1
|
Zhu X, Du L, Zhang L, Ding L, Xu W, Lin X. The critical role of toll-like receptor 4 in bone remodeling of osteoporosis: from inflammation recognition to immunity. Front Immunol 2024; 15:1333086. [PMID: 38504994 PMCID: PMC10948547 DOI: 10.3389/fimmu.2024.1333086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disorder. Recently, increasing numbers of studies have demonstrated that Toll-like receptor 4 (TLR4, a receptor located on the surface of osteoclasts and osteoblasts) plays a pivotal role in the development of osteoporosis. Herein, we performed a comprehensive review to summarize the findings from the relevant studies within this topic. Clinical data showed that TLR4 polymorphisms and aberrant TLR4 expression have been associated with the clinical significance of osteoporosis. Mechanistically, dysregulation of osteoblasts and osteoclasts induced by abnormal expression of TLR4 is the main molecular mechanism underlying the pathological processes of osteoporosis, which may be associated with the interactions between TLR4 and NF-κB pathway, proinflammatory effects, ncRNAs, and RUNX2. In vivo and in vitro studies demonstrate that many promising substances or agents (i.e., methionine, dioscin, miR-1906 mimic, artesunate, AEG-1 deletion, patchouli alcohol, and Bacteroides vulgatus) have been able to improve bone metabolism (i.e., inhibits bone resorption and promotes bone formation), which may partially attribute to the inhibition of TLR4 expression. The present review highlights the important role of TLR4 in the clinical significance and the pathogenesis of osteoporosis from the aspects of inflammation and immunity. Future therapeutic strategies targeting TLR4 may provide a new insight for osteoporosis treatment.
Collapse
Affiliation(s)
- Xianping Zhu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Li Du
- Educational Administration Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Weifang Xu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
2
|
Kim EY, Kim JE, Chung SH, Park JE, Yoon D, Min HJ, Sung Y, Lee SB, Kim SW, Chang EJ. Concomitant induction of SLIT3 and microRNA-218-2 in macrophages by toll-like receptor 4 activation limits osteoclast commitment. Cell Commun Signal 2023; 21:213. [PMID: 37596575 PMCID: PMC10436635 DOI: 10.1186/s12964-023-01226-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-β isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
3
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
4
|
Abstract
β-thalassemia is a lethal inherited disease resulting from β-globin gene mutations. Severe β-thalassemia requires regular blood transfusions. Other active interventions, including iron chelating, stem cell transplantation and gene therapy, have remarkably improved the quality of life and prolonged the survival of patients with transfusion-dependent β-thalassemia, but all with significant limitations and complications. MicroRNAs (miRNAs), encoded by a class of endogenous genes, are found to play important roles in regulating globin expression. Among the miRNAs of particular interest related to β-thalassemia, miR-15a/16-1, miR-486-3p, miR-26b, miR-199b-5p, miR-210, miR-34a, miR-138, miR-326, let-7, and miR-17/92 cluster elevate γ-globin expression, while miR-96, miR-146a, miR-223-3p, and miR-144 inhibit γ-globin expression. A couple of miRNAs, miR-144 and miR-150, repress α-globin expression, whereas miR-451 induces α-, β- and γ-globin expression. Single nucleotide polymorphism in miRNA genes or their targeted genes might also contribute to the abnormal expression of hemoglobin. Moreover, changes in the expression of miR-125b, miR-210, miR-451, and miR-609 reflect the severity of anemia and hemolysis in β-thalassemia patients. These results suggest that miRNAs are potential biomarkers for the diagnosis and prognosis of β-thalassemia, and miRNA-based therapeutic strategy might be used as a coordinated approach for effectively treating β-thalassemia.
