1
|
Yang Y, Yang Y, Wang W, Chang Y, Zhu Y, Cheng Y, Yang B, Jia X, Feng L. Evolutionary research trends of polysaccharides from Polygonatum genus: A comprehensive review of its isolation, structure, health benefits, and applications. Int J Biol Macromol 2025; 306:141566. [PMID: 40023421 DOI: 10.1016/j.ijbiomac.2025.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonatum sibiricum, valued both as a medicinal and nutritional plant, has long been recognized for its health benefits. Increasing evidence highlights its polysaccharides (PSPs) as key components. As research into the structural characteristics and biological activity of PSPs continues to grow, there is rising interest in developing functional foods that harness their therapeutic potential. However, existing studies on PSPs remain fragmented, lacking a comprehensive framework for their application in functional food development and drug delivery. This review aims to fill that gap by systematically summarizing the purification, structural characterization, and diverse biological activities of PSPs. We also explore the significant potential of these polysaccharides in functional food development and their promising applications as natural, eco-friendly drug carriers. Furthermore, we address the key challenges and limitations in this field, offering insights into future research trends and opportunities for advancing PSPs in areas such as sustainable materials, functional foods, and therapeutic innovations.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yufei Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weilin Wang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Chang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yiyang Zhu
- Macau University of Science and Technology, Weilong Road, taichai, Macao 999078, PR China
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Yu J, Ravenscroft N, Davey P, Liyanage R, Lorenz O, Kuttel MM, Lo SW, Ganaie FA, Nahm MH. New pneumococcal serotype 20C is a WciG O-acetyltransferase deficient variant of canonical serotype 20B. Microbiol Spectr 2025; 13:e0244324. [PMID: 39612217 PMCID: PMC11705870 DOI: 10.1128/spectrum.02443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
The polysaccharide (PS) capsule of Streptococcus pneumoniae (pneumococcus) is the immunodominant surface structure that shields the bacteria from the host immune system. Since the capsule is the primary target of currently available pneumococcal vaccines, anti-capsular antibodies are highly protective but serotype-specific. Pneumococci may evade host or vaccine-induced immunity as a result of variation in capsule structure mediated via multiple mechanisms, such as the loss or gain of O-acetylation. Previous biochemical studies of serogroup 20 isolates have identified two subtypes-20A and 20B, whose capsule PS differs in the WhaF-mediated glucose side chain. Herein, we characterize a newly discovered capsule type, 20C, that differs from serotype 20B via the inactivation of capsule O-acetyltransferase gene, wciG. Structural analysis demonstrated that 20C and 20B share an identical repeat unit [→3)-α-D-GlcpNAc-[β-D-Galf-(1→4)][α-D-Glcp-(1→6)]-(1→P→6)-α-D-Glcp-(1→6)- β-D-Glcp-(1→3)-β-D-Galf 5,6Ac2-(1→3)-β-D-Glcp-(1→], except for the absence of WciG-mediated O-acetyl group at terminal galactofuranose (β-D-Galf). We confirmed that deletion of the wciG gene in a 20B strain resulted in the expression of the 20C capsule. Serotype 20C is serologically indistinguishable from the canonical 20A and 20B using conventional serotyping antibodies, but serogroup 20 subtypes can be distinguished by sequencing of cps genes-whaF, wciG, and wcjE. While genetic screening suggests 20C to be globally less prevalent, a new variant was identified which appears to have both wciG and whaF genes inactive, potentially indicating it to be a new serotype. Consequently, genome-based serotyping/bioinformatic tools must scrutinize all cps genes for mutations that might inactivate/modify cps-encoded enzymes, ensuring effective tracking of emerging capsule variants in response to ongoing vaccination efforts. IMPORTANCE Streptococcus pneumoniae (pneumococcus) is a significant human pathogen known for producing a wide array of antigenically and structurally diverse capsule types, a fact that poses a serious challenge to the effectiveness of vaccines targeting pneumococcal capsule polysaccharide (PS). Herein, we provide a comprehensive analysis-genetic, antigenic, and biochemical of a newly identified capsule type, 20C, which differs from the canonical serotype 20B due to the inactivation of the capsule O-acetyltransferase gene, wciG. Our findings highlight how pneumococci can alter their capsule PS structure and immunological characteristics through minor genetic modifications. Since the appearance of new capsule types can directly affect pneumococcal conjugate vaccine (PCV) implementation, a deeper understanding of capsule PS at the genetic, immunological, and biochemical levels is critical for the development of future diagnostic tools and vaccines.
Collapse
Affiliation(s)
- Jigui Yu
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | | | | | - Oliver Lorenz
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Feroze A. Ganaie
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H. Nahm
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Zhong Y, Tan P, Lin H, Zhang D, Chen X, Pang J, Mu R. A Review of Ganoderma lucidum Polysaccharide: Preparations, Structures, Physicochemical Properties and Application. Foods 2024; 13:2665. [PMID: 39272434 PMCID: PMC11395056 DOI: 10.3390/foods13172665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Ganoderma lucidum (GL) is a kind of edible fungus with various functions and a precious medicinal material with a long history. Ganoderma lucidum polysaccharide (GLP) is one of the main bioactive substances in GL, with anti-tumor, anti-oxidation, anti-cancer, and other biological activities. GLP is closely related to human health, and the research on GLP is getting deeper. This paper reviewed the extraction and purification methods of GLP, the relationship between structure and activity, and the qualitative and quantitative methods. This review provides solutions for the analysis and application of GLP. At the same time, some new methods for extraction, purification and analysis of GLP, the relationship between advanced structures and activity, and future applications of and research into GLP were emphasized. As a kind of bioactive macromolecule, GLP has unique functional properties. Through the comprehensive summary of the extraction, purification, and analysis of GLP and its future prospects, we hope that this review can provide valuable reference for the further study of GLP.
Collapse
Affiliation(s)
- Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Anderson T, Jiang H, Cheallaigh AN, Bengtsson D, Oscarson S, Cairns C, St Michael F, Cox A, Kuttel MM. Formation and immunological evaluation of Moraxella catarrhalis glycoconjugates based on synthetic oligosaccharides. Carbohydr Polym 2024; 332:121928. [PMID: 38431400 DOI: 10.1016/j.carbpol.2024.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five‑carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 → 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.
Collapse
Affiliation(s)
- Taigh Anderson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hao Jiang
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Cheallaigh
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chantelle Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
5
|
SureshKumar H, Appadurai R, Srivastava A. Glycans modulate lipid binding in Lili-Mip lipocalin protein: insights from molecular simulations and protein network analyses. Glycobiology 2024; 34:cwad094. [PMID: 38015986 DOI: 10.1093/glycob/cwad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
The unique viviparous Pacific Beetle cockroaches provide nutrition to their embryo by secreting milk proteins Lili-Mip, a lipid-binding glycoprotein that crystallises in-vivo. The resolved in-vivo crystal structure of variably glycosylated Lili-Mip shows a classical Lipocalin fold with an eight-stranded antiparallel beta-barrel enclosing a fatty acid. The availability of physiologically unaltered glycoprotein structure makes Lili-Mip a very attractive model system to investigate the role of glycans on protein structure, dynamics, and function. Towards that end, we have employed all-atom molecular dynamics simulations on various glycosylated stages of a bound and free Lili-Mip protein and characterised the impact of glycans and the bound lipid on the dynamics of this glycoconjugate. Our work provides important molecular-level mechanistic insights into the role of glycans in the nutrient storage function of the Lili-Mip protein. Our analyses show that the glycans stabilise spatially proximal residues and regulate the low amplitude opening motions of the residues at the entrance of the binding pocket. Glycans also preserve the native orientation and conformational flexibility of the ligand. However, we find that either deglycosylation or glycosylation with high-mannose and paucimannose on the core glycans, which better mimic the natural insect glycosylation state, significantly affects the conformation and dynamics. A simple but effective distance- and correlation-based network analysis of the protein also reveals the key residues regulating the barrel's architecture and ligand binding characteristics in response to glycosylation.
Collapse
Affiliation(s)
- Harini SureshKumar
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| |
Collapse
|
6
|
Gasperini G, Massai L, De Simone D, Raso MM, Palmieri E, Alfini R, Rossi O, Ravenscroft N, Kuttel MM, Micoli F. O-Antigen decorations in Salmonella enterica play a key role in eliciting functional immune responses against heterologous serovars in animal models. Front Cell Infect Microbiol 2024; 14:1347813. [PMID: 38487353 PMCID: PMC10937413 DOI: 10.3389/fcimb.2024.1347813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.
