1
|
Chatterjee M, Nag S, Gupta S, Mukherjee T, Shankar P, Parashar D, Maitra A, Das K. MicroRNAs in lung cancer: their role in tumor progression, biomarkers, diagnostic, prognostic, and therapeutic relevance. Discov Oncol 2025; 16:293. [PMID: 40067551 PMCID: PMC11896959 DOI: 10.1007/s12672-025-02054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are associated with post-transcriptional regulation of gene expression. Dysfunction or aberrant expression of miRNAs is predominant in various malignancies including lung cancer. Lung cancer is one of the commonest causes of cancer-related death worldwide, with a five-year survival of only 10-20%. The present review summarizes the current understanding of the role of miRNAs in the development and progression of human lung cancer and their therapeutic potential. Also, we briefly discuss the canonical biogenetic pathway of miRNAs followed by a detailed illustration on how miRNAs regulate human lung cancer progression in various ways. Furthermore, we focus on how miRNAs contribute to the crosstalk between cancer cells and different cells in the tumor microenvironment in the context of lung cancer. Finally, we illustrate how different miRNAs are used as a prognostic and diagnostic biomarker for lung cancer and the ongoing miRNA-associated clinical trials. In conclusion, we discuss how targeting miRNAs can be a potential therapeutic means in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India
| | - Sayoni Nag
- Brainware University, Barasat, 700125, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
2
|
Carrà G, Petiti J, Tolino F, Vacca R, Orso F. MicroRNAs in metabolism for precision treatment of lung cancer. Cell Mol Biol Lett 2024; 29:121. [PMID: 39256662 PMCID: PMC11384722 DOI: 10.1186/s11658-024-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The dysregulation of miRNAs in lung cancer has been extensively documented, with specific miRNAs acting as both tumor suppressors and oncogenes, depending on their target genes. Recent research has unveiled the regulatory roles of miRNAs in key metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, fatty acid metabolism, and autophagy, which collectively contribute to the aberrant energy metabolism characteristic of cancer cells. Furthermore, miRNAs are increasingly recognized as critical modulators of the tumor microenvironment, impacting immune response and angiogenesis. This review embarks on a comprehensive journey into the world of miRNAs, unraveling their multifaceted roles, and more notably, their emerging significance in the context of cancer, with a particular focus on lung cancer. As we navigate this extensive terrain, we will explore the fascinating realm of miRNA-mediated metabolic rewiring, a phenomenon that plays a pivotal role in the progression of lung cancer and holds promise in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
- San Luigi Gonzaga Hospital, Orbassano, Italy.
| | - Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135, Turin, Italy
| | - Federico Tolino
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Rita Vacca
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy
| | - Francesca Orso
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
3
|
Zhang Z, Lin F, Wu W, Jiang J, Zhang C, Qin D, Xu Z. Exosomal microRNAs in lung cancer: a narrative review. Transl Cancer Res 2024; 13:3090-3105. [PMID: 38988916 PMCID: PMC11231775 DOI: 10.21037/tcr-23-2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background and Objective Exosomes are nanoscale extracellular vesicles secreted by cells, which can release bioactive macromolecules, such as microRNA (miRNA) to receptor cells. Exosomes can efficiently penetrate various biological barriers which mediate intercellular communication. MiRNA are a class of non-coding RNA that primarily regulate messenger RNA (mRNA) at the post-transcriptional level. MiRNA is abundant in exosomes, which plays an important role by being transported and released through exosomes secreted by lung cancer cells. This review aims to elucidate the roles of exosome-derived miRNAs in lung cancer. Methods We focused on the roles of exosome-derived miRNAs in cancer occurrence and development, including angiogenesis, cell proliferation, invasion, metastasis, immune escape, drug resistance, and their clinical value as new diagnostic and prognostic markers for lung cancer. Key Content and Findings Exosomal miRNA can not only affect angiogenesis of lung cancer, induce epithelial-mesenchymal transformation, and promote reprogramming of tumor microenvironment, but also affect immune regulation and drug resistance transmission and participate in regulating lung cancer cell proliferation. Therefore, understanding the regulatory roles of exosomal miRNAs in tumor invasion and metastasis can provide new ideas for the treatment of lung cancer. Conclusions Exosomal miRNA can provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future. Targeting tumor-specific exosomal miRNA represents a new strategy for clinical treatment of lung cancer, which can provide potential non-invasive biomarkers in the early diagnosis of lung cancer. Investigation of the involvement of exosomal miRNAs in the occurrence and progression of tumors can yield new opportunities for the clinical diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fengwu Lin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenqi Wu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Jiang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongliang Qin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhenan Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang W, Jiang B, Zhu H, Cheng A, Li C, Huang H, Li X, Kuang Y. miR-33b in human cancer: Mechanistic and clinical perspectives. Biomed Pharmacother 2023; 161:114432. [PMID: 36841026 DOI: 10.1016/j.biopha.2023.114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The microRNAs (miRNAs), an extensive class of small noncoding RNAs (∼22 nucleotides), have been shown to have critical functions in various biological processes during development. miR-33b (or hsa-miR-33b) is down-regulated in cancer of multiple systems. Notably, at least 27 protein-coding genes can be targeted by miR-33b. miR-33b regulates the cell cycle, cell proliferation, various metabolism pathways, epithelial-mesenchymal transition (EMT), cancer cell invasion and migration, etc. In prostate cancer, Cullin 4B (CUL4B) can be recruited to the promoter to inhibit the expression of miR-33b. In gastric cancer, the hypermethylation of the CpG island regulated the expression of miR-33b. Besides, miR-33b could be negatively regulated by 7 competing-endogenous RNAs (ceRNAs), which are all long non-coding RNAs (lncRNAs). There are at least 4 signaling pathways, including NF-κB, MAP8, Notch1, and Wnt/β-catenin signaling pathways, which could be regulated partially by miR-33b. Additionally, low expression of miR-33b was associated with clinicopathology and prognosis in cancer patients. In addition, the aberrant expression of miR-33b was connected with the resistance of cancer cells to 5 anticancer drugs (cisplatin, docetaxel, bortezomib, paclitaxel, and daunorubicin). Importantly, our work systematically summarizes the aberrant expression of miR-33b in various neoplastic diseases and the effect of its downregulation on the biological behavior of cancer cells. Furthermore, this review focuses on recent advances in understanding the molecular regulation mechanisms of miR-33b. Moreso, the relationship between the miR-33b expression levels and the clinicopathological data and prognosis of tumor patients was summarized for the first time. Overall, we suggest that the current studies of miR-33b are insufficient but provide potential hints and direction for future miR-33b-related research.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Can Li
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Yirui Kuang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
6
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
7
|
Xiao X, Chen H, Yang L, Xie G, Shimuzu R, Murai A. Concise review: Cancer cell reprogramming and therapeutic implications. Transl Oncol 2022; 24:101503. [PMID: 35933935 PMCID: PMC9364012 DOI: 10.1016/j.tranon.2022.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cancer stem cell (CSC) act as tumor initiating cells. Reprogramming technology can convert cells into CSCs. Metabolic reprogramming is critical for CSCs. MiRNA can mediate cancer cell reprogramming as emerging alternatives.
The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of stem cells and is considered to apply to a variety of cancers. Additionally, cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. Further, microRNAs (miRNAs) are found to be involved in acquisition of stem cell-like properties, regulation and reprogramming of cancer cells during cancer progression through its post-transcriptional-regulatory activity. In this concise review, we aim to integrate the current knowledge and recent advances to elucidate the mechanisms involved in the regulation of cell reprogramming and highlights the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Xue Xiao
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Hua Chen
- Laboratory Department of community health service station, Wuhan Engineering University, Wuhan City, Hubei Province, China
| | - Lili Yang
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Guoping Xie
- Laboratory of the second staff hospital of Wuhan Iron and steel (Group) Company, Wuhan City, Hubei Province, China
| | - Risa Shimuzu
- Department of medicine and molecular science, Gunma University, Maebeshi, Japan
| | - Akiko Murai
- Department of Gynecology Oncology, University of Chicago, , 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
9
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
10
|
MicroRNA-877-5p Inhibits Cell Progression by Targeting FOXM1 in Lung Cancer. Can Respir J 2022; 2022:4256172. [PMID: 35756697 PMCID: PMC9217556 DOI: 10.1155/2022/4256172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Many researches revealed that microRNAs (miRNAs) function as potential oncogene or tumor suppressor gene. As an antioncogene, miR-877-5p was reduced in many tumors. Objective This research aimed to explore the biological role and mechanisms of miR-877-5p, which may help patients with non-small-cell lung cancer (NSCLC) find effective therapeutic targets. Methods The downstream targets of miR-877-5p were predicted by Bioinformatics software. RT-qPCR and western blot were employed to analyze the gene levels. The impacts of miR-877-5p and FOXM1 were assessed by cell function experiments. Results The miR-877-5p was reduced in NSCLC. In addition to this, it also inhibited cell progression of NSCLC cells in vitro. Moreover, the upregulation of FOXM1 expression restored the inhibitory effect of enhancement of miR-877-5p. Conclusions Taken together, miR-877-5p inhibited cell progression by directly targeting FOXM1, which may provide potential biomarkers for targeted therapy of NSCLC.