Collapse
|
5
|
Moradifard S, Hoseinbeyki M, Emam MM, Parchiniparchin F, Ebrahimi-Rad M. Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 786:108339. [PMID: 33339581 DOI: 10.1016/j.mrrev.2020.108339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
As a complex disease, osteoporosis is influenced by several genetic markers. Many studies have examined the link between the Sp1 binding site +1245 G > T (rs1800012) and -1997 G > T (rs1107946) variations in the COL1A1 gene with osteoporosis risk. However, the findings of these studies have been contradictory; therefore, we performed a meta-analysis to aggregate additional information and obtain increased statistical power to more efficiently estimate this correlation. A meta-analysis was conducted with studies published between 1991-2020 that were identified by a systematic electronic search of the Scopus and Clarivate Analytics databases. Studies with bone mineral density (BMD) data and complete genotypes of the single-nucleotide variations (SNVs) for the overall and postmenopausal female population were included in this meta-analysis and analyzed using the R metaphor package. A relationship between rs1800012 and significantly decreased BMD values at the lumbar spine and femoral neck was found in individuals carrying the "ss" versus the "SS" genotype in the overall population according to a random effects model (p < 0.0001). Similar results were also found in the postmenopausal female population (p = 0.003 and 0.0002, respectively). Such findings might be an indication of increased osteoporosis risk in both studied groups in individuals with the "ss" genotype. Although no association was identified between the -1997 G > T and low BMD in the overall population, those individuals with the "GT" genotype showed a higher level of BMD than those with "GG" in the subgroup analysis (p = 0.007). To determine which transcription factor (TF) might bind to the -1997 G > T in COL1A1, 45 TFs were identified based on bioinformatics predictions. According to the GSE35958 microarray dataset, 16 of 45 TFs showed differential expression profiles in osteoporotic human mesenchymal stem cells relative to normal samples from elderly donors. By identifying candidate TFs for the -1997 G > T site, our study offers a new perspective for future research.
Collapse
Affiliation(s)
| | | | - Mohammad Mehdi Emam
- Rheumatology Ward, Loghman Hospital, Shahid Beheshti Medical University (SBMU), Tehran, Iran
| | | | | |
Collapse
|
6
|
Wang QF, Bi HS, Qin ZL, Wang P, Nie FF, Zhang GW. Associations of LRP5 Gene With Bone Mineral Density, Bone Turnover Markers, and Fractures in the Elderly With Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:571549. [PMID: 33101205 PMCID: PMC7545741 DOI: 10.3389/fendo.2020.571549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/06/2022] Open
Abstract
Objective: The study aimed to explore the associations of rs4988300 and rs634008 in the low-density lipoprotein receptor-related protein 5 (LRP5) gene with bone mineral density (BMD), bone turnover markers (BTM), and fractures in elderly patients with osteoporosis (OP). Methods: Our study included 328 unrelated OP patients with or without fractures. Genomic DNA was extracted for genotyping. BTM levels were assessed by electrochemiluminescence (ECL). Dual-energy X-ray absorptiometry (DXA) was employed to measure BMD in the lumbar spine (LS) and proximal femur. Basic features between the OP and fracture groups were analyzed using the t-test. The Chi-square test was performed to analyze the differences in allele and genotype frequencies. The associations of single-nucleotide polymorphisms (SNPs) with BMD and BTM in the subgroups were investigated by the analysis of covariance (ANCOVA) adjusted for confounding factors. Results: In both females and males, individuals with fractures exhibited higher BTM levels and lower BMD values than those with OP (P < 0.05). The allele and genotype frequencies of rs4988300 in the subgroups were significantly different (P < 0.05). In both females and males suffering from OP, participants with rs4988300 GG or rs634008 TT presented lower procollagen I N-terminal propeptide (PINP) levels (P < 0.05). Women with OP carrying rs4988300 GG exhibited lower BMD values at FN and TH (P < 0.05). In both females and males with fractures, individuals carrying rs4988300 GG genotype or rs634008 TT genotype exhibited lower PINP levels and BMD values at FN and TH than those with other genotypes (P < 0.05). Conclusions: Rs4988300 and rs634008 polymorphisms in the LRP5 gene are associated with bone phenotypes in the elderly with OP or fractures.
Collapse
Affiliation(s)
- Qi-Fei Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hong-Sen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Ze-Lian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
- *Correspondence: Ze-Lian Qin
| | - Pu Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Fang-Fei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guang-Wu Zhang
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, China
- Guang-Wu Zhang
| |
Collapse
|