0.05). As the numbers of Lactobacillus, Bifidobacterium, and Eubacterium, and the expression of miR-10a decreased, and the number of Enterococcus increased, the risk of dysbacteriosis in patients after radical resection of colorectal cancer increased (P < 0.05). The numbers of Lactobacillus, Bifidobacterium, and Eubacterium and miR-10a expression were higher and the number of Enterococcus was lower in patients after microecological enteral nutrition intervention than in patients before intervention (P < 0.05). Age, Duke stage, numbers of Lactobacillus, Bifidobacterium, Enterococcus and Eubacterium after intervention, and miR-10a expression were all significantly correlated with the efficacy of microecological enteral nutrition intervention (P < 0.05). After intervention, the areas under the curves of the intestinal flora and miR-10a expression in evaluating the efficacy of microecological enteral nutrition intervention were both > 0.7.
CONCLUSION The intestinal flora and miR-10a expression changes after radical resection of colorectal cancer are significantly related to the occurrence of dysbacteriosis. Microecological enteral nutrition intervention can effectively regulate the intestinal flora and miR-10a expression, and the intestinal flora and miR-10a expression can be used as indicators to evaluate the intervention efficacy.
Collapse
Affiliation(s)
- Jia-Qi Jin
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xin-Neng Jia
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Jun-Yi Xuan
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
13
|
Ku A, Fredsøe J, Sørensen KD, Borre M, Evander M, Laurell T, Lilja H, Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Front Oncol 2021; 11:631021. [PMID: 33842337 PMCID: PMC8029979 DOI: 10.3389/fonc.2021.631021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 μl of urine for small RNA sequencing in a robust and disease discriminatory manner.
Collapse
Affiliation(s)
- Anson Ku
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikael Evander
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Shimada Y, Matsubayashi J, Saito A, Ohira T, Kuroda M, Ikeda N. Small RNA sequencing to differentiate lung squamous cell carcinomas from metastatic lung tumors from head and neck cancers. PLoS One 2021; 16:e0248206. [PMID: 33668046 PMCID: PMC7935561 DOI: 10.1371/journal.pone.0248206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Distinguishing lung squamous cell carcinoma (LSQCC) from a solitary metastatic lung tumor (MSQCC) from head and neck squamous cell carcinoma (HNSQCC) presents a difficult diagnostic challenge even after detailed pathological assessment. Treatment options and estimated survival outcomes after pulmonary resection differ between patients with LSQCC and MSQCC. This study aimed to investigate whether microRNA (miRNA) profiling by RNA sequencing of HNSQCC, MSQCC, and LSQCC was useful for differential diagnosis of MSQCC and LSQCC. RNA sequencing was performed to identify bioinformatically significant miRNAs from a formalin-fixed paraffin-embedded (FFPE) block from a derivation set. MiRNA levels were confirmed by validation sets using FFPE samples and serum extracellular vesicles from patients. Step-wise discriminant analysis and canonical discriminant analysis identified 13 miRNAs by which the different expression patterns of LSQCC, MSQCC, and HNSQCC groups were demonstrated. Six miRNAs (miR-10a/28/141/320b/3120) were assessed in validation sets, and 4 miRNAs (miR-10a/28/141/3120) were significantly upregulated in LSQCCs compared with MSQCCs and HNSQCCs. Serum extracellular vesicles from LSQCC patients demonstrated significantly elevated miR-10a (p = .042), miR-28 (p = .041), and miR-3120 (p = .047) levels compared with those from MSQCC patients. RNA sequencing is useful for differential diagnosis of LSQCC and MSQCC, and the expression level of miR-10a, miR-28, and miR-3120 in serum extracellular vesicles are promising noninvasive tools for this purpose.
Collapse
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| | - Jun Matsubayashi
- Department of Anatomical Pathology, Tokyo Medical University, Tokyo, Japan
| | - Akira Saito
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuo Ohira
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Mechanistic insights into KDM4A driven genomic instability. Biochem Soc Trans 2021; 49:93-105. [PMID: 33492339 PMCID: PMC7925003 DOI: 10.1042/bst20191219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.
Collapse
|
16
|
Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, Sudbery IM, Wilson HL, Kiss-Toth E. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front Immunol 2020; 11:574046. [PMID: 33329538 PMCID: PMC7728618 DOI: 10.3389/fimmu.2020.574046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3’untranslated region (3’UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple “high confidence” miRNAs potentially binding to the 3’UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3’UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.