Collapse
Affiliation(s)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
7
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Richardson NI, Ravenscroft N, Kuttel MM. Conformational comparisons of Pasteurella multocida types B and E and structurally related capsular polysaccharides. Glycobiology 2023; 33:745-754. [PMID: 37334939 PMCID: PMC10627249 DOI: 10.1093/glycob/cwad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
Pasteurella multocida, an encapsulated gram-negative bacterium, is a significant veterinary pathogen. The P. multocida is classified into 5 serogroups (A, B, D, E, and F) based on the bacterial capsular polysaccharide (CPS), which is important for virulence. Serogroups B and E are the primary causative agents of bovine hemorrhagic septicemia that is associated with significant yearly losses of livestock worldwide, primarily in low- and middle-income countries. The P. multocida disease is currently managed by whole-cell vaccination, albeit with limited efficacy. CPS is an attractive antigen target for an improved vaccine: CPS-based vaccines have proven highly effective against human bacterial diseases and could provide longer-term protection against P. multocida. The recently elucidated CPS repeat units of serogroups B and E both comprise a N-acetyl-β-D-mannosaminuronic acid/N-acetyl-β-D-glucosamine disaccharide backbone with β-D-fructofuranose (Fruf) side chain, but differ in their glycosidic linkages, and a glycine (Gly) side chain in serogroup B. Interestingly, the Haemophilus influenzae types e and d CPS have the same backbone residues. Here, comparative modeling of P. multocida serogroups B and E and H. influenzae types e and d CPS identifies a significant impact of small structural differences on both the chain conformation and the exposed potential antibody-binding epitopes (Ep). Further, Fruf and/or Gly side chains shield the immunogenic amino-sugar CPS backbone-a possible common strategy for immune evasion in both P. multocida and H. influenzae. As the lack of common epitopes suggests limited potential for cross-reactivity, a bivalent CPS-based vaccine may be necessary to provide adequate protection against P. multocida types B and E.
Collapse
Affiliation(s)
- Nicole I Richardson
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
9
|
Gavande PV, Goyal A. Molecular dynamics-based structural insights of the first putative endoglucanase, PsGH5A of glycoside hydrolase family 5 from Pseudopedobacter saltans. J Mol Model 2023; 29:186. [PMID: 37221261 DOI: 10.1007/s00894-023-05575-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
CONTEXT The putative endoglucanase, PsGH5A, from Pseudopedobacter saltans of family GH5 contains a catalytic module, PsGH5 (β/α)8-TIM barrel), at N-terminal followed by a family 6 carbohydrate-binding module (CBM6, β-sandwich). Superposition of PsGH5A with PDB homologs revealed Glu220 and Glu318 as evolutionarily conserved and catalytic residues performing the hydrolysis through retaining-type mechanism, a canonical property of GH5 family. PsGH5A showed higher affinity for longer cellooligosaccharides, as long as cellodecaose with binding free energy (∆G) of - 13.72 kcal/mol upon the molecular docking, thereby indicating the endo-mode of hydrolysis. The radius of gyration, Rg (2.7 nm), and solvent accessible surface area, SASA (229.6 nm2), of PsGH5A-Cellotetraose complex were determined by MD simulation which was lower than that of PsGH5A (Rg, 2.8 nm, SASA, 267 nm2) demonstrating the compactness and affinity of PsGH5A with the cellulosic ligands. Cellulose compatibility of PsGH5A was further confirmed by MMPBSA and per-residue decomposition analysis, where notable ∆G of - 54.38 kcal/mol for PsGH5A-Cellotetraose complex was observed. Thus, PsGH5A could be potentially an efficient endoglucanase as it accommodated larger cellooligosaccharides at its active-site. PsGH5A is the first putative endoglucanase studied here from P. saltans which could be genome-mined for lignocellulosic biomass saccharification in the renewable energy sector. METHODS The 3-D structure of PsGH5A generated by AlphaFold2, RaptorX, SwissModel, Phyre2 and Robetta tool; YASARA was used for energy minimization of built models. UCLA SAVES-v6 was used for quality assessment of models. Molecular Docking was performed using SWISS-DOCK server and Chimera software. Molecular Dynamics simulations and MMPBSA analysis of PsGH5A and PsGH5A-Cellotetraose complex were performed on GROMACS 2019.6.
Collapse
Affiliation(s)
- Parmeshwar Vitthal Gavande
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Bobbili KB, Sivaji N, Priya B, Suguna K, Surolia A. Structure and interactions of the phloem lectin (phloem protein 2) Cus17 from Cucumis sativus. Structure 2023; 31:464-479.e5. [PMID: 36882058 DOI: 10.1016/j.str.2023.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Phloem protein 2 (PP2) contributes crucially to phloem-based defense in plants by binding to carbohydrates displayed by pathogens. However, its three-dimensional structure and the sugar binding site remained unexplored. Here, we report the crystal structure of the dimeric PP2 Cus17 from Cucumis sativus in its apo form and complexed with nitrobenzene, N-acetyllactosamine, and chitotriose. Each protomer of Cus17 consists of two antiparallel four-stranded twisted β sheets, a β hairpin, and three short helices forming a β sandwich architectural fold. This structural fold has not been previously observed in other plant lectin families. Structure analysis of the lectin-carbohydrate complexes reveals an extended carbohydrate binding site in Cus17, composed mostly of aromatic amino acids. Our studies suggest a highly conserved tertiary structure and a versatile binding site capable of recognizing motifs common to diverse glycans on plant pathogens/pests, which makes the PP2 family suited for phloem-based plant defense.
Collapse
Affiliation(s)
- Kishore Babu Bobbili
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Badma Priya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
11
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Itzhakov R, Tworowski D, Sadot N, Sayas T, Fallik E, Kleiman M, Poverenov E. Nucleoside-Based Cross-Linkers for Hydrogels with Tunable Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7359-7370. [PMID: 36701767 DOI: 10.1021/acsami.2c19525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we report bioderived cross-linkers to create biopolymer-based hydrogels with tunable properties. Nucleosides (inosine and uridine) and ribose (pentose sugar lucking the nitrogenous base) were partially oxidized to yield inosine dialdehyde (IdA), uridine dialdehyde (UdA), and ribose dialdehyde (RdA). The dialdehydes were further used as cross-linkers with polysaccharide chitosan to form hydrogels. Depending on the cross-linker type and concentration, the hydrogels showed tunable rheological, mechanical, and liquid holding properties allowing the preparation of injectable, soft, and moldable hydrogels. Computational modeling and molecular dynamics simulations shed light on hydrogel formation and revealed that, in addition to covalent bonding, noncovalent interactions (π-π stacking, cation-π, and H-bonding) also significantly contributed to the cross-linking process. To demonstrate various application possibilities, the prepared hydrogels were used as a growth platform for plant cells, as injectable inks for layer-by-layer 3D printing applications, and as moldable hydrogels for soft lithography to replicate the microstructure of the plant. These findings suggest that the obtained tunable biocompatible hydrogels have the potential to be good candidates for various biotechnological applications.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot76100, Israel
| | - Dmitry Tworowski
- Department of Structural Biology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Noy Sadot
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot76100, Israel
- Plant Sciences Institute, Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
| | - Tali Sayas
- Plant Sciences Institute, Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
| | - Elazar Fallik
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
| | - Maya Kleiman
- Plant Sciences Institute, Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion7505101, Israel
| |
Collapse
|
13
|
Kumar R, Kumar S, Bulone V, Srivastava V. Biochemical Characterization and Molecular Insights into Substrate Recognition of Pectin Methylesterase from Phytophthora Infestans. Comput Struct Biotechnol J 2022; 20:6023-6032. [PMID: 36382180 PMCID: PMC9647417 DOI: 10.1016/j.csbj.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) are a class of carbohydrate-active enzymes that act on the O6-methyl ester groups of the homogalacturonan component of pectins, resulting in de-esterification of the substrate polymers and formation of pectate and methanol. PMEs occur in higher plants and microorganisms, including fungi, oomycetes, bacteria, and archaea. Microbial PMEs play a crucial role in pathogens’ invasion of plant tissues. Here, we have determined the structural and functional properties of Pi-PME, a PME from the oomycete plant pathogen Phytophthora infestans. This enzyme exhibits maximum activity at alkaline pH (8.5) and is active over a wide temperature range (25–50 °C). In silico determination of the structure of Pi-PME reveals that the protein consists essentially of three parallel β-sheets interconnected by loops that adopt an overall β-helix organization. The loop regions in the vicinity of the active site are extended compared to plant and fungal PMEs, but they are shorter than the corresponding bacterial and insect regions. Molecular dynamic simulations revealed that Pi-PME interacts most strongly with partially de-methylated homogalacturonans, suggesting that it preferentially uses this type of substrates. The results are compared and discussed with other known PMEs from different organisms, highlighting the specific features of Pi-PME.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park Campus, Sturt Road, South Australia 5042, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
14
|
Furevi A, Udekwu KI, Widmalm G. Structural elucidation of the O-antigen polysaccharide from Escherichia coli O125ac and biosynthetic aspects thereof. Glycobiology 2022; 32:1089-1100. [PMID: 36087289 PMCID: PMC9680116 DOI: 10.1093/glycob/cwac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned 1H and 13C NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: →4)[β-d-Galp-(1 → 3)]-β-d-GalpNAc-(1 → 2)-α-d-Manp-(1 → 3)-α-l-Fucp-(1 → 3)-α-d-GalpNAc-(1→, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by 1H and 13C NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup.