Collapse
|
11
|
Xu YJ, Wei RS, Li XH, Li Q, Yu JR, Zhuang XF. MiR-421 promotes lipid metabolism by targeting PTEN via activating PI3K/AKT/mTOR pathway in non-small cell lung cancer. Epigenomics 2022; 14:121-138. [PMID: 35045733 DOI: 10.2217/epi-2021-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims: We aim to investigate the effects of miR-421 on lipid metabolism in non-small cell lung cancer (NSCLC). Methods: The miR-421 expression and PTEN mRNA level in tumor tissues, adjacent normal tissues, human lung epithelial cells and NSCLC cell lines were detected with reverse transcription quantitative real-time PCR. Results: MiR-421 was increased, and PTEN was reduced remarkably in tumor tissues and NSCLC cell lines. Down-regulated miR-421 suppressed lipid accumulation, cell proliferation, migration and invasion, whereas overexpression of miR-421 had the opposite effects. MiR-421 directly targeted PTEN and negatively regulated PTEN expression. MiR-421 activated PI3K/AKT/mTOR pathway through regulating PTEN. Conclusion: MiR-421 promotes lipid metabolism through targeting PTEN via PI3K/AKT/mTOR pathway activation in NSCLC, indicating that miR-421 can be a latent therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yong-Jie Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Rui-Shi Wei
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xin-Hua Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Qiang Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Jian-Rong Yu
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xiao-Fei Zhuang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030000, Shanxi Province, China
| |
Collapse
|
12
|
Chen Z, Tang WJ, Zhou YH, Chen ZM, Liu K. Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1701. [PMID: 34988210 PMCID: PMC8667159 DOI: 10.21037/atm-21-5975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Background The main aim of this research was to explore the role and mechanism of Andrographolide (Andro) in controlling non-small cell lung cancer (NSCLC) cell proliferation. Methods Human NSCLC H1975 cells were treated with Andro (0–20 µM) for 4–72 h. B-cell leukemia/lymphoma 2 (Bcl-2)-antagonist/killer (Bak)-small interfering RNA (siRNA) (Bak-siRNA) and fructose-1,6-bisphosphatase (FBP1)-siRNA were transfected into H1975 cells to inhibit the endogenic Bak and FBP1 expression, respectively, and their expressions were detected by real-time quantitative reverse transcription–polymerase chain reaction (qRT-PCR) and western blotting (WB). Cellular proliferation ability was determined through various assessments, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and cell counting kit-8 (CCK-8) assays. Cell apoptosis ability was measured using flow cytometry. Pro-apoptotic-related proteins (cleaved caspase 9, cleaved caspase 8, and cleaved caspase 3) and mitochondrial apoptosis pathway proteins [Bcl2-associated X (Bax), Bak, Bcl-2, and cytochrome C (cyto C)] were assessed by WB. Aerobic glycolysis-associated genes [pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), and glucose transporter 1 (GLUT1)] and gluconeogenesis genes [phosphoenolpyruvate carboxykinase 1 (PEPCK1), fructose-1,6-bisphosphatase 1 (FBP1), and phosphofructokinase (PFK)] were measured by qRT-PCR. The mitochondrial membrane depolarization sensor, 5, 50, 6, 60-tetrachloro-1, 10, 3, 30 tetraethyl benzimidazolo carbocyanine iodide (JC-1) assay was used for the measurement of mitochondrial membrane potential (ΔΨm). Additionally, glycolytic metabolism, lactate production, and adenosine triphosphate (ATP) synthesis were also analyzed. Results Andro inhibited human NSCLC cellular proliferation and induced apoptosis in a dose-time or dose-dependent manner via activation of the mitochondrial apoptosis pathway. Andro inhibited glycolysis, promoted the gluconeogenesis pathway, and increased the levels of cleaved caspase 9, cleaved caspase 8, cleaved caspase 3, Bax, Bak, PEPCK1, FBP1, and PFK, and decreased the levels of Bcl-2, PKM2, LDHA, and GLUT1. Moreover, it also decreased the ΔΨm and facilitated the release of cyto C from mitochondria into the cytoplasm. Furthermore, Andro enhanced the mitochondrial translocation of Bak, glucose uptake, lactate release, and intracellular ATP synthesis. Suppression of endogenic Bak and FBP1 expression significantly reduced the effects of Andro in H1975 cells. Conclusions Andro represses NSCLC cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Jian Tang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Han Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou-Miao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liu J, Wang W, Chen L, Li Y, Zhao S, Liang Y. MicroRNA-33b replacement effect on growth and migration inhibition in ovarian cancer cells. Chem Biol Drug Des 2021; 101:1019-1026. [PMID: 34590776 DOI: 10.1111/cbdd.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer is a devastating gynecological disease which is considered the major cause of cancer fatality around the world. The down-regulation of microRNA-33b (miR-33b) was reported in some malignancies. Hence, we transfected the miR-33b mimic into SKOV3 cells and evaluated the impacts of this interference on the growth and migration repression of these tumor cells as well as on targeted genes expression. METHODS In our study, transfecting the miR-33b mimic and inhibitor, negative control (NC), and NC inhibitor were established using Lipofectamine 2000. The cytotoxic effects of miR-33b were evaluated by MTT. To assess the miR-33b effects on cell migration, a scratching test was applied. The expression levels of miR-33b, ADAMTS, C-Myc, MMP9, K-Ras, and CXCR4 were evaluated using qRT-PCR. RESULTS These findings indicate that transfection of miR-143 mimic had no marked effects on the SKOV3 cell line. As expected, miR-33b relative expression levels were as follows: miR-33b mimic >NC and NC inhibitor >miR-33b inhibitor (p < 0.01). Moreover, transfected miR-33b mimic could suppress SKOV3 cells' proliferation, whereas transfected miR-33b inhibitor could promote cell proliferation (p < 0.01). MiR-33b overexpression significantly down-regulated the MMP9, CXCR-4, c-Myc, ADAMTS, and K-Ras mRNA levels (p < 0.05). CONCLUSION As expected, these results confirm the tumor-suppressive effect of miR-33b in the SKOV3 ovarian cancer cell line by reducing cell survival, proliferation, and migration.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Limin Chen
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yachai Li