Collapse
Affiliation(s)
- Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumeet R Deshmukh
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Swapna Satam
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany
| | - Ziyanda Shologu
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Ian M Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Heather L Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Gao Y, Zhao H, Mu L. LncRNA-KAT7 Negatively Regulates miR-10a Through an Epigenetic Pathway to Participate in Nonsmall Cell Lung Cancer. Cancer Biother Radiopharm 2020; 36:441-445. [PMID: 32423237 DOI: 10.1089/cbr.2019.3228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: LncRNA-KAT7 is a recently identified tumor suppressor in colorectal cancer, whereas its roles in other malignancies remain unclear. This study aimed to investigate the roles of KAT7 in nonsmall cell lung cancer (NSCLC). Results: The results showed that KAT7 was downregulated in NSCLC and predicted poor survival. KAT7 negatively correlated with miR-10a in NSCLC. In NSCLC cells, overexpression of KAT7 led to downregulated miR-10a, whereas silencing of KAT7 led to upregulated miR-10a. Methylation-specific polymerase chain reaction revealed that KAT7 positively regulated the methylation of miR-10a. Cell proliferation assay showed that overexpression of miR-10a led to increased proliferation rate of NSCLC cells. In addition, overexpression of KAT7 played an opposite role and reduced the effects of the overexpression of miR-10a. Conclusion: In conclusion, KAT7 negatively regulates miR-10a through epigenetic mechanisms to participate in NSCLC cell proliferation.
Collapse
Affiliation(s)
- Yan Gao
- Department of Respiratory Medicine, Affiliated Heping Hospital of Changzhi Medical College, Changzhi City, P.R. China
| | - Hong Zhao
- Department of Respiratory Medicine, Affiliated Heping Hospital of Changzhi Medical College, Changzhi City, P.R. China
| | - Lin Mu
- Department of Respiratory Medicine, Affiliated Heping Hospital of Changzhi Medical College, Changzhi City, P.R. China
| |
Collapse
|
18
|
Cui S, Lei Z, Guan T, Fan L, Li Y, Geng X, Fu D, Jiang H, Xu S. Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci 2020; 111:1567-1581. [PMID: 32133742 PMCID: PMC7226285 DOI: 10.1111/cas.14375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC.
Collapse
Affiliation(s)
- Shu‐Zhong Cui
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Zi‐Ying Lei
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Tian‐Pei Guan
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Ling‐Ling Fan
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - You‐Qiang Li
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xin‐Yan Geng
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - De‐Xue Fu
- Department of SurgeryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hao‐Wu Jiang
- Department of AnesthesiologyCenter for the Study of ItchWashington University School of MedicineSt. LouisMOUSA
| | - Song‐Hui Xu
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
19
|
Zhou X, Lu H, Li F, Han L, Zhang H, Jiang Z, Dong Q, Chen X. LncRNA cancer susceptibility candidate (CASC7) upregulates phosphatase and tensin homolog by downregulating miR-10a to inhibit neuroblastoma cell proliferation. Neuroreport 2020; 31:381-386. [PMID: 32101951 DOI: 10.1097/wnr.0000000000001411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long non-coding (lncRNA) cancer susceptibility candidate (CASC7) plays a tumor-suppressive role in several malignancies. In this study, the role of CASC7 in neuroblastoma was investigated for the first time. We observed the downregulation of CASC7 in neuroblastoma tissues compared to non-cancer tissues of neuroblastoma patients. Across neuroblastoma tissues, CASC7 was inversely correlated with microRNA-10a (miR-10a) but positively correlated with phosphatase and tensin homolog mRNA. In neuroblastoma cells, CASC7 overexpression led to downregulated miR-10a but upregulated phosphatase and tensin homolog. Furthermore, miR-10a overexpression led to downregulated phosphatase and tensin homolog and reduced effects of CASC7 overexpression. CASC7 overexpression resulted in inhibition, while miR-10a overexpression resulted in increased proliferation rate of neuroblastoma cells. We therefore concluded that lncRNA CASC7 may upregulate phosphatase and tensin homolog by downregulating miR-10a to inhibit neuroblastoma cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Lulu Han
- Operation Room, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, PR. China
| | | | | | | | - Xin Chen
- Departments of Pediatric Surgery
| |
Collapse
|
20
|
Zenner ML, Baumann B, Nonn L. Oncogenic and tumor-suppressive microRNAs in prostate cancer. ACTA ACUST UNITED AC 2020; 10:50-59. [PMID: 33043165 DOI: 10.1016/j.coemr.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs are known to be dysregulated in prostate cancer. These small noncoding RNAs can function as biomarkers and are involved in the biology of prostate cancer. The canonical mechanism for microRNAs is post-transcription regulation of gene expression via binding to the 3' untranslated region of mRNAs, resulting in RNA degradation and/or translational repression. Thus, oncogenic microRNAs, also known as oncomiRs, often have high expression in prostate cancer and target the mRNAs of tumor suppressors. Conversely, tumor-suppressive microRNAs have reduced expression in cancer and typically target oncogenes. Some microRNAs function outside the classical mechanism and serve to stabilize their mRNA targets. Herein, we review contemporary studies that demonstrate oncogenic and tumor-suppressive activity of microRNAs in prostate cancer.
