1
|
Mousavi SM, Jalali-Zefrei F, Shourmij M, Tabaghi S, Davari A, Khalili SB, Farzipour S, Salari A. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Curr Cardiol Rev 2025; 21:108-122. [PMID: 39482911 DOI: 10.2174/011573403x333038241023153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and noncanonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.
Collapse
Affiliation(s)
- Seyed Mehdi Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali-Zefrei
- Department of Radiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Tabaghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Davari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahador Khalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
3
|
Surinkaew S, Sun D, Kooltheat N, Boonhok R, Somsak V, Kumphune S. The cytoprotective effect of Gymnema inodorum leaf extract against hypoxia-induced cardiomyocytes injury. Heliyon 2024; 10:e35846. [PMID: 39170335 PMCID: PMC11337021 DOI: 10.1016/j.heliyon.2024.e35846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic heart disease stands out as a major global contributor to mortality, with the initiation of hypoxia, marked by reduced oxygen availability, disrupting the balance of reactive oxygen species (ROS), leading to cellular injury. Exploring antioxidants derived from medicinal plants is becoming more interesting as a potential alternative treatment, especially for mitigating myocardial injury. Thus, this study aimed to assess the cytoprotective efficacy of Gymnema inodorum leaf extract (GIE) in a rat cardiac myoblast, H9c2, subjected to an in vitro hypoxia. The cell viability, intracellular ROS production and the expression of inflammatory cytokines were quantified, and hypoxia-induced cell morphology changes were observed using confocal fluorescence microscopy. The results showed that GIE notably enhanced cell viability, preserving membrane integrity, when compared with the hypoxic group. Remarkably, GIE significantly reduced hypoxia-induced intracellular ROS production, attributable to its inherent antioxidant properties. Furthermore, GIE significantly reduced interleukin (IL)-1β, interleukin (IL)-6 mRNA expression level and tended to reduce tumor necrosis factor-α (TNF-α) mRNA expression. In conclusion, these findings underscore the potential of GIE in mitigating hypoxia-induced myocardial injury, highlighting its robust antioxidant and anti-inflammatory attributes.
Collapse
Affiliation(s)
- Sirirat Surinkaew
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dali Sun
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Colorado, 80208, USA
| | - Nateelak Kooltheat
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rachasak Boonhok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Hou M, Deng Y, Lv N, Wu Y, Zhu Y, Zhang Y, Liu Y, Xia X, Yu C, Yu J, He F, Xu Y, Zhu X. Cyclic amplification of remodeling bone regeneration process via cerium-energized spinning hydrogel biomembrane for rescuing osteoporotic bone defects. CHEMICAL ENGINEERING JOURNAL 2024; 492:152262. [DOI: 10.1016/j.cej.2024.152262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
6
|
Yan R, Cai H, Zhou X, Bao G, Bai Z, Ge RL. Hypoxia-inducible factor-2α promotes fibrosis in non-alcoholic fatty liver disease by enhancing glutamine catabolism and inhibiting yes-associated protein phosphorylation in hepatic stellate cells. Front Endocrinol (Lausanne) 2024; 15:1344971. [PMID: 38501098 PMCID: PMC10946064 DOI: 10.3389/fendo.2024.1344971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.
Collapse
Affiliation(s)
- Ranran Yan
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Hao Cai
- Oncology Department, The Fifth People’s Hospital of Qinghai Provincial, Xining, China
| | - Xiaofeng Zhou
- Affiliated Hospital of Qinghai University, Xining, China
| | - Guodan Bao
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Affiliated Hospital of Qinghai University, Xining, China
| | - Zhenzhong Bai
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-li Ge
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
7
|
Mabotuwana NS, Rech L, Lim J, Hardy SA, Murtha LA, Rainer PP, Boyle AJ. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep 2022; 18:2606-2628. [PMID: 35896860 PMCID: PMC9622561 DOI: 10.1007/s12015-022-10429-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has gained significant traction in the context of cardiovascular repair, and have been proposed to exert their regenerative effects via the secretion of paracrine factors. In this systematic review, we examined the literature and consolidated available evidence for the "paracrine hypothesis". Two Ovid SP databases were searched using a strategy encompassing paracrine mediated MSC therapy in the context of ischemic heart disease. This yielded 86 articles which met the selection criteria for inclusion in this study. We found that the MSCs utilized in these articles were primarily derived from bone marrow, cardiac tissue, and adipose tissue. We identified 234 individual protective factors across these studies, including VEGF, HGF, and FGF2; which are proposed to exert their effects in a paracrine manner. The data collated in this systematic review identifies secreted paracrine factors that could decrease apoptosis, and increase angiogenesis, cell proliferation, and cell viability. These included studies have also demonstrated that the administration of MSCs and indirectly, their secreted factors can reduce infarct size, and improve left ventricular ejection fraction, contractility, compliance, and vessel density. Furthering our understanding of the way these factors mediate repair could lead to the identification of therapeutic targets for cardiac regeneration.
Collapse
Affiliation(s)
- Nishani S Mabotuwana
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Lim
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Sean A Hardy
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lucy A Murtha
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
| | - Peter P Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
8
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
10
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
11
|
Zou Y, Pan L, Shen Y, Wang X, Huang C, Wang H, Jin X, Yin C, Wang Y, Jia J, Qian J, Zou Y, Gong H, Ge J. Cardiac Wnt5a and Wnt11 promote fibrosis by the crosstalk of FZD5 and EGFR signaling under pressure overload. Cell Death Dis 2021; 12:877. [PMID: 34564708 PMCID: PMC8464604 DOI: 10.1038/s41419-021-04152-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
Progressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson's staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.
Collapse
Affiliation(s)
- Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi Shen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xuejuan Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|