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuimiao Zhao
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yijuan Liang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
14
|
Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H, Li N, Li Z, Li Y, Dai X, Luo Q, Jiang J, Mi Y. LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer 2021; 9:e002746. [PMID: 34446576 PMCID: PMC8395365 DOI: 10.1136/jitc-2021-002746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Long intergenic non-protein coding RNA 1140 (LINC01140), a long non-coding RNA, is highly expressed in various cancers; however, its biological functions in lung cancer (LC) progression and immune escape are still unclear. METHODS Here, to elucidate LINC01140 function, 79 paired LC and paracancerous tissues were collected. LINC01140 expression levels were determined using fluorescence in situ hybridization and qPCR analysis. Cell counting kit-8 (CCK-8) assay and transwell assays were performed. The interaction between microRNAs (miRNAs) and LINC01140 was confirmed using an RNA immunoprecipitation assay. Cytokine-induced killer (CIK) cell phenotypes were analyzed by flow cytometry. Cytokine secretion levels were determined by ELISA. CIK cytotoxicity was assessed by measuring lactate dehydrogenase release. Besides, xenograft tumor mouse models were used to unveil the in vivo function of LINC01140. RESULTS We found that LINC01140 was highly expressed in human LC tissues and cell lines. High LINC01140 levels were associated with poor survival in patients with LC. LINC01140 upregulation promoted the proliferation, migration, and invasion of LC cells through direct interaction with miR-33a-5p and miR-33b-5p, thereby contributing to c-Myc expression and also inhibited cisplatin-induced cell apoptosis. In subcutaneous tumor xenograft mice, LINC01140 knockdown markedly reduced tumor growth and lung metastasis. Additionally, LINC01140 directly repressed miR-377-3 p and miR-155-5 p expression levels, resulting in the upregulation of their common downstream target programmed death-ligand 1 (PD-L1), a crucial target in LC immunotherapy. Notably, we proved that LINC01140 knockdown, along with CIK administration, suppressed the growth of subcutaneous LC xenografts by decreasing PD-L1 expression in severe combined immunodeficient mice. CONCLUSIONS Taken together, LINC01140 overexpression protects c-Myc and PD-L1 mRNA from miRNA-mediated inhibition and contributes to the proliferation, migration, invasion, and immune escape of LC cells. These results provide a theoretical basis that LINC01140 is a promising target for LC treatment.
Collapse
Affiliation(s)
- Rongmu Xia
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Guojun Geng
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Xiuyi Yu
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Zhong Xu
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Hongming Liu
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Ning Li
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Ziyan Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Yingli Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qicong Luo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Jie Jiang
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic tumor diagnosis and treatment, Institute of lung cancer, The First Affiliated Hospital of Xiamen University; School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University; School of Clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
15
|
Jiang D, Mo Q, Sun X, Wang X, Dong M, Zhang G, Chen F, Zhao Q. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci 2021; 112:3585-3597. [PMID: 34252986 PMCID: PMC8409406 DOI: 10.1111/cas.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes recurrence and anti‐CD20‐based therapeutic resistance. Previous studies have shown that downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab leads to rituximab resistance. However, the mechanisms of CD20 loss remain unknown. We identified that pyruvate dehydrogenase kinase 4 (PDK4) is markedly elevated in DLBCL cells derived from both patients and cell lines with R‐CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) resistance. We found that overexpression of PDK4 in DLBCL cells resulted in cell proliferation and resistance to rituximab in vitro and in vivo. Furthermore, loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate was able to significantly increase rituximab‐induced cell apoptosis in DLBCL cells. Further studies suggested PDK4 mediates a metabolic shift, in that the main energy source was changed from oxidative phosphorylation to glycolysis, and the metabolic changes could play an important role in rituximab resistance. Importantly, by knocking down or overexpressing PDK4 in DLBCL cells, we showed that PDK4 has a negative regulation effect on MS4A1/CD20 expression. Collectively, this is the first study showing that targeting PDK4 has the potential to overcome rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Sun
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guozhen Zhang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China.,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Liu F, Gao C, Wang W, Hu J, Huang Z, Liang M, Li S. miR-137/ERRα axis mediates chemoresistance of nasopharyngeal carcinoma cells. J Cell Commun Signal 2021; 16:103-113. [PMID: 34196940 DOI: 10.1007/s12079-021-00634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common malignant tumor of the head and neck region and is characterized by an increased risk of developing chemoresistance after treatment. The present study demonstrated that estrogen-related receptor α (ERRα) was upregulated in cisplatin- and fluorouracil-resistant NPC cells. In addition, ERRα knockdown or treatment of cells with the ERRα inverse agonist XCT-790 attenuated the chemoresistance of NPC cells. Mechanistically, the increased expression of ERRα in chemoresistant cells was associated with enhanced mRNA stability. Bioinformatics analysis for screening microRNAs (miRs) regulating the expression of ERRα revealed that miR-137 was downregulated in chemoresistant NPC cells. Additionally, transfection of cells with miR-137 mimics reduced ERRα mRNA stability and increased the chemosensitivity of NPC cells. Furthermore, ERRα knockdown reduced glucose consumption, and lactate and ATP production rates in chemoresistant cells. The aforementioned findings suggested that the miR-137/ERRα-mediated metabolic programming could be involved in the chemoresistance of NPC cells.