Collapse
Affiliation(s)
- Morgan L Zenner
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States.,University of Illinois Cancer Center, Chicago, IL, 60612, United States
| |
Collapse
|
21
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Pham TT, Ban J, Lee K, Hong Y, Lee J, Truong AD, Lillehoj HS, Hong YH. MicroRNA gga-miR-10a-mediated transcriptional regulation of the immune genes in necrotic enteritis afflicted chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103472. [PMID: 31437523 DOI: 10.1016/j.dci.2019.103472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
miRNAs are involved in both adaptive and innate immune systems of host animals; and play important roles in many immune-related pathways. The systemic biological roles of gga-miR-10a-5p chicken microRNA on immune response were investigated in two necrotic enteritis (NE) induced chicken lines, Marek's disease (MD) resistant (line 6.3) and susceptible (line 7.2). We determined the expression patterns of gga-miR-10a in the intestinal mucosal layer of chickens upon NE induction, and identified the target genes (MyD88, and SKP1) related to the host immune response to pathogens. We found that gga-miR-10a expression in the intestinal mucosal layer of MD-resistant chicken line 6.3 gga-miR-10a was significantly down-regulated (p < 0.01) during NE. Overexpression analysis of gga-miR-10a and reporter gene analysis using a wild- or mutant-type MyD88 3' untranslated region (3' UTR)-luciferase construct in chicken macrophage cell line HD11 and chicken fibroblast cell line OU2 showed that gga-miR-10a acted as a direct translational repressor of MyD88 by targeting the 3' UTR of this gene. Furthermore, miR-10a indirectly negatively influenced the expression of signaling molecules related to the MyD88-dependent pathway, including TRAF6, TAK1, and NF-κB1 at both transcriptional and translational levels. Downstream of the MyD88-dependent pathway, several proinflammatory cytokines such as IL-1β, IFN-γ, IL-12p40, TNFSF15, and LITAF were down-regulated by overexpression of gga-miR-10a. These results suggest that gga-miR-10a is an important regulator of the Toll-like receptor signaling pathway. The findings of this study improve our understanding of the biological functions of miR-10a and the mechanisms underlying the TLR signaling pathway upon NE afflicted chickens, as well improving the overall understanding of the immune system function in domestic animals.
Collapse
Affiliation(s)
- Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jihye Ban
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
23
|
Liu Y, Wang X, Jiang X, Yan P, Zhan L, Zhu H, Wang T, Wen J. Tumor-suppressive microRNA-10a inhibits cell proliferation and metastasis by targeting Tiam1 in esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:7845-7857. [PMID: 30426564 DOI: 10.1002/jcb.28059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.
Collapse
Affiliation(s)
- Yatian Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesong Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengwei Yan
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanfeng Zhu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingting Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Leon KE, Aird KM. Jumonji C Demethylases in Cellular Senescence. Genes (Basel) 2019; 10:genes10010033. [PMID: 30634491 PMCID: PMC6356615 DOI: 10.3390/genes10010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Senescence is a stable cell cycle arrest that is either tumor suppressive or tumor promoting depending on context. Epigenetic changes such as histone methylation are known to affect both the induction and suppression of senescence by altering expression of genes that regulate the cell cycle and the senescence-associated secretory phenotype. A conserved group of proteins containing a Jumonji C (JmjC) domain alter chromatin state, and therefore gene expression, by demethylating histones. Here, we will discuss what is currently known about JmjC demethylases in the induction of senescence, and how these enzymes suppress senescence to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Kelly E Leon
- Department of Cellular & Molecular Physiology, Penn Stage College of Medicine, Hershey, PA 17033, USA.
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn Stage College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|