1
|
Van TTH, Pham MQ, Huong TTT, Long BNT, Long PQ, Huong LTT, Lenon GB, Uyen NTT, Ngo ST. Searching potential GSK-3β inhibitors from marine sources using atomistic simulations. Mol Divers 2025:10.1007/s11030-025-11174-x. [PMID: 40172822 DOI: 10.1007/s11030-025-11174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Glycogen synthase kinase-3 beta, GSK-3β, is one of the most common targets for cancer treatment. Inhibiting the biological activity of the enzyme can lead to the prevention of cancer development. Especially, estimating a new inhibitor for preventing GSK-3β by using natural compounds is of great interest. In this context, the marine compounds were investigated for their ligand-binding affinity to GSK-3β via atomistic simulations. The compounds, including xanalteric acid I, chaunolidone A, macrolactin V, and aspergiolide A, were suggested that can inhibit GSK-3β via molecular docking and steered-MD simulations. Moreover, the potency of these compounds was also confirmed via the perturbation simulations. Furthermore, the toxicity prediction also indicates that these compounds would adopt less toxicity. Therefore, it may be argued that four compounds can play as potential inhibitors preventing GSK-3β. In addition, the residues including Ile62, Val135, Pro136, Arg141, Lys183, Gln185, Asn186, and Asp200 play a crucial role in the GSK-3β binding process.
Collapse
Affiliation(s)
- Tran Thi Hoai Van
- Vietnam University of Traditional Medicine, Ministry of Health, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | | | - Bui Nguyen Thanh Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quoc Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Thai QM, Pham MQ, Tran PT, Nguyen TH, Ngo ST. Searching for potential acetylcholinesterase inhibitors: a combined approach of multi-step similarity search, machine learning and molecular dynamics simulations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240546. [PMID: 39359466 PMCID: PMC11444763 DOI: 10.1098/rsos.240546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
| | - Phuong-Thao Tran
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 100000, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| |
Collapse
|
3
|
Thai QM, Nguyen TH, Phung HTT, Pham MQ, Pham NKT, Horng JT, Ngo ST. MedChemExpress compounds prevent neuraminidase N1 via physics- and knowledge-based methods. RSC Adv 2024; 14:18950-18956. [PMID: 38873542 PMCID: PMC11167619 DOI: 10.1039/d4ra02661f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Influenza A viruses spread out worldwide, causing several global concerns. Hence, discovering neuraminidase inhibitors to prevent the influenza A virus is of great interest. In this work, a machine learning model was employed to evaluate the ligand-binding affinity of ca. 10 000 compounds from the MedChemExpress (MCE) database for inhibiting neuraminidase. Atomistic simulations, including molecular docking and molecular dynamics simulations, then confirmed the ligand-binding affinity. Furthermore, we clarified the physical insights into the binding process of ligands to neuraminidase. It was found that five compounds, including micronomicin, didesmethyl cariprazine, argatroban, Kgp-IN-1, and AY 9944, are able to inhibit neuraminidase N1 of the influenza A virus. Ten residues, including Glu119, Asp151, Arg152, Trp179, Gln228, Glu277, Glu278, Arg293, Asn295, and Tyr402, may be very important in controlling the ligand-binding process to N1.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nguyen Kim Tuyen Pham
- Faculty of Environment, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City Vietnam
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan Taoyuan Taiwan
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Le HT, Tran LH, Phung HTT. SARS-CoV-2 omicron RBD forms a weaker binding affinity to hACE2 compared to Delta RBD in in-silico studies. J Biomol Struct Dyn 2024; 42:4087-4096. [PMID: 37345564 DOI: 10.1080/07391102.2023.2222827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/21/2023] [Indexed: 06/23/2023]
Abstract
The COVID-19 pandemic sparked an unprecedented race in biotechnology in a search for effective therapies and a preventive vaccine. The continued appearance of SARS-CoV-2 variants of concern (VoCs) further swept the world. The entry of SARS-CoV-2 into cells is mediated by binding the receptor-binding domain (RBD) of the S protein to the cell-surface receptor, human angiotensin-converting enzyme 2 (hACE2). In this study, using a coarse-grained force field to parameterize the system, we employed steered-molecular dynamics (SMD) simulations to reveal the binding of SARS-CoV-2 Delta/Omicron RBD to hACE2. Our benchmarked results demonstrate a good correlation between computed rupture force and experimental binding free energy for known protein-protein systems. Moreover, our findings show that the Omicron RBD has a weaker binding affinity to hACE2, consistent with the respective experimental results. This indicates that our method can effectively be applied to other emerging SARS-CoV-2 strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hoa Thanh Le
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Linh Hoang Tran
- Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Tam NM, Nguyen TH, Pham MQ, Hong ND, Tung NT, Vu VV, Quang DT, Ngo ST. Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations. J Mol Graph Model 2023; 124:108535. [PMID: 37295158 PMCID: PMC10233213 DOI: 10.1016/j.jmgm.2023.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The first oral drug for the treatment of COVID-19, Paxlovid, has been authorized; however, nirmatrelvir, a major component of the drug, is reported to be associated with some side effects. Moreover, the appearance of many novel variants raises concerns about drug resistance, and designing new potent inhibitors to prevent viral replication is thus urgent. In this context, using a hybrid approach combining machine learning (ML) and free energy simulations, 6 compounds obtained by modifying nirmatrelvir were proposed to bind strongly to SARS-CoV-2 Mpro. The structural modification of nirmatrelvir significantly enhances the electrostatic interaction free energy between the protein and ligand and slightly decreases the vdW term. However, the vdW term is the most important factor in controlling the ligand-binding affinity. In addition, the modified nirmatrelvir might be less toxic to the human body than the original inhibitor.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet, Phan Thiet City, Binh Thuan, Viet Nam
| | - Trung Hai Nguyen
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Nam Dao Hong
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Tung
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam; Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duong Tuan Quang
- Department of Chemistry, Hue University, Thua Thien Hue Province, Hue City, Viet Nam.
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Le TTH, Tran LH, Nguyen MT, Pham MQ, Phung HTT. Calculation of binding affinity of JAK1 inhibitors via accurately computational estimation. J Biomol Struct Dyn 2023; 41:7224-7234. [PMID: 36069111 DOI: 10.1080/07391102.2022.2118830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Janus kinase 1 (JAK1) is a tyrosine kinase that is involved in the initiation of responses to a number of different cytokine receptor families. The JAK1-dependent pathway is a therapeutic target, and several JAK inhibitors have been developed thanks to intensive research. However, since the ATP binding sites of JAK family members are quite alike, JAK1 inhibitors can thus be less selective, resulting in unanticipated adverse effects. Despite this, minor variations in the ATP-binding site have been extensively used to find a variety of small compounds with different inhibitory properties. Stronger binding affinity of JAK1 inhibitors is believed to be able to reduce the negative effects, leading to better treatment results. Therefore, a thorough computational search that can effectively identify ligands with extremely high binding affinity for JAK1 to serve as promising inhibitors is required. Here, a method combining steered-molecular dynamic (SMD) simulations with a modified linear interaction energy (LIE) model has been developed to evaluate the binding affinities of known JAK1 inhibitors. The correlation coefficient between the estimated and experimental values was 0.72 and a root-mean-square error was 0.97 kcal•mol-1, revealing that the SMD/LIE method can precisely and quickly predict the binding free energies of JAK1 inhibitors. Furthermore, three marine fungus-derived compounds, namely hansforesters E, hansforesters G and tetroazolemycins B, were identified to be particularly promising JAK1 inhibitors, accordingly. These findings show that the SMD/LIE method has a lot of promise for in silico screening of possible JAK1 inhibitors from a vast number of compounds that are now accessible.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thi-Thuy-Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Hoang Tran
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
| | - Minh Tam Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Stillson NJ, Anderson KE, Reich NO. In silico study of selective inhibition mechanism of S-adenosyl-L-methionine analogs for human DNA methyltransferase 3A. Comput Biol Chem 2023; 102:107796. [PMID: 36495748 DOI: 10.1016/j.compbiolchem.2022.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Epigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors. We use molecular dynamics (MD) based computational analysis to study known small molecule binders of DNMT3A, then propose reversible, tight binding, and selective inhibitors that exploit the Asn1192/Arg688 difference between the maintenance DNMT1 and DNMT3A near the active site. A similar strategy exploiting the presence of a unique active site cysteine Cys666 is used to propose DNMT3A-selective irreversible inhibitors. We report our results of relative binding energies of the known and proposed compounds estimated using MM/GBSA and umbrella sampling (US) techniques, and our evaluation of other end-point binding free energy calculation methods for these receptors. These calculations offer insight into the potential for small molecules to selectively target the active site of DNMT3A.