Collapse
Affiliation(s)
- Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Chunsheng Gao
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Wenjuan Wang
- Department of Emergency Intensive Care Unit, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Jing Hu
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Zuofeng Huang
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Meng Liang
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China
| | - Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Health Science Center, No.89 Taoyuan Road, Nanshan District, Shenzhen City, 518000, Guangdong Province, People's Republic of China.
| |
Collapse
|
17
|
Chiang AWT, Baghdassarian HM, Kellman BP, Bao B, Sorrentino JT, Liang C, Kuo CC, Masson HO, Lewis NE. Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy. J Biomed Sci 2021; 28:50. [PMID: 34158025 PMCID: PMC8218521 DOI: 10.1186/s12929-021-00746-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding “cancer therapy by inhibition of negative immune regulation” –CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.
Collapse
Affiliation(s)
- Austin W T Chiang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chih-Chung Kuo
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Helen O Masson
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA.,The National Biologics Facility, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Azizi MIHN, Othman I, Naidu R. The Role of MicroRNAs in Lung Cancer Metabolism. Cancers (Basel) 2021; 13:cancers13071716. [PMID: 33916349 PMCID: PMC8038585 DOI: 10.3390/cancers13071716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short-strand non-coding RNAs that are responsible for post-transcriptional regulation of many biological processes. Their differential expression is important in supporting tumorigenesis by causing dysregulation in normal biological functions including cell proliferation, apoptosis, metastasis and invasion and cellular metabolism. Cellular metabolic processes are a tightly regulated mechanism. However, cancer cells have adapted features to circumvent these regulations, recognizing metabolic reprogramming as an important hallmark of cancer. The miRNA expression profile may differ between localized lung cancers, advanced lung cancers and solid tumors, which lead to a varying extent of metabolic deregulation. Emerging evidence has shown the relationship between the differential expression of miRNAs with lung cancer metabolic reprogramming in perpetuating tumorigenesis. This review provides an insight into the role of different miRNAs in lung cancer metabolic reprogramming by targeting key enzymes, transporter proteins or regulatory components alongside metabolic signaling pathways. These discussions would allow a deeper understanding of the importance of miRNAs in tumor progression therefore providing new avenues for diagnostic, therapeutic and disease management applications.
Collapse
|
19
|
Wang YH, Zhu ZR, Tong D, Zhou R, Xiao K, Peng L. MicroRNAs and Lung Cancer: A Review Focused on Targeted Genes. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:1-10. [DOI: 10.14218/erhm.2020.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Taefehshokr S, Taefehshokr N, Hemmat N, Hajazimian S, Isazadeh A, Dadebighlu P, Baradaran B. The pivotal role of MicroRNAs in glucose metabolism in cancer. Pathol Res Pract 2020; 217:153314. [PMID: 33341548 DOI: 10.1016/j.prp.2020.153314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells are able to undergo aerobic glycolysis and metabolize glucose to lactate instead of oxidative phosphorylation, which is known as Warburg effect. Accumulating evidence has revealed that microRNAs regulate cancer cell metabolism, which manifest a higher rate of glucose metabolism. Various signaling pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. MicroRNAs are a class of non-coding RNAs that are not translated into proteins but regulate target gene expression or in other words function pre-translationally and post-transcriptionally. MicroRNAs have been shown to be involved in various biological processes, including glucose metabolism via targeting major transcription factors, enzymes, oncogenes or tumor suppressors alongside the oncogenic signaling pathways. In this review, we describe the regulatory role of microRNAs of cancer cell glucose metabolism, including in the glucose uptake, glycolysis, tricarboxylic acid cycle and several signaling pathways and further suggest that microRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells and thus suppressing cancer progression.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Dadebighlu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Pattanayak B, Garrido-Cano I, Adam-Artigues A, Tormo E, Pineda B, Cabello P, Alonso E, Bermejo B, Hernando C, Martínez MT, Rovira A, Albanell J, Rojo F, Burgués O, Cejalvo JM, Lluch A, Eroles P. MicroRNA-33b Suppresses Epithelial-Mesenchymal Transition Repressing the MYC-EZH2 Pathway in HER2+ Breast Carcinoma. Front Oncol 2020; 10:1661. [PMID: 33014831 PMCID: PMC7511588 DOI: 10.3389/fonc.2020.01661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial–mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients’ samples. The upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, EMT, and EZH2 expression in non-tumorigenic cells. Importantly, the Kaplan–Meier analysis showed a significant association between high miR-33b expression and better overall survival. These results suggest miR-33b as a suppressive miRNA that could inhibit tumor metastasis and invasion in HER2+ BC partly by impeding EMT through the repression of the MYC–EZH2 loop.
Collapse
Affiliation(s)
| | | | | | - Eduardo Tormo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain
| | - Begoña Pineda
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain
| | - Paula Cabello
- Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Elisa Alonso
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Octavio Burgués
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,COST action CA15204, Brussels, Belgium
| |
Collapse
|
22
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
23
|
Pozza DH, De Mello RA, Araujo RL, Velcheti V. MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice? Curr Genomics 2020; 21:372-381. [PMID: 33093800 PMCID: PMC7536806 DOI: 10.2174/1389202921999200630144712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer (LC) development is a process that depends on genetic mutations. The DNA methylation, an important epigenetic modification, is associated with the expression of non-coding RNAs, such as microRNAs. MicroRNAs are particularly essential for cell physiology, since they play a critical role in tumor suppressor gene activity. Furthermore, epigenetic disruptions are the primary event in cell modification, being related to tumorigenesis. In this context, microRNAs can be a useful tool in the LC suppression, consequently improving prognosis and predicting treatment. CONCLUSION This manuscript reviews the main microRNAs involved in LC and its potential clinical applications to improve outcomes, such as survival and better quality of life.