Collapse
Affiliation(s)
- Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klas I Udekwu
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Göran Widmalm
- To whom correspondence should be addressed: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. e-mail:
| |
Collapse
|
15
|
Richardson NI, Kuttel MM, Ravenscroft N. Modeling of pneumococcal serogroup 10 capsular polysaccharide molecular conformations provides insight into epitopes and observed cross-reactivity. Front Mol Biosci 2022; 9:961532. [PMID: 36003080 PMCID: PMC9393222 DOI: 10.3389/fmolb.2022.961532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is an encapsulated gram-negative bacterium and a significant human pathogen. The capsular polysaccharide (CPS) is essential for virulence and a target antigen for vaccines. Although widespread introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced disease, the prevalence of non-vaccine serotypes has increased. On the basis of the CPS, S. pneumoniae serogroup 10 comprises four main serotypes 10A, 10B, 10C, and 10F; as well as the recently identified 10D. As it is the most prevalent, serotype 10A CPS has been included as a vaccine antigen in the next generation PCVs. Here we use molecular modeling to provide conformational rationales for the complex cross-reactivity reported between serotypes 10A, 10B, 10C, and 10F anti-sera. Although the highly mobile phosphodiester linkages produce very flexible CPS, shorter segments are conformationally defined, with exposed β-D-galactofuranose (β DGalf) side chains that are potential antibody binding sites. We identify four distinct conformational epitopes for the immunodominant β DGalf that assist in rationalizing the complex asymmetric cross-reactivity relationships. In particular, we find that strongly cross-reactive serotypes share common epitopes. Further, we show that human intelectin-1 has the potential to bind the exposed exocyclic 1,2-diol of the terminal β DGalf in each serotype; the relative accessibility of three- or six-linked β DGalf may play a role in the strength of the innate immune response and hence serotype disease prevalence. In conclusion, our modeling study and relevant serological studies support the inclusion of serotype 10A in a vaccine to best protect against serogroup 10 disease.
Collapse
Affiliation(s)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
- *Correspondence: Neil Ravenscroft,
| |
Collapse
|
16
|
Hao L, Kuttel MM, Ravenscroft N, Thompson A, Prasad AK, Gangolli S, Tan C, Cooper D, Watson W, Liberator P, Pride MW, Jansen KU, Anderson AS, Scully IL. Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A. Vaccine 2022; 40:4872-4880. [PMID: 35810060 DOI: 10.1016/j.vaccine.2022.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Protection conferred by pneumococcal polysaccharide conjugate vaccines (PCVs) is associated with PCV-induced antibodies against vaccine-covered serotypes that exhibit functional opsonophagocytic activity (OPA). Structural similarity between capsular polysaccharides of closely related serotypes may result in induction of cross-reactive antibodies with or without a cross-functional activity against a serotype not covered by a PCV, with the former providing an additional protective clinical benefit. Serotypes 15B, 15A, and 15C, in the serogroup 15, are among the most prevalent Streptococcus pneumoniae serotypes associated with invasive pneumococcal disease following the implementation of a 13-valent PCV; in addition, 15B contributes significantly to acute otitis media. Serological discrimination between closely related serotypes such as 15B and 15C is complicated; here, we implemented an algorithm to quickly differentiate 15B from its closely related serotypes 15C and 15A directly from whole-genome sequencing data. In addition, molecular dynamics simulations of serotypes 15A, 15B, and 15C polysaccharides demonstrated that while 15B and 15C polysaccharides assume rigid branched conformation, 15A polysaccharide assumes a flexible linear conformation. A serotype 15B conjugate, included in a 20-valent PCV (PCV20), induced cross-functional OPA serum antibody responses against the structurally similar serotype 15C but not against serotype 15A, both not included in PCV20. In PCV20-vaccinated adults (18-49 years), robust OPA antibody titers were detected against both serotypes 15B (the geometric mean titer [GMT] of 19,334) and 15C (GMTs of 1692 and 2747 for strains PFE344340 and PFE1160, respectively), but were negligible against serotype 15A (GMTs of 10 and 30 for strains PFE593551 and PFE647449, respectively). Cross-functional 15B/C responses were also confirmed using sera from a larger group of older adults (60-64 years).
Collapse
Affiliation(s)
- Li Hao
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Allison Thompson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - A Krishna Prasad
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Seema Gangolli
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Charles Tan
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - David Cooper
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Wendy Watson
- Pfizer Vaccine Clinical Research & Development, 500 Arcola Rd, Collegeville, PA 19422, USA
| | - Paul Liberator
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michael W Pride
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Ingrid L Scully
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA.
| |
Collapse
|
17
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
18
|
Roe DR, Bergonzo C. prepareforleap: An automated tool for fast PDB-to-parameter generation. J Comput Chem 2022; 43:930-935. [PMID: 35318701 DOI: 10.1002/jcc.26847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Setting up molecular dynamics simulations from experimentally determined structures is often complicated by a variety of factors, particularly the inclusion of carbohydrates, since these have several anomer types which can be linked in a variety of ways. Here we present a stand-alone tool implemented in the widely-used software CPPTRAJ that can be used to automate building structures and generating a "ready to run" parameter and coordinate file pair. This tool automatically identifies carbohydrate anomer type, configuration, linkage, and functional groups, and performs topology modifications (e.g., renaming residue/atom names) required to build the final system using state of the art GLYCAM force field parameters. It will also generate the necessary commands for bonding carbohydrates and creating any disulfide bonds.
Collapse
Affiliation(s)
- Daniel R Roe
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
19
|
Cohen Y, Cohen G, Tworowski D, Eretz-Kdosha N, Silberstein E, Fallik E, Poverenov E. Biocompatible nanocarriers for passive transdermal delivery of insulin based on self-adjusting N-alkylamidated carboxymethyl cellulose polysaccharides. NANOSCALE ADVANCES 2022; 4:2124-2133. [PMID: 36133443 PMCID: PMC9419864 DOI: 10.1039/d2na00005a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
In this work, we present biocompatible nanocarriers based on modified polysaccharides capable of transporting insulin macromolecules through human skin without any auxiliary techniques. N-Alkylamidated carboxymethyl cellulose (CMC) derivatives CMC-6 and CMC-12 were synthesized and characterized using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography and thermogravimetric, calorimetric and microscopic techniques. The prepared modified polysaccharides spontaneously assemble into soft nanoaggregates capable of adjusting to both aqueous and lipid environments. Due to this remarkable self-adjustment ability, CMC-6 and CMC-12 were examined for transdermal delivery of insulin. First, a significant increase in the amount of insulin present in lipid media upon encapsulation in CMC-12 was observed in vitro. Then, ex vivo studies on human skin were conducted. Those studies revealed that the CMC-12 carrier led to an enhancement of transdermal insulin delivery, showing a remarkable 85% insulin permeation. Finally, toxicity studies revealed no alteration in epidermal viability upon treatment and the absence of any skin irritation or amplified cytokine release, verifying the safety of the prepared carriers. Three-dimensional (3D) molecular modeling and conformational dynamics of CMC-6 and CMC-12 polymer chains explained their binding capacities and the ability to transport insulin macromolecules. The presented carriers have the potential to become a biocompatible, safe and feasible platform for the design of effective systems for transdermal delivery of bioactive macromolecules in medicine and cosmetics. In addition, transdermal insulin delivery reduces the pain and infection risk in comparison to injections, which may increase the compliance and glycemic control of diabetic patients.
Collapse
Affiliation(s)
- Yael Cohen
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute Rishon LeZion 7505101 Israel +972-39683354
- The Robert H Smith, Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem Rehovot 76100 Israel
| | - Guy Cohen
- The Skin Research Institute, Dead Sea & Arava Science Center Masada 86910 Israel
- Eilat Campus, Ben-Gurion University of the Negev Eilat 8855630 Israel
| | - Dmitry Tworowski
- Department of Structural Biology, Weizmann Institute of Science 76100 Rehovot Israel
| | - Noy Eretz-Kdosha
- The Skin Research Institute, Dead Sea & Arava Science Center Masada 86910 Israel
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Elazar Fallik
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute Rishon LeZion 7505101 Israel +972-39683354
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute Rishon LeZion 7505101 Israel +972-39683354
| |
Collapse
|
20
|
Kuttel MM. Comparative Molecular Modelling of Capsular Polysaccharide Conformations in Streptococcus suis Serotypes 1, 2, 1/2 and 14 Identifies Common Epitopes for Antibody Binding. Front Mol Biosci 2022; 9:830854. [PMID: 35211512 PMCID: PMC8861514 DOI: 10.3389/fmolb.2022.830854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an encapsulated, commensal, potentially pathogenic bacterium that infects swine globally and causes sporadic life-threatening zoonotic septicemia and meningitis infections in humans. The capsular polysaccharide is a primary virulence factor for S. suis. As S. suis serotype 2 is the most prevalent serotype globally, the serotype 2 CPS is the primary target of current efforts to develop an effective glycoconjugate veterinary vaccine against S. suis. Possible cross-protection with related serotypes would broaden the coverage of a vaccine. The CPS in serotypes 2 and 1/2 differ at a single residue (Gal versus GalNAc), and both are similar to serotypes 1 and 14: all contain a terminal sialic acid on a side chain. However, despite this similarity, there is complex pattern of cross-protection for these serotypes, with varying estimations of the importance of sialic acid in a protective epitope. Further, a pentasaccharide without the terminal sialic acid has been identified as minimal epitope for serotype 2. Here we use molecular simulation to model the molecule conformations of the CPS in serotypes 2, 1/2, 1 and 14, as well as three vaccine candidate oligosaccharides. The common epitopes we identify assist in rationalizing the apparently contradictory immunological data and provide a basis for rational design of S. suis vaccines in the future.
Collapse
|
21
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
22
|
Yim W, Takemura K, Zhou J, Zhou J, Jin Z, Borum RM, Xu M, Cheng Y, He T, Penny W, Miller BR, Jokerst JV. Enhanced Photoacoustic Detection of Heparin in Whole Blood via Melanin Nanocapsules Carrying Molecular Agents. ACS NANO 2022; 16:683-693. [PMID: 34962765 PMCID: PMC9237182 DOI: 10.1021/acsnano.1c08178] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photoacoustic (PA) imaging has proved versatile for many biomedical applications from drug delivery tracking to disease diagnostics and postoperative surveillance. It recently emerged as a tool for accurate and real-time heparin monitoring to avoid bleeding complications associated with anticoagulant therapy. However, molecular-dye-based application is limited by high concentration requirements, photostability, and a strong background hemoglobin signal. We developed polydopamine nanocapsules (PNCs) via supramolecular templates and loaded them with molecular dyes for enhanced PA-mediated heparin detection. Depending on surface charge, the dye-loaded PNCs undergo disassembly or aggregation upon heparin recognition: both experiments and simulation have revealed that the increased PA signal mainly results from dye-loaded PNC-heparin aggregation. Importantly, Nile blue (NB)-loaded PNCs generated a 10-fold higher PA signal than free NB dye, and such PNC enabled the direct detection of heparin in a clinically relevant therapeutic window (0-4 U/mL) in whole human blood (R2 = 0.91). Furthermore, the PA signal of PNC@NB obtained from 17 patients linearly correlated with ACT values (R2 = 0.73) and cumulative heparin (R2 = 0.83). This PNC-based strategy for functional nanocapsules offers a versatile engineering platform for robust biomedical contrast agents and nanocarriers.
Collapse
Affiliation(s)
| | - Kathryn Takemura
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
| | | | | | | | | | | | | | | | - William Penny
- Division of Cardiology, VA San Diego Healthcare System, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University, 100 East Normal Avenue, Kirkville, Missouri 63501, United States
| | | |
Collapse
|
23
|
Lazar RD, Akher FB, Ravenscroft N, Kuttel MM. Carbohydrate Force Fields: The Role of Small Partial Atomic Charges in Preventing Conformational Collapse. J Chem Theory Comput 2022; 18:1156-1172. [PMID: 35015958 DOI: 10.1021/acs.jctc.1c00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the quality of current additive all-atom force fields for carbohydrates has been demonstrated in many applications, occasional significant differences reported for the hydrodynamic behavior of specific polysaccharides modeled with different force fields is a cause for concern. In particular, irreversible conformational collapse has been noted for some polysaccharide simulations with the GLYCAM06j force field. Here, we investigate the cause of this phenomenon through comparative simulations of a range of saccharides with both the GLYCAM06j and the CHARMM36 carbohydrate force fields. We find that conformational collapse in GLYCAM06j occurs for saccharide chains containing the deoxy sugar α-l-rhamnose after relatively long simulation intervals. Further, we explore the mechanism of conformational collapse and show that this phenomenon arises because of the anomalous low energy in GLYCAM06j (as compared to quantum mechanical calculations) of a specific orientation of α-l-Rha to α-l-Rha glycosidic linkages, which are subsequently sustained by intramolecular interactions in the saccharide chain. We identify the lack of partial charges on aliphatic hydrogens in GLYCAM as the source of this anomaly, demonstrating that addition of small partial atomic charges on the aliphatic protons in rhamnose removes the conformational collapse phenomenon. This work reveals the large cumulative impact that small partial charges may have on the dynamic behavior of polysaccharides and indicates that future reparameterization of the GLYCAM06j force field should investigate the addition of partial charges on all aliphatic hydrogens.
Collapse
Affiliation(s)
- Ryan D Lazar
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Farideh B Akher
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
24
|
Guvench O, Martin D, Greene M. Pyranose Ring Puckering Thermodynamics for Glycan Monosaccharides Associated with Vertebrate Proteins. Int J Mol Sci 2021; 23:473. [PMID: 35008898 PMCID: PMC8745717 DOI: 10.3390/ijms23010473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The conformational properties of carbohydrates can contribute to protein structure directly through covalent conjugation in the cases of glycoproteins and proteoglycans and indirectly in the case of transmembrane proteins embedded in glycolipid-containing bilayers. However, there continue to be significant challenges associated with experimental structural biology of such carbohydrate-containing systems. All-atom explicit-solvent molecular dynamics simulations provide a direct atomic resolution view of biomolecular dynamics and thermodynamics, but the accuracy of the results depends on the quality of the force field parametrization used in the simulations. A key determinant of the conformational properties of carbohydrates is ring puckering. Here, we applied extended system adaptive biasing force (eABF) all-atom explicit-solvent molecular dynamics simulations to characterize the ring puckering thermodynamics of the ten common pyranose monosaccharides found in vertebrate biology (as represented by the CHARMM carbohydrate force field). The results, along with those for idose, demonstrate that the CHARMM force field reliably models ring puckering across this diverse set of molecules, including accurately capturing the subtle balance between 4C1 and 1C4 chair conformations in the cases of iduronate and of idose. This suggests the broad applicability of the force field for accurate modeling of carbohydrate-containing vertebrate biomolecules such as glycoproteins, proteoglycans, and glycolipids.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA; (D.M.); (M.G.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Devon Martin
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA; (D.M.); (M.G.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Megan Greene
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA; (D.M.); (M.G.)
| |
Collapse
|
25
|
Cohen Y, Yasuor H, Tworowski D, Fallik E, Poverenov E. Stimuli-Free Transcuticular Delivery of Zn Microelement Using Biopolymeric Nanovehicles: Experimental, Theoretical, and In Planta Studies. ACS NANO 2021; 15:19446-19456. [PMID: 34817154 PMCID: PMC8900126 DOI: 10.1021/acsnano.1c06161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper reports one-step synthesis of polysaccharide-based nanovehicles, capable of transporting ionic zinc via plant cuticle without auxiliary stimulation. Delivery of highly hydrophilic nutritive microelements via the hydrophobic cuticle of plant foliage is one of the major challenges in modern agriculture. In traditional nutrition via roots, up to 80% of microelements permeate to soil and get wasted; therefore, foliar treatment is an environmentally and economically preferable alternative. Carboxymethyl cellulose (CMC) was modified to amphiphilic N-octylamide-derivative (CMC-8), which spontaneously self-assemble to nanovehicles. It was found that hydrophobic substituents endow a biopolymer with unexpected affinity toward a hydrophilic payload. CMC-8 nanovehicles effectively encapsulated ionic zinc (ZnSO4) and delivered it upon foliar application to pepper (Capsicum annuum) and tomato (Solanum lycopersicum) plants. Zinc uptake and translocation in plants were monitored by SEM-EDS and fluorescence microscopic methods. In planta monitoring of the carrier was done by labeling nanovehicles with fluorescent carbon dots. Three-dimensional (3-D) structural modeling and conformational dynamics explained the CMC-8 self-assembly mechanism and zinc coordination phenomenon upon introduction of hydrophobic substituents.
Collapse
Affiliation(s)
- Yael Cohen
- Agro-Nanotechnology
and Advanced Materials Center, Institute of Postharvest and Food Sciences,
Agriculture Research Organization, The Volcani
Institute, Rishon
LeZion 7505101, Israel
- Institute
of Biochemistry, Food Science and Nutrition, Faculty of Agriculture,
Food and Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| | - Hagai Yasuor
- Department
of Vegetables and Field Crops, Agriculture Research Organization, Gilat Center, M.P.
Negev 85280, Israel
| | - Dmitry Tworowski
- Department
of Structural Biology, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Elazar Fallik
- Agro-Nanotechnology
and Advanced Materials Center, Institute of Postharvest and Food Sciences,
Agriculture Research Organization, The Volcani
Institute, Rishon
LeZion 7505101, Israel
| | - Elena Poverenov
- Agro-Nanotechnology
and Advanced Materials Center, Institute of Postharvest and Food Sciences,
Agriculture Research Organization, The Volcani
Institute, Rishon
LeZion 7505101, Israel
- E-mail: . Tel: 972-39683354. Agricultural Research Organization,
68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| |
Collapse
|
26
|
Richardson NI, Kuttel MM, Michael FS, Cairns C, Cox AD, Ravenscroft N. Cross-reactivity of Haemophilus influenzae type a and b polysaccharides: molecular modeling and conjugate immunogenicity studies. Glycoconj J 2021; 38:735-746. [PMID: 34491462 DOI: 10.1007/s10719-021-10020-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Haemophilus influenzae is a leading cause of meningitis disease and mortality, particularly in young children. Since the introduction of a licensed conjugate vaccine (targeting the outer capsular polysaccharide) against the most prevalent serotype, Haemophilus influenzae serotype b, the epidemiology of the disease has changed and Haemophilus influenzae serotype a is on the rise, especially in Indigenous North American populations. Here we apply molecular modeling to explore the preferred conformations of the serotype a and b capsular polysaccharides as well as a modified hydrolysis resistant serotype b polysaccharide. Although both serotype b and the modified serotype b have similar random coil behavior, our simulations reveal some differences in the polysaccharide conformations and surfaces which may impact antibody cross-reactivity between these two antigens. Importantly, we find significant conformational differences between the serotype a and b polysaccharides, indicating a potential lack of cross-reactivity that is corroborated by immunological data showing little recognition or killing between heterologous serotypes. These findings support the current development of a serotype a conjugate vaccine.
Collapse
Affiliation(s)
- Nicole I Richardson
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Chantelle Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
27
|
Cojocaru C, Humelnicu AC, Pascariu P, Samoila P. Artificial neural network and molecular modeling for assessing the adsorption performance of a hybrid alginate-based magsorbent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Guvench O, Whitmore EK. Sulfation and Calcium Favor Compact Conformations of Chondroitin in Aqueous Solutions. ACS OMEGA 2021; 6:13204-13217. [PMID: 34056470 PMCID: PMC8158799 DOI: 10.1021/acsomega.1c01071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2021] [Indexed: 06/01/2023]
Abstract
The effects of sulfation and calcium cations (Ca2+) on the atomic-resolution conformational properties of chondroitin carbohydrate polymers in aqueous solutions are not well studied owing to experimental challenges. Here, we compare all-atom explicit-solvent molecular dynamics simulations results for pairs of O-type (nonsulfated) and A-type (GlcNAc 4-O-sulfated) chondroitin 20-mers in 140 mM NaCl with and without Ca2+ and find that both sulfation and Ca2+ favor more compact polymer conformations. We also show that subtle differences in force-field parametrization can have dramatic effects on Ca2+ binding to chondroitin carboxylate and sulfate functional groups and thereby determine Ca2+-mediated intra- and interstrand association. In addition to providing an atomic-resolution picture of the interaction of Ca2+ with sulfated and nonsulfated chondroitin polymers, the molecular dynamics data emphasize the importance of careful force-field parametrization to balance ion-water and ion-chondroitin interactions and suggest additional parametrization efforts to tune interactions involving sulfate.
Collapse
Affiliation(s)
- Olgun Guvench
- Department
of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University
of New England, 716 Stevens
Avenue, Portland, Maine 04103, United States
- Graduate
School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine 04469, United
States
| | - Elizabeth K. Whitmore
- Department
of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University
of New England, 716 Stevens
Avenue, Portland, Maine 04103, United States
- Graduate
School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine 04469, United
States
| |
Collapse
|
29
|
Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation. Vaccines (Basel) 2021; 9:vaccines9050432. [PMID: 33925465 PMCID: PMC8144980 DOI: 10.3390/vaccines9050432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/30/2023] Open
Abstract
The pathogenic bacterium Shigella is a leading cause of diarrheal disease and mortality, disproportionately affecting young children in low-income countries. The increasing prevalence of antibiotic resistance in Shigella necessitates an effective vaccine, for which the bacterial lipopolysaccharide O-antigen is the primary target. S. flexneri serotype 6 has been proposed as a multivalent vaccine component to ensure broad protection against Shigella. We have previously explored the conformations of S. flexneri O-antigens from serogroups Y, 2, 3, and 5 that share a common saccharide backbone (serotype Y). Here we consider serogroup 6, which is of particular interest because of an altered backbone repeat unit with non-stoichiometric O-acetylation, the antigenic and immunogenic importance of which have yet to be established. Our simulations show significant conformational changes in serogroup 6 relative to the serotype Y backbone. We further find that O-acetylation has little effect on conformation and hence may not be essential for the antigenicity of serotype 6. This is corroborated by an in vivo study in mice, using Generalized Modules for Membrane Antigens (GMMA) as O-antigen delivery systems, that shows that O-acetylation does not have an impact on the immune response elicited by the S. flexneri serotype 6 O-antigen.
Collapse
|
30
|
Sivaji N, Harish N, Singh S, Singh A, Vijayan M, Surolia A. Mevo lectin specificity towards high-mannose structures with terminal αMan(1,2)αMan residues and its implication to inhibition of the entry of Mycobacterium tuberculosis into macrophages. Glycobiology 2021; 31:1046-1059. [PMID: 33822039 DOI: 10.1093/glycob/cwab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mannose-binding lectins can specifically recognize and bind complex glycan structures on pathogens and have potential as anti-viral and anti-bacterial agents. We previously reported the structure of a lectin from an archaeal species, Mevo lectin, which has specificity towards terminal α1,2 linked manno-oligosaccharides. Mycobacterium tuberculosis (M. tuberculosis) expresses mannosylated structures including, lipoarabinomannan (ManLAM) on its surface and exploits C-type lectins to gain entry into the host cells. ManLAM structure has mannose capping with terminal αMan(1,2)αMan residues and is important for recognition by innate immune cells. Here, we aim to address the specificity of Mevo lectin towards high-mannose type glycans with terminal αMan(1,2)αMan residues and its effect on M. tuberculosis internalization by macrophages. ITC studies demonstrated that Mevo lectin shows preferential binding towards manno-oligosaccharides with terminal αMan(1,2)αMan structures, and showed a strong affinity for ManLAM, whereas it binds weakly to Mycobacterium smegmatis (M. smegmatis) lipoarabinomannan (MsmLAM), which displays relatively fewer and shorter mannosyl caps. Crystal structure of Mevo lectin complexed with a Man7D1 revealed the multivalent cross-linking interaction, which explains avidity-based high affinity for these ligands when compared to previously studied manno-oligosaccharides lacking the specific termini. Functional studies suggest that M. tuberculosis internalization by the macrophage was impaired by binding of Mevo lectin to ManLAM present on the surface of M. tuberculosis. Selectivity shown by Mevo lectin towards glycans with terminal αMan(1,2)αMan structures, and its ability to compromise the internalization of M. tuberculosis in vitro, underscore the potential utility of Mevo lectin as a research tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nikitha Harish
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Samsher Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Molecular modeling provides insights into the loading of sialic acid-containing antigens onto CRM 197: the role of chain flexibility in conjugation efficiency and glycoconjugate architecture. Glycoconj J 2021; 38:411-419. [PMID: 33721150 PMCID: PMC7957279 DOI: 10.1007/s10719-021-09991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Vaccination is the most cost-effective way to control disease caused by encapsulated bacteria; the capsular polysaccharide (CPS) is the primary virulence factor and vaccine target. Neisseria meningitidis (Nm) serogroups B, C, Y and W all contain sialic acid, a common surface feature of human pathogens. Two protein-based vaccines against serogroup B infection are available for human use while four tetravalent conjugate vaccines including serogroups C, W and Y have been licensed. The tetravalent Menveo® conjugate vaccine is well-defined: a simple monomeric structure of oligosaccharides terminally conjugated to amino groups of the carrier protein CRM197. However, not only is there a surprisingly low limit for antigen chain attachment to CRM197, but different serogroup saccharides have consistently different CRM197 loading, the reasons for which are unclear. Understanding this phenomenon is important for the long-term goal of controlling conjugation to prepare conjugate vaccines of optimal immunogenicity. Here we use molecular modeling to explore whether antigen flexibility can explain the varying antigen loading of the conjugates. Because flexibility is difficult to separate from other structural factors, we focus on sialic-acid containing CPS present in current glycoconjugate vaccines: serogroups NmC, NmW and NmY. Our simulations reveal a correlation between Nm antigen flexibility (NmW > NmC > NmY) and the number of chains attached to CRM197, suggesting that increased flexibility enables accommodation of additional chains on the protein surface. Further, in silico models of the glycoconjugates confirm the relatively large hydrodynamic size of the saccharide chains and indicate steric constraints to further conjugation.
Collapse
|
32
|
Fu Y, Huang X, Zhou Z. Insight into the Assembling Mechanism of Cryptococcus Capsular Glucuronoxylomannan Based on Molecular Dynamics Simulations. ACS OMEGA 2020; 5:29351-29356. [PMID: 33225166 PMCID: PMC7676341 DOI: 10.1021/acsomega.0c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Cryptococcus spp. is an invasive fungal pathogen and causes life-threatening cryptococcosis. Opportunistic cryptococcal infections among the immunocompromised population are mostly caused by Cryptococcus neoformans, whereas the geographical dissemination of Cryptococcus gattii in recent years has threatened lives of even immunocompetent people. The capsule, mainly composed of glucuronoxylomannan (GXM) polysaccharides, plays important roles in the virulence of Cryptococcus spp. The assembling mechanism of GXM polysaccharides into the capsule is little understood because of insufficient experimental data. Molecular modeling and molecular dynamics simulation provide insight into the assembling process. We first built GXM oligosaccharide models of serotypes D, A, B, and C and extracted their secondary structure information from simulation trajectories. All the four mainchains tend to take the nearly twofold helical conformation, whereas peripheral sidechains prefer to form left-handed helices, which are further stabilized by intramolecular hydrogen bonds. Based on the obtained secondary structure information, GXM polysaccharide arrays were built to simulate capsule-assembling processes of C. neoformans and C. gattii using serotypes A and C as representatives, respectively. Trajectory analysis illustrates that electrostatic neutralization of acidic sidechain residues of GXM is a prerequisite for capsule assembling, followed by formation of intermolecular hydrogen bond networks. Further insight into the assembling mechanism of GXM polysaccharides provides the possibility to develop novel treatment and prevention solutions for cryptococcosis.
Collapse
Affiliation(s)
- Yankai Fu
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| | - Xinglu Huang
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zeqi Zhou
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| |
Collapse
|
33
|
Hlozek J, Owen S, Ravenscroft N, Kuttel MM. Molecular Modeling of the Shigella flexneri Serogroup 3 and 5 O-Antigens and Conformational Relationships for a Vaccine Containing Serotypes 2a and 3a. Vaccines (Basel) 2020; 8:vaccines8040643. [PMID: 33147882 PMCID: PMC7712985 DOI: 10.3390/vaccines8040643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenic bacterium Shigella flexneri is a leading global cause of diarrheal disease. The O-antigen is the primary vaccine target and distinguishes the 30 serotypes reported. Except for serotype 6, all S. flexneri serotypes have a common backbone repeating unit (serotype Y), with variations in substitution creating the various serotypes. A quadrivalent vaccine containing serotypes 2a and 3a (as well as 6 and Shigella sonnei) is proposed to provide broad protection against non-vaccine S. flexneri serotypes through shared epitopes and conformations. Here we model the O-antigen (O-Ag) conformations of serogroups 3 and 5: a continuation of our ongoing systematic study of the S. flexneri O-antigens that began with serogroup 2. Our simulations show that S. flexneri serogroups 2, 3, and 5 all have flexible O-Ags, with substitutions of the backbone altering the chain conformations in different ways. Our analysis suggests three general heuristics for the effects of substitution on the Shigella O-Ag conformations: (1) substitution on rhamnose C reduces the extension of the O-Ag chain; (2) substitution at O-3 of rhamnose A restricts the O-Ags to predominantly helical conformations, (3) substitution at O-3 of rhamnose B has only a slight effect on conformation. The common O-Ag conformations across serotypes identified in this work support the assumption that a quadrivalent vaccine containing serotypes 2a and 3a could provide coverage against S. flexneri serotype 3b and serogroup 5.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Sara Owen
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
- Correspondence:
| |
Collapse
|
34
|
Whitmore EK, Martin D, Guvench O. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21207699. [PMID: 33080973 PMCID: PMC7589010 DOI: 10.3390/ijms21207699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of dermatan, keratan, and heparan and expanded our database of MD-generated GAG conformations. Here, we show that individual glycosidic linkages and monosaccharide rings in 10- and 20-mers of hyaluronan and nonsulfated dermatan, keratan, and heparan behave randomly and independently in MD simulation and, therefore, using a database of MD-generated 20-mer conformations, that our algorithm can construct conformational ensembles of 10- and 20-mers of various GAG types that accurately represent the backbone flexibility seen in MD simulations. Furthermore, our algorithm efficiently constructs conformational ensembles of GAG 200-mers that we would reasonably expect from MD simulations.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Devon Martin
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
35
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
36
|
Nestor G, Ruda A, Anderson T, Oscarson S, Widmalm G, Gronenborn AM. A detailed picture of a protein-carbohydrate hydrogen-bonding network revealed by NMR and MD simulations. Glycobiology 2020; 31:508-518. [PMID: 32902635 PMCID: PMC8091458 DOI: 10.1093/glycob/cwaa081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/12/2022] Open
Abstract
Cyanovirin-N (CV-N) is a cyanobacterial lectin with antiviral activity towards HIV and several other viruses. Here, we identify mannoside hydroxyl protons that are hydrogen bonded to the protein backbone of the CV-N domain B binding site, using NMR spectroscopy. For the two carbohydrate ligands Manα(1→2)ManαOMe and Manα(1→2) Manα(1→6)ManαOMe five hydroxyl protons are involved in hydrogen-bonding networks. Comparison with previous crystallographic results revealed that four of these hydroxyl protons donate hydrogen bonds to protein backbone carbonyl oxygens in solution and in the crystal. Hydrogen bonds were not detected between the side chains of Glu41 and Arg76 with sugar hydroxyls, as previously proposed for CV-N binding of mannosides. Molecular dynamics simulations of the CV-N/Manα(1→2)Manα(1→6)ManαOMe complex confirmed the NMR-determined hydrogen-bonding network. Detailed characterization of CV-N/mannoside complexes provides a better understanding of lectin-carbohydrate interactions and opens up to the use of CV-N and similar lectins as antiviral agents.
Collapse
Affiliation(s)
- Gustav Nestor
- Department of Structural Biology, University of Pittsburgh School of Medicine,1051 BST3, 3501 Fifth Ave, Pittsburgh, PA 15261, USA.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, Sweden
| | - Taigh Anderson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, Sweden
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine,1051 BST3, 3501 Fifth Ave, Pittsburgh, PA 15261, USA
| |
Collapse
|
37
|
Structural analysis of the O-antigen polysaccharide from Escherichia coli O188. Carbohydr Res 2020; 498:108051. [PMID: 33075674 DOI: 10.1016/j.carres.2020.108051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The structure of the O-antigen from Escherichia coli reference strain O188 (E. coli O188:H10) has been investigated. The lipopolysaccharide shows a typical nonrandom modal chain-length distribution and the sugar and absolute configuration analysis revealed d-Man, d-Glc, d-GlcN and d-GlcA as major components. The structure of the O-specific polysaccharide was determined using one- and two-dimensional 1H and 13C NMR spectroscopy experiments, where inter-residue correlations were identified by 1H,13C-heteronuclear multiple-bond correlation and 1H,1H-NOESY experiments, which revealed that it consists of pentasaccharide repeating units with the following structure: Biosynthetic aspects and NMR analysis are consistent with the presented structure as the biological repeating unit. The O-antigen of Shigella boydii type 16 differs only in that it carries O-acetyl groups to ~50% at O6 of the branch-point mannose residues. A molecular model of the E. coli O188 O-antigen containing 20 repeating units extends ~100 Å, which is similar to the height of the periplasmic portion of polysaccharide co-polymerase Wzz proteins that regulate the O-antigen chain length of lipopolysaccharides in the Wzx/Wzy biosynthetic pathway.
Collapse
|
38
|
Kuttel MM, Casadevall A, Oscarson S. Cryptococcus neoformans Capsular GXM Conformation and Epitope Presentation: A Molecular Modelling Study. Molecules 2020; 25:E2651. [PMID: 32517333 PMCID: PMC7321252 DOI: 10.3390/molecules25112651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: β DGlcA and β DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations-the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains-indicating that molecular modelling can play a role in the rational design of conjugate vaccines.
Collapse
Affiliation(s)
- Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA;
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
39
|
Besford QA, Cavalieri F, Caruso F. Glycogen as a Building Block for Advanced Biological Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904625. [PMID: 31617264 DOI: 10.1002/adma.201904625] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom-up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer-sized dendrimer-like structure (20-150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material-based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
40
|
Whitmore EK, Vesenka G, Sihler H, Guvench O. Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Biomolecules 2020; 10:biom10040537. [PMID: 32252422 PMCID: PMC7226628 DOI: 10.3390/biom10040537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear, structurally diverse, conformationally complex carbohydrate polymers that may contain up to 200 monosaccharides. These characteristics present a challenge for studying GAG conformational thermodynamics at atomic resolution using existing experimental methods. Molecular dynamics (MD) simulations can overcome this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies all conformational parameters contributing to GAG backbone flexibility (i.e., bond lengths, bond angles, and dihedral angles) from unbiased all-atom explicit-solvent MD simulations of short GAG polymers to rapidly construct models of GAGs of arbitrary length. The algorithm was used to generate non-sulfated chondroitin 10- and 20-mer ensembles which were compared to MD-generated ensembles for internal validation. End-to-end distance distributions in constructed and MD-generated ensembles have minimal differences, suggesting that our algorithm produces conformational ensembles that mimic the backbone flexibility seen in simulation. Non-sulfated chondroitin 100- and 200-mer ensembles were constructed within a day, demonstrating the efficiency of the algorithm and reduction in time and computational cost compared to simulation.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Gabriel Vesenka
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Hanna Sihler
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
41
|
Hlozek J, Ravenscroft N, Kuttel MM. Effects of Glucosylation and O-Acetylation on the Conformation of Shigella flexneri Serogroup 2 O-Antigen Vaccine Targets. J Phys Chem B 2020; 124:2806-2814. [PMID: 32204588 DOI: 10.1021/acs.jpcb.0c01595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Shigellosis is an enteric disease with high morbidity and mortality, particularly in developing countries. There is currently no licensed vaccine available. Most infection is caused by Shigella flexneri, of which 30 serotypes have been recognized based on O-antigen polysaccharide structure. Almost all S. flexneri serotypes share the same repeating unit backbone (serotype Y), with varying glucosylation, O-acetylation and phosphorylation. The O-antigen is the primary vaccine target; the vaccine valency (and hence cost) can be reduced by cross-protection. Our planned systematic conformational study of S. flexneri starts here with 2a, the dominant cause of infection globally. We employ microsecond molecular dynamics simulations to compare the conformation of the unsubstituted serotype Y backbone with the serogroup 2 O-antigens, to investigate the effect of glucosylation and O-acetylation (O-factor 9) on conformation. We find that serotype Y is highly flexible, whereas glucosylation in 2a restricts flexibility and induces C-curve conformations. Further, the glucose side-chains adopt two distinct conformations, corroborated by the antibody-bound crystal structure data. Additional substitution on O-3 of rhamnose A (whether O-acetylation in 2a or glucosylation in 2b) induces helical conformations. Our results suggest that the O-3-acetylated 2a antigen will elicit cross-protection against 2b, as well as other serotypes containing O-factor 9.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
42
|
Copoiu L, Malhotra S. The current structural glycome landscape and emerging technologies. Curr Opin Struct Biol 2020; 62:132-139. [PMID: 32006784 DOI: 10.1016/j.sbi.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022]
Abstract
Carbohydrates represent one of the building blocks of life, along with nucleic acids, proteins and lipids. Although glycans are involved in a wide range of processes from embryogenesis to protein trafficking and pathogen infection, we are still a long way from deciphering the glycocode. In this review, we aim to present a few of the challenges that researchers working in the area of glycobiology can encounter and what strategies can be utilised to overcome them. Our goal is to paint a comprehensive picture of the current saccharide landscape available in the Protein Data Bank (PDB). We also review recently updated repositories relevant to the topic proposed, the impact of software development on strategies to structurally solve carbohydrate moieties, and state-of-the-art molecular and cellular biology methods that can shed some light on the function and structure of glycans.
Collapse
Affiliation(s)
- Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
43
|
Differences in protein structural regions that impact functional specificity in GT2 family β-glucan synthases. PLoS One 2019; 14:e0224442. [PMID: 31665152 PMCID: PMC6821405 DOI: 10.1371/journal.pone.0224442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Most cell wall and secreted β-glucans are synthesised by the CAZy Glycosyltransferase 2 family (www.cazy.org), with different members catalysing the formation of (1,4)-β-, (1,3)-β-, or both (1,4)- and (1,3)-β-glucosidic linkages. Given the distinct physicochemical properties of each of the resultant β-glucans (cellulose, curdlan, and mixed linkage glucan, respectively) are crucial to their biological and biotechnological functions, there is a desire to understand the molecular evolution of synthesis and how linkage specificity is determined. With structural studies hamstrung by the instability of these proteins to solubilisation, we have utilised in silico techniques and the crystal structure for a bacterial cellulose synthase to further understand how these enzymes have evolved distinct functions. Sequence and phylogenetic analyses were performed to determine amino acid conservation, both family-wide and within each sub-family. Further structural analysis centred on comparison of a bacterial curdlan synthase homology model with the bacterial cellulose synthase crystal structure, with molecular dynamics simulations performed with their respective β-glucan products bound in the trans-membrane channel. Key residues that differentially interact with the different β-glucan chains and have sub-family-specific conservation were found to reside at the entrance of the trans-membrane channel. The linkage-specific catalytic activity of these enzymes and hence the type of β-glucan chain built is thus likely determined by the different interactions between the proteins and the first few glucose residues in the channel, which in turn dictates the position of the acceptor glucose. The sequence-function relationships for the bacterial β-glucan synthases pave the way for extending this understanding to other kingdoms, such as plants.