Collapse
Affiliation(s)
- Nathaniel J Stillson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Kyle E Anderson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Norbert O Reich
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA.
| |
Collapse
|
8
|
Nguyen TH, Tam NM, Tuan MV, Zhan P, Vu VV, Quang DT, Ngo ST. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chem Phys 2023; 564:111709. [PMID: 36188488 PMCID: PMC9511900 DOI: 10.1016/j.chemphys.2022.111709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044 . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Nguyen Minh Tam
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Mai Van Tuan
- Department of Microbiology, Hue Central Hospital, Hue City, Viet Nam
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duong Tuan Quang
- Department of Chemistry, Hue University, Thua Thien Hue Province, Hue City, Viet Nam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Majumder S, Giri K. An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: molecular dynamics simulation, principal component analysis and binding free energy calculation study. J Biomol Struct Dyn 2022; 40:10918-10930. [PMID: 34296659 DOI: 10.1080/07391102.2021.1954553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 Vpr is an accessory protein responsible for a plethora of functions inside the host cell to promote viral pathogenesis. One of the major functions of Vpr is the G2 cell cycle arrest. Among several small molecule inhibitors, Viprinin, a coumarin derivative, has been shown to specifically inhibit the G2 cell cycle arrest activity of Vpr thus making it an excellent choice for a lead molecule to design antiretroviral drug. But the exact mechanism of binding of the Viprinin and its two potent derivatives with Vpr is still not understood. In this study with combined molecular docking, molecular dynamics simulation, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method, Principal component analysis and Umbrella sampling simulation, we have explored the binding mechanism of Viprinin and its two derivatives with Vpr. MM-PBSA and Umbrella sampling calculations suggest that Viprinin and ViprininD1 have higher binding energy than ViprininD2. Molecular dynamics simulation shows that the ligands are not very stable inside the initial binding pocket and various hydrophobic interactions are responsible to hold the ligands with Vpr. Vpr backbone Principle Component Analysis (PCA) shows various unique essential motions of Vpr bound with Viprinin and its two derivatives. This study may give detailed insight of the mode of binding of the specified compounds at atomic scale and provide valuable information about the possibility of using these compounds as a potent Vpr inhibitor. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata
| |
Collapse
|
10
|
Ngo ST, Nguyen TH, Tung NT, Vu VV, Pham MQ, Mai BK. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches. Phys Chem Chem Phys 2022; 24:29266-29278. [PMID: 36449268 DOI: 10.1039/d2cp04476e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational approaches, including physics- and knowledge-based methods, have commonly been used to determine the ligand-binding affinity toward SARS-CoV-2 main protease (Mpro or 3CLpro). Strong binding ligands can thus be suggested as potential inhibitors for blocking the biological activity of the protease. In this context, this paper aims to provide a short review of computational approaches that have recently been applied in the search for inhibitor candidates of Mpro. In particular, molecular docking and molecular dynamics (MD) simulations are usually combined to predict the binding affinity of thousands of compounds. Quantitative structure-activity relationship (QSAR) is the least computationally demanding and therefore can be used for large chemical collections of ligands. However, its accuracy may not be high. Moreover, the quantum mechanics/molecular mechanics (QM/MM) method is most commonly used for covalently binding inhibitors, which also play an important role in inhibiting the activity of SARS-CoV-2. Furthermore, machine learning (ML) models can significantly increase the searching space of ligands with high accuracy for binding affinity prediction. Physical insights into the binding process can then be confirmed via physics-based calculations. Integration of ML models into computational chemistry provides many more benefits and can lead to new therapies sooner.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Hung NH, Quan PM, Satyal P, Dai DN, Hoa VV, Huy NG, Giang LD, Ha NT, Huong LT, Hien VT, Setzer WN. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022; 27:molecules27207092. [PMID: 36296686 PMCID: PMC9610647 DOI: 10.3390/molecules27207092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Essential oils are promising as environmentally friendly and safe sources of pesticides for human use. Furthermore, they are also of interest as aromatherapeutic agents in the treatment of Alzheimer’s disease, and inhibition of the enzyme acetylcholinesterase (AChE) has been evaluated as an important mechanism. The essential oils of some species in the genera Callicarpa, Premna, Vitex and Karomia of the family Lamiaceae were evaluated for inhibition of electric eel AChE using the Ellman method. The essential oils of Callicarpa candicans showed promising activity, with IC50 values between 45.67 and 58.38 μg/mL. The essential oils of Callicarpa sinuata, Callicarpa petelotii, Callicarpa nudiflora, Callicarpa erioclona and Vitex ajugifolia showed good activity with IC50 values between 28.71 and 54.69 μg/mL. The essential oils Vitex trifolia subsp. trifolia and Callicarpa rubella showed modest activity, with IC50 values of 81.34 and 89.38, respectively. trans-Carveol showed an IC50 value of 102.88 µg/mL. Molecular docking and molecular dynamics simulation were performed on the major components of the studied essential oils to investigate the possible mechanisms of action of potential inhibitors. The results obtained suggest that these essential oils may be used to control mosquito vectors that transmit pathogenic viruses or to support the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Nguyen Huy Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Pham Minh Quan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Do Ngoc Dai
- Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City 43000, Vietnam
| | - Vo Van Hoa
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Ngo Gia Huy
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Le Duc Giang
- School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Vietnam
| | - Nguyen Thi Ha
- Drug, Comestic and Food Quality Control Center of Ha Tinh Province.46, Ha Hoang Street, Thach Trung Commune, Ha Tinh City 481300, Vietnam
| | - Le Thi Huong
- School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Vietnam
| | - Vu Thi Hien
- Faculty of Hydrometeorology, Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City 70000, Vietnam
- Correspondence: (V.T.H.); (W.N.S.)
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Correspondence: (V.T.H.); (W.N.S.)
| |
Collapse
|
12
|
Abidi M, Soheilifard R, Ghasemi RH. Comparison of the unbinding process of RBD-ACE2 complex between SARS-CoV-2 variants (Delta, delta plus, and Lambda): A steered molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohadese Abidi
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Soheilifard
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
13
|
Nguyen HT, Polimati H, Annam SSP, Okello E, Thai QM, Vu TY, Tatipamula VB. Lobaric acid prevents the adverse effects of tetramethrin on the estrous cycle of female albino Wistar rats. PLoS One 2022; 17:e0269983. [PMID: 35776756 PMCID: PMC9249233 DOI: 10.1371/journal.pone.0269983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Tetramethrin (Tm) is a commonly used pesticide that has been reported to exert estrogen-antagonistic effects selectively on female rats. The present study was undertaken to assess the protective role of lobaric acid (La) on estrous cycle in Tm-treated female Wistar rats. Female rats were exposed to Tm (50 mg/kg b.w/day) only or in combination with La at low (50 mg/kg b.w/day) or high (100 mg/kg b.w/day) dose for 30 days. The results showed that Tm altered the estrous cycle of female rats by decreasing the levels of luteinizing hormone, follicular-stimulating hormone, progesterone, estrone, and estradiol while increasing testosterone level. The morphology of vaginal smears of Tm-treated female rats showed the presence of abnormal cells and/or structures at different phases of estrus cycle. Strikingly, in (Tm + La)-treated rats, all the observed adverse effects of Tm on the hormonal parameters, cell morphology, and the length of each phase of estrous cycle were significantly diminished in a dose-dependent manner. The docking results showed that La competes with Tm for Gonadotropin-Releasing Hormone (GnRH) receptor, thereby reducing the toxicity of Tm but did not cancel the response of GnRH receptor completely. In conclusion, our results designated that La could be used as a potential candidate in the management of insecticide-induced alterations of the reproductive cycle of rodents.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Haritha Polimati
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Satya Sowbhagya Priya Annam
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States of America
| | - Quynh-Mai Thai
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thien-Y. Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- * E-mail: (VBT); (TYV)
| | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
- * E-mail: (VBT); (TYV)
| |
Collapse
|
14
|
Nguyen TH, Tran PT, Pham NQA, Hoang VH, Hiep DM, Ngo ST. Identifying Possible AChE Inhibitors from Drug-like Molecules via Machine Learning and Experimental Studies. ACS OMEGA 2022; 7:20673-20682. [PMID: 35755364 PMCID: PMC9219098 DOI: 10.1021/acsomega.2c00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay. Moreover, atomistic simulations including molecular docking and molecular dynamics simulations were then used to understand molecular insights into the binding process of ligands to AChE. In particular, two compounds including benzyl trifluoromethyl ketone and trifluoromethylstyryl ketone were indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 μM, respectively. The obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 μM). The predicted log(BB) suggests that the compounds may be able to traverse the blood-brain barrier. A good agreement between computational and experimental studies was observed, indicating that the hybrid approach can enhance AD therapy.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong-Thao Tran