Collapse
Affiliation(s)
| | - Ramon Andrade De Mello
- Address correspondence to this author at the Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; Tel/Fax: +351 289 244 420; E-mail:
| | | | | |
Collapse
|
24
|
Qi Y, Gao Y. Clinical significance of miR-33b in glioma and its regulatory role in tumor cell proliferation, invasion and migration. Biomark Med 2020; 14:539-548. [PMID: 32462908 DOI: 10.2217/bmm-2019-0455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: This study aimed to investigate the clinical significance of microRNA-33b (miR-33b) in glioma patients and its biological function in tumor progression. Materials & methods: Expression of miR-33b was measured using quantitative real-time RT-PCR. Diagnostic and prognostic values of miR-33b were assessed by the receiver operating characteristics curve and Kaplan-Meier (KM) survival assay. The functional role of miR-33b was further analyzed. Results: Expression of miR-33b in glioma patients and cells was decreased. Expression of miR-33b had high diagnostic accuracy and could predict a poor prognosis. Overexpression of miR-33b led to suppressed glioma cell proliferation, migration and invasion. Conclusion: Decreased expression of miR-33b serves a promising biomarker in the diagnosis and prognosis of glioma, and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yuxiang Qi
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying 257034, Shandong, China
| | - Yuling Gao
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying 257034, Shandong, China
| |
Collapse
|
25
|
Zhao Z, Ji M, Wang Q, He N, Li Y. miR-16-5p/PDK4-Mediated Metabolic Reprogramming Is Involved in Chemoresistance of Cervical Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:509-517. [PMID: 32577500 PMCID: PMC7301169 DOI: 10.1016/j.omto.2020.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, investigation about molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The molecular mechanisms responsible for the chemoresistance of cervical cancer were investigated by the use of doxorubicin (Dox)-resistant HeLa/Dox and SiHa/Dox cells. Our data showed that chemoresistant cells exhibited significantly higher glucose consumption, lactate production rate, and ATP levels than that of their parental cells. Among metabolic and glycolytic related genes, the expression of PDK4 was upregulated in Dox-resistant cells. Knockdown of PDK4 can decrease glucose consumption, lactate production rate, and ATP levels and further sensitize resistant cervical cancer cells to Dox treatment. By screening microRNAs (miRNAs), which can regulate expression of PDK4, we found that miR-16-5p was downregulated in chemoresistant cells. Overexpression of miR-16-5p can decrease the expression of PDK4 and sensitize the resistant cells to Dox treatment. Xenograft models confirmed that knockdown of PDK4 can increase chemotherapy efficiency for in vivo tumor growth. Collectively, our data suggested that miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qianqing Wang
- Department of Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
26
|
Non-Coding RNAs in Lung Tumor Initiation and Progression. Int J Mol Sci 2020; 21:ijms21082774. [PMID: 32316322 PMCID: PMC7215285 DOI: 10.3390/ijms21082774] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the deadliest forms of cancer affecting society today. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), through the transcriptional, post-transcriptional, and epigenetic changes they impose, have been found to be dysregulated to affect lung cancer tumorigenesis and metastasis. This review will briefly summarize hallmarks involved in lung cancer initiation and progression. For initiation, these hallmarks include tumor initiating cells, immortalization, activation of oncogenes and inactivation of tumor suppressors. Hallmarks involved in lung cancer progression include metastasis and drug tolerance and resistance. The targeting of these hallmarks with non-coding RNAs can affect vital metabolic and cell signaling pathways, which as a result can potentially have a role in cancerous and pathological processes. By further understanding non-coding RNAs, researchers can work towards diagnoses and treatments to improve early detection and clinical response.