Collapse
|
44
|
Hlozek J, Ravenscroft N, Kuttel MM. Modeling the conformations of Neisseria meningitidis serogroup a CPS and a carba-analogue: Implications for vaccine development. Carbohydr Res 2019; 486:107838. [PMID: 31654945 DOI: 10.1016/j.carres.2019.107838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in Africa. The capsular polysaccharide is the main virulence factor and the target antigen for polysaccharide- and conjugate vaccines. Three tetravalent conjugate vaccines against serogroups A, C, Y and W have been licensed and the monovalent MenAfriVac® was introduced to address the high burden of serogroup A disease in the Meningitis Belt of sub-Saharan Africa. Three of these four vaccines are lyophilized due to the instability of the serogroup A antigen (MenA) in aqueous solution, resulting in a two vial presentation with concomitant additional costs for storage and distribution. Replacement of the saccharide ring oxygen with a methylene group is a promising approach to preparing a stable oligosaccharide MenA analogue (Carba-MenA) vaccine suitable for a liquid formulation. However, to be effective, Carba-MenA must elicit an immune response that is cross-reactive to the native MenA. Here we employ microsecond molecular dynamics simulations of ten repeats of MenA and Carba-MenA to establish that there are significant differences in the conformation and dynamics of these antigens in solution. Carba-MenA has a more random extended, conformation than MenA; MenA has a significant population of compact S-bend conformations that are absent in the analogue. We also find that the disaccharides are poor models of the conformational behaviour of longer chains. This information is relevant for the rational design of optimal analogues for conjugate vaccines.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
45
|
Tyrikos-Ergas T, Fittolani G, Seeberger PH, Delbianco M. Structural Studies Using Unnatural Oligosaccharides: Toward Sugar Foldamers. Biomacromolecules 2019; 21:18-29. [DOI: 10.1021/acs.biomac.9b01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
46
|
Rönnols J, Engström O, Schnupf U, Säwén E, Brady JW, Widmalm G. Inter-residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations. Chembiochem 2019; 20:2519-2528. [PMID: 31066963 DOI: 10.1002/cbic.201900301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Carbohydrates, also known as glycans in biological systems, are omnipresent in nature where they as glycoconjugates occur as oligo- and polysaccharides linked to lipids and proteins. Their three-dimensional structure is defined by two or three torsion angles at each glycosidic linkage. In addition, transglycosidic hydrogen bonding between sugar residues may be important. Herein we investigate the presence of these inter-residue interactions by NMR spectroscopy in D2 O/[D6 ]DMSO (70:30) or D2 O and by molecular dynamics (MD) simulations with explicit water as solvent for disaccharides with structural elements α-d-Manp-(1→2)-d-Manp, β-d-GlcpNAc-(1→2)-d-Manp, and α-d-Glcp-(1→4)-β-d-Glcp, all of which have been suggested to exhibit inter-residue hydrogen bonding. For the disaccharide β-d-GlcpNAc-(1→2)-β-d-Manp-OMe, the large extent of O5'⋅⋅⋅HO3 hydrogen bonding as seen from the MD simulation is implicitly supported by the 1 H NMR chemical shift and 3 JHO3,H3 value of the hydroxy proton. In the case of α-d-Glcp-(1→4)-β-d-Glcp-OMe, the existence of a transglycosidic hydrogen bond O2'⋅⋅⋅HO3 was proven by the presence of a cross-peak in 1 H,13 C HSQC-TOCSY experiments as a result of direct TOCSY transfer between HO3 of the reducing end residue and H2' (detected at C2') of the terminal residue. The occurrence of inter-residue hydrogen bonding, albeit transient, is judged important for the stabilization of three-dimensional structures, which may be essential in maintaining a conformational state for carbohydrate-protein interactions of glycans to take place in biologically important environments.
Collapse
Affiliation(s)
- Jerk Rönnols
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Udo Schnupf
- Department of Chemistry and Biochemistry, Bradley University, Peoria, IL, 61625, USA
| | - Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
47
|
Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem 2019; 294:14499-14511. [PMID: 31439670 DOI: 10.1074/jbc.ra119.008335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibrio polysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed β-propeller interrupted by a β-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 β-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Alison Biester
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ethan Chupp
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jianyi Lu
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Charlie Visudharomn
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
48
|
Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, Joung I, Joo K, Lee J, Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019; 29:320-331. [PMID: 30689864 DOI: 10.1093/glycob/cwz003] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing glycans and glycoconjugates in the context of three-dimensional structures is important in understanding their biological roles and developing efficient therapeutic agents. Computational modeling and molecular simulation have become an essential tool complementary to experimental methods. Here, we present a computational tool, Glycan Modeler for in silico N-/O-glycosylation of the target protein and generation of carbohydrate-only systems. In our previous study, we developed Glycan Reader, a web-based tool for detecting carbohydrate molecules from a PDB structure and generation of simulation system and input files. As integrated into Glycan Reader in CHARMM-GUI, Glycan Modeler (Glycan Reader & Modeler) enables to generate the structures of glycans and glycoconjugates for given glycan sequences and glycosylation sites using PDB glycan template structures from Glycan Fragment Database (http://glycanstructure.org/fragment-db). Our benchmark tests demonstrate the universal applicability of Glycan Reader & Modeler to various glycan sequences and target proteins. We also investigated the structural properties of modeled glycan structures by running 2-μs molecular dynamics simulations of HIV envelope protein. The simulations show that the modeled glycan structures built by Glycan Reader & Modeler have the similar structural features compared to the ones solved by X-ray crystallography. We also describe the representative examples of glycoconjugate modeling with video demos to illustrate the practical applications of Glycan Reader & Modeler. Glycan Reader & Modeler is freely available at http://charmm-gui.org/input/glycan.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
| | - InSuk Joung
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Keehyung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Jooyoung Lee
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
49
|
Dayhoff GW, Rogers DM. Hydration and Dispersion Forces in Hydroxypropylcellulose Phase Behavior. J Phys Chem B 2019; 123:4976-4985. [PMID: 31082228 DOI: 10.1021/acs.jpcb.9b01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many-body polarization and hydration forces can strongly affect the equilibrium structure and energetics of mixed phases. Accurately reproducing both forces presents a challenge to force field models because it requires balancing hydrogen bonding at short range with many-body orientational order and dispersive attraction at long range. This work reports the first comparison of experimental measurements of the pressure-area isotherm for hydroxypropylcellulose (HPC) against molecular dynamics results with four different force field models-united-atom, all-atom (OPLS and CHARMM), and Drude oscillator models. All force fields exhibit the experimentally determined, exponentially shaped repulsive force at short range. Above a critical temperature of about 40 °C and a lattice spacing of around 14 Å, HPC experiments show a reversible, heat-induced polymer aggregation into an ordered phase driven by loss of water. The nonpolarizable force fields do not display the critical point and instead show biphasic behavior at all temperatures tested. This indicates net attractive forces at intermediate lattice spacings. In contrast, the Drude polarizable force field shows positive osmotic pressure and a single, homogeneous phase over all temperatures and spacings tested. Analysis of structural data from our simulations provides several clues to help interpret these findings. Although all force fields show similar water-water hydrogen bond numbers in the mixed phase, the polarizable model predicts that water-HPC hydrogen bonds are much more favorable than HPC-HPC hydrogen bonds when polymers are dispersed. At high density, water is driven out and replaced by HPC-HPC hydrogen bonds. The polarizable force field shows that both effects have a stronger dependence on polymer density than any of the nonpolarizable models. Our observations support the conclusion that hydration forces are coupled to the polymer coordination number by local, structural waters and that long-range dispersive attraction is overestimated by pairwise additive models.
Collapse
Affiliation(s)
- Guy W Dayhoff
- Department of Chemistry , University of South Florida , Tampa 33620 , United States
| | - David M Rogers
- Department of Chemistry , University of South Florida , Tampa 33620 , United States
| |
Collapse
|
50
|
O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes. Vaccine 2019; 37:3866-3875. [PMID: 31160100 PMCID: PMC6997886 DOI: 10.1016/j.vaccine.2019.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
The binding of anti-Vi mAb and polyclonal immune sera correlated with the level of O-acetylation. C. freundii Vi resists de-O-acetylation and is more viscous than S. Typhi Vi. Sera from human vaccine recipients contains IgG that recognizes the backbone of Vi. Simulations show O-acetyls are exposed on the surface of Vi and confer rigidity. MD gives conformational rationale for effect of O-acetylation on Vi antigenicity and viscosity.
In this work, we explore the effects of O-acetylation on the physical and immunological characteristics of the WHO International Standards of Vi polysaccharide (Vi) from both Citrobacter freundii and Salmonella enterica serovar Typhi. We find that, although structurally identical according to NMR, the two Vi standards have differences with respect to susceptibility to de-O-acetylation and viscosity in water. Vi standards from both species have equivalent mass and O-acetylation-dependent binding to a mouse monoclonal antibody and to anti-Vi polyclonal antisera, including the WHO International Standard for human anti-typhoid capsular Vi PS IgG. This study also confirms that human anti-Vi sera binds to completely de-O-acetylated Vi. Molecular dynamics simulations provide conformational rationales for the known effect of de-O-acetylation both on the viscosity and antigenicity of the Vi, demonstrating that de-O-acetylation has a very marked effect on the conformation and dynamic behavior of the Vi, changing the capsular polysaccharide from a rigid helix into a more flexible coil, as well as enhancing the strong interaction of the polysaccharide with sodium ions. Partial de-O-acetylation of Vi revealed hidden epitopes that were recognized by human and sheep anti-Vi PS immune sera. These findings have significance for the manufacture and evaluation of Vi vaccines.
Collapse
|