- Hanoi
University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 008404, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Van-Hai Hoang
- Faculty
of Pharmacy, Phenikka University, Hanoi 008404, Vietnam
- Phenikka
Institute for Advanced Study, Phenikka University, Hanoi 008404, Vietnam
| | - Dinh Minh Hiep
- Department
of Agriculture and Rural Development, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Reif MM, Zacharias M. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications. J Chem Theory Comput 2022; 18:3873-3893. [PMID: 35653503 DOI: 10.1021/acs.jctc.1c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an approach combining alchemical modifications and physical-pathway methods to calculate absolute binding free energies. The employed physical-pathway method is either a stratified umbrella sampling to calculate a potential of mean force or nonequilibrium pulling. We devised two basic approaches: the simultaneous approach (S-approach), where, along the physical unbinding pathway, an alchemical transformation of ligand-protein interactions is installed and deinstalled, and the prior-plus-simultaneous approach (PPS-approach), where, prior to the physical-pathway simulation, an alchemical transformation of ligand-protein interactions is installed in the binding site and deinstalled during the physical-pathway simulation. Using a mutant of T4 lysozyme with a benzene ligand as an example, we show that installation and deinstallation of soft-core interactions concurrent with physical ligand unbinding (S-approach) allow successful potential of mean force calculations and nonequilibrium pulling simulations despite the problems posed by the occluded nature of the lysozyme binding pocket. Good agreement between the potential of the mean-force-based S-approach and double decoupling simulations as well as a remarkable efficiency and accuracy of the nonequilibrium-pulling-based S-approach is found. The latter turned out to be more compute-efficient than the potential of mean force calculation by approximately 70%. Furthermore, we illustrate the merits of reducing ligand-protein interactions prior to potential of mean force calculations using the murine double minute homologue protein MDM2 with a p53-derived peptide ligand (PPS-approach). Here, the problem of breaking strong interactions in the binding pocket is transferred to a prior alchemical transformation that reduces the free-energy barrier between the bound and unbound state in the potential of mean force. Besides, disentangling physical ligand displacement from the deinstallation of ligand-protein interactions was seen to allow a more uniform sampling of distance histograms in the umbrella sampling. In the future, physical ligand unbinding combined with simultaneous alchemical modifications may prove useful in the calculation of protein-protein binding free energies, where sampling problems posed by multiple, possibly sticky interactions and potential steric clashes can thus be reduced.
Collapse
Affiliation(s)
- Maria M Reif
- Center for Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Martin Zacharias
- Center for Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| |
Collapse
|
16
|
Parihar A, Sonia ZF, Akter F, Ali MA, Hakim FT, Hossain MS. Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Comput Biol Med 2022; 145:105468. [PMID: 35390745 PMCID: PMC8964014 DOI: 10.1016/j.compbiomed.2022.105468] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/05/2023]
Abstract
The ongoing COVID-19 pandemic has affected millions of people worldwide and caused substantial socio-economic losses. Few successful vaccine candidates have been approved against SARS-CoV-2; however, their therapeutic efficacy against the mutated strains of the virus remains questionable. Furthermore, the limited supply of vaccines and promising antiviral drugs have created havoc in the present scenario. Plant-based phytochemicals (bioactive molecules) are promising because of their low side effects and high therapeutic value. In this study, we aimed to screen for suitable phytochemicals with higher therapeutic value using the two most crucial proteins of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp) and main protease (Mpro). We used computational tools such as molecular docking and steered molecular dynamics simulations to gain insights into the different types of interactions and estimated the relative binding forces between the phytochemicals and their respective targets. To the best of our knowledge, this is the first report that not only involves a search for a therapeutic bioactive molecule but also sheds light on the mechanisms underlying target inhibition in terms of calculations of force and work needed to extractthe ligand from the pocket of its target. The complexes showing higher binding forces were subjected to 200 ns molecular dynamic simulations to check the stability of the ligand inside the binding pocket. Our results suggested that isoskimmiwallin and terflavin A are potential inhibitors of RdRp, whereas isoquercitrin and isoorientin are the lead molecules against Mpro. Collectively, our findings could potentially aid in the development of novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