Collapse
|
27
|
Rong Z, Rong Y, Li Y, Zhang L, Peng J, Zou B, Zhou N, Pan Z. Development of a Novel Six-miRNA-Based Model to Predict Overall Survival Among Colon Adenocarcinoma Patients. Front Oncol 2020; 10:26. [PMID: 32154160 PMCID: PMC7047168 DOI: 10.3389/fonc.2020.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: Colon carcinoma is a common malignant tumor worldwide. Accurately predicting prognosis of colon adenocarcinoma (CA) patients may facilitate clinical individual decision-making. Many studies have reported that microRNAs (miRNAs) were associated with prognosis for patients with colon carcinoma. This study aimed to identify the prognosis-related miRNAs for predicting the overall survival (OS) of CA patients. Methods: Firstly, we analyzed the CA datasets from the Cancer Genome Atlas (TCGA), and looked for the prognosis-related miRNAs. Then, we developed a novel prediction model based on these miRNAs and the clinical characteristics. Time-dependent receiver operating characteristics (ROC) curves and calibration plots were used to evaluate the discrimination and accuracy of the signature and model. Finally, cell function assays and bioinformatics analyses were performed to evaluate the role of these selected miRNAs in modulating biological process in CA. Results: Six prognosis-related miRNAs were included in the miRNA-based signature, and it could effectively distinguish low-risk patients and high-risk patients. Furthermore, we established a prognostic model incorporating the six-miRNA-based signature and clinical characteristics. Areas under curves (AUCs) indicated that the six-miRNA-based model has a better predictive ability than TNM stage (AUC: 0.805 vs. 0.694). The calibration plots suggested close agreement between model predictions and actual observations. GO analysis showed that the target genes of these miRNAs are mainly involved in enrichment in protein binding and regulation of transcript and cytosol. KEGG pathway enrichment analysis indicated that these genes were mainly enriched in PI3K-Akt signaling pathway. Finally, we found that the five miRNAs except miR-152 were upregulated in tumor tissues and CA cells. The functional experiments revealed that miR-1245a, miR-3682, miR-33b, and miR-5683 promoted the migratory abilities and proliferation of CA cell, whereas miR-152 showed opposite effects. However, miR-4444-2 did not influence the migratory ability and proliferation of CA cell. Conclusions: In conclusion, we developed a novel six-miRNA-based model to predict 5-year survival probabilities for CA patients. This model has the potential to facilitate individualized treatment decisions.
Collapse
Affiliation(s)
- Zhenxiang Rong
- Department of General Surgery, New Rongqi Hospital, Foshan, China
| | - Yi Rong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingru Li
- Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Nan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek's disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet Res 2020; 16:23. [PMID: 31992293 PMCID: PMC6988224 DOI: 10.1186/s12917-020-2239-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Marek's disease (MD) is caused by the oncogenic Marek's disease virus (MDV), and is a highly contagious avian infection with a complex underlying pathology that involves lymphoproliferative neoplasm formation. MicroRNAs (miRNAs) act as oncogenes or tumor suppressors in most cancers. The gga-miR-155 is downregulated in the MDV-infected chicken tissues or lymphocyte lines, although its exact role in tumorigenesis remains unclear. The aim of this study was to analyze the effects of gga-miR-155 on the proliferation, apoptosis and invasiveness of an MDV-transformed lymphocyte line MSB1 and elucidate the underlying mechanisms. RESULTS The expression level of gga-miR-155 was manipulated in MSB1 cells using specific mimics and inhibitors. While overexpression of gga-miR-155 increased proliferation, decreased the proportion of G1 phase cells relative to that in S and G2 phases, reduced apoptosis rates and increased invasiveness. However, its downregulation had the opposite effects. Furthermore, gga-miR-155 directly targeted the RORA gene and downregulated its expression in the MSB1 cells. CONCLUSION The gga-miR-155 promotes the proliferation and invasiveness of the MDV-transformed lymphocyte line MSB1 and inhibits apoptosis by targeting the RORA gene.
Collapse
|
29
|
Huang G, Lai Y, Pan X, Zhou L, Quan J, Zhao L, Li Z, Lin C, Wang J, Li H, Yuan H, Yang Y, Lai Y, Ni L. Tumor suppressor miR-33b-5p regulates cellular function and acts a prognostic biomarker in RCC. Am J Transl Res 2020; 12:3346-3360. [PMID: 32774704 PMCID: PMC7407706 DOI: pmid/32774704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a renal parenchyma neoplasm with a 30% recurrence rate even when treated properly. MicroRNAs are noncoding small RNAs that are involved in cellular communication and may participate in cancer development. This study aimed to explore the relationship between miR-33b-5p expression and RCC progression and prognosis. METHOD RT-qPCR, CCK-8 assay, wound scratch assay, transwell assay and flow cytometry assay were used to evaluate the expression and function of miR-33b-5p in RCC. Additionally, RCC samples and survival data from The Cancer Genome Atlas were used to analyze the prognostic functions of miR-33b-5p. RESULTS miR-33b-5p expression in RCC tissues and cell lines (786-O, ACHN) were found to be significantly downregulated, compared with normal tissues and cell lines (P<0.001). The miR-33b-5p mimic transfected cells showed a slower proliferation rate (P<0.01), while its invasion ability decreased by 38.16% (786-O, P<0.001) and 49.19% (ACHN, P<0.05), compared with the negative control (NC). The migration ability of both RCC lines were found to be as follows: miR-33b-5p inhibitor > NC or NC inhibitor > miR-33b-5p mimic. Additionally, TCGA and RCC samples reveal that low miR-33b-5p expression is related to poor survival outcomes (univariate analysis, P=0.029; multivariate analysis, P=0.024; Kaplan-Meier survival curves, P=0.014). Target genes prediction suggests that miR-33b-5p performs its tumor-suppressive effects and prognostic role through targeting TBX15, SLC12A5, and PTGFRN. CONCLUSIONS miR-33b-5p may function as a tumor-suppressive regulator and prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Yulin Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Department of Urology, People’s Hospital of LonghuaShenzhen, Guangdong 518109, P. R. China
| | - Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Zuwei Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Canbin Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Haichao Yuan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yu Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| |
Collapse
|
30
|
Noncoding RNAs and Liquid Biopsy in Lung Cancer: A Literature Review. Diagnostics (Basel) 2019; 9:diagnostics9040216. [PMID: 31818027 PMCID: PMC6963838 DOI: 10.3390/diagnostics9040216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer represents a genetically heterogeneous disease with low survival rates. Recent data have evidenced key roles of noncoding RNAs in lung cancer initiation and progression. These functional RNA molecules that can act as both oncogenes and tumor suppressors may become future biomarkers and more efficient therapeutic targets. In the precision medicine era, circulating nucleic acids have the potential to reshape the management and prognosis of cancer patients. Detecting genomic alterations and level variations of circulating nucleic acids in liquid biopsy samples represents a noninvasive method for portraying tumor burden. Research is currently trying to validate the potential role of liquid biopsy in lung cancer screening, prognosis, monitoring of disease progression, and treatment response. However, this method requires complex detection assays, and implementation of plasma genotyping in clinical practice continues to be hindered by discrepancies that arise when compared to tissue genotyping. Understanding the genomic landscape of lung cancer is essential in order to provide useful and innovative research in the age of patient-tailored therapy. In this landscape, the noncoding RNAs play a crucial role due to their target genes that dramatically influence the tumor microenvironment and the response to therapy. This article addresses present and future possible roles of liquid biopsy in lung cancer. It also discusses how the complex role of noncoding RNAs in lung tumorigenesis could influence the management of this pathology.
Collapse
|
31
|
Ullmann P, Nurmik M, Begaj R, Haan S, Letellier E. Hypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells. Cells 2019; 8:E528. [PMID: 31159361 PMCID: PMC6627778 DOI: 10.3390/cells8060528] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC), the second most common cause of cancer mortality in the Western world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of different approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic differences between TICs and less aggressive differentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they affect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced effects on colon TICs.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Rubens Begaj
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
32
|
Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J. DNA three-way junction-actuated strand displacement for miRNA detection using a fluorescence light-up Ag nanocluster probe. Analyst 2019; 144:3836-3842. [PMID: 31095133 DOI: 10.1039/c9an00508k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rapid and label-free fluorescence biosensing strategy for highly sensitive detection of microRNA-122 (miR-122) has been developed by the combination of DNA three-way junction (TWJ)-actuated strand displacement and a fluorescence light-up Ag nanocluster (AgNC) probe. In the presence of target miR-122, the attachment of miR-122 to its complementary DNA results in the unblocking of the toehold and branch migration domains in the TWJ, activating the strand displacement reaction (SDR) accompanied by the proximity between the G-rich DNA probe and DNA-AgNC probe; thus a remarkably enhanced fluorescence signal of AgNCs can be obtained owing to the G-rich fluorescence enhancement mechanism. The results reveal that this biosensor exhibits superb specificity and high sensitivity toward miR-122 with a detection limit of 0.030 nM. In addition, the practicality of the biosensor is demonstrated by analyzing miR-122 in three cell lines with satisfactory results. Furthermore, by the utilization of the toehold-mediated SDR and DNA-AgNC conjugates, this proposed strategy offers the advantages of rapidness, convenience, low cost, and simplified operation without the need for biological labeling and the addition of enzymes. Thus, the constructed biosensor might provide a valuable and practical tool for detecting miRNA and the related clinical diagnosis and fundamental biomedicine research.
Collapse
Affiliation(s)
- Xue Zhang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jingfeng Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Yu Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jiadong Huang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
33
|
Zhai S, Zhao L, Lin T, Wang W. Downregulation of miR-33b promotes non-small cell lung cancer cell growth through reprogramming glucose metabolism miR-33b regulates non-small cell lung cancer cell growth. J Cell Biochem 2019; 120:6651-6660. [PMID: 30368888 PMCID: PMC6587718 DOI: 10.1002/jcb.27961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Glucose metabolism is a common target for cancer regulation and microRNAs (miRNAs) are important regulators of this process. Here we aim to investigate a tumor-suppressing miRNA, miR-33b, in regulating the glucose metabolism of non-small cell lung cancer (NSCLC). In our study, quantitative real-time polymerase chain reaction (qRT-PCR) showed that miR-33b was downregulated in NSCLC tissues and cell lines, which was correlated with increased cell proliferation and colony formation. Overexpression of miR-33b through miR-33b mimics transfection suppressed NSCLC proliferation, colony formation, and induced cell-cycle arrest and apoptosis. Meanwhile, miR-33b overexpression inhibited glucose metabolism in NSCLC cells. Luciferase reporter assay confirmed that miR-33b directly binds to the 3'-untranslated region of lactate dehydrogenase A (LDHA). qRT-PCR and Western blot analysis showed that miR-33b downregulated the expression of LDHA. Moreover, introducing LDHA mRNA into cells over-expressing miR-33b attenuated the inhibitory effect of miR-33b on the growth and glucose metabolism in NSCLC cells. Taken together, these results confirm that miR-33b is an anti-oncogenic miRNA, which inhibits NSCLC cell growth by targeting LDHA through reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Shengping Zhai
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Lingyan Zhao
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Tiantian Lin
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Wei Wang
- Department of Thoracic SurgeryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| |
Collapse
|
34
|
The Roles of MicroRNA in Lung Cancer. Int J Mol Sci 2019; 20:ijms20071611. [PMID: 30935143 PMCID: PMC6480472 DOI: 10.3390/ijms20071611] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Collapse
|