| | - Zannatul Ferdous Sonia
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Farjana Akter
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Md Ackas Ali
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Fuad Taufiqul Hakim
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Md Shahadat Hossain
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| |
Collapse
|
17
|
Mai NT, Lan NT, Vu TY, Tung NT, Phung HTT. A computationally affordable approach for accurate prediction of the binding affinity of JAK2 inhibitors. J Mol Model 2022; 28:163. [DOI: 10.1007/s00894-022-05149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
18
|
Thai QM, Pham TNH, Hiep DM, Pham MQ, Tran PT, Nguyen TH, Ngo ST. Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations. J Mol Graph Model 2022; 115:108230. [DOI: 10.1016/j.jmgm.2022.108230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
|
19
|
Theoretical design and experimental study of new aptamers with the enhanced binding affinity relying on colorimetric assay for tetracycline detection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
In silico screening of potential β-secretase (BACE1) inhibitors from VIETHERB database. J Mol Model 2022; 28:60. [DOI: 10.1007/s00894-022-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
|
21
|
Umbrella Sampling-Based Method to Compute Ligand-Binding Affinity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2385:313-323. [PMID: 34888726 DOI: 10.1007/978-1-0716-1767-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many proteins have a solvent-exposed binding cleft, which permits their inhibitors to bind and unbind without significant protein conformation transforms. The binding/unbinding pathways of these protein-inhibitor complexes can be rather straightforwardly sampled by using umbrella sampling (US) simulation methods. During a US simulation, the Cα atoms of the protein are restrained via a harmonic force. The potential of mean force (PMF) along the binding pathway can be estimated by using the weighted histogram analysis method (WHAM). The binding affinity is then computed as the difference in PMF between the binding and unbinding states.
Collapse
|
22
|
Tam NM, Nguyen TH, Ngan VT, Tung NT, Ngo ST. Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211480. [PMID: 35116157 PMCID: PMC8790385 DOI: 10.1098/rsos.211480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The umbrella sampling (US) simulation is demonstrated to be an efficient approach for determining the unbinding pathway and binding affinity to the SARS-CoV-2 Mpro of small molecule inhibitors. The accuracy of US is in the same range as the linear interaction energy (LIE) and fast pulling of ligand (FPL) methods. In detail, the correlation coefficient between US and experiments does not differ from FPL and is slightly smaller than LIE. The root mean square error of US simulations is smaller than that of LIE. Moreover, US is better than FPL and poorer than LIE in classifying SARS-CoV-2 Mpro inhibitors owing to the reciever operating characteristic-area under the curve analysis. Furthermore, the US simulations also provide detailed insights on unbinding pathways of ligands from the binding cleft of SARS-CoV-2 Mpro. The residues Cys44, Thr45, Ser46, Leu141, Asn142, Gly143, Glu166, Leu167, Pro168, Ala191, Gln192 and Ala193 probably play an important role in the ligand dissociation. Therefore, substitutions at these points may change the mechanism of binding of inhibitors to SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Vu Thi Ngan
- Laboratory of Computational Chemistry and Modelling, Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
23
|
Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3. Int J Mol Sci 2021; 22:ijms222212511. [PMID: 34830393 PMCID: PMC8622510 DOI: 10.3390/ijms222212511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.
Collapse
|
24
|
Pham TNH, Nguyen TH, Tam NM, Y Vu T, Pham NT, Huy NT, Mai BK, Tung NT, Pham MQ, V Vu V, Ngo ST. Improving ligand-ranking of AutoDock Vina by changing the empirical parameters. J Comput Chem 2021; 43:160-169. [PMID: 34716930 DOI: 10.1002/jcc.26779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
AutoDock Vina (Vina) achieved a very high docking-success rate, p ^ , but give a rather low correlation coefficient, R , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking-success rate p ^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment R set 1 = 0.556 ± 0.025 compared with R Default = 0.493 ± 0.028 obtained by the original Vina and R Vina 1.2 = 0.503 ± 0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R ≥ 0.500 for 32/48 targets, compared with the default package, giving R ≥ 0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( R set 1 = 0.617 ± 0.017 ) than the default package ( R Default = 0.543 ± 0.020 ) and Vina version 1.2 ( R Vina 1.2 = 0.540 ± 0.020 ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.
Collapse
Affiliation(s)
- T Ngoc Han Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Tam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nhat Truong Pham
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Truong Huy
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Tam NM, Pham MQ, Nguyen HT, Hong ND, Hien NK, Quang DT, Thu Phung HT, Ngo ST. Potential inhibitors for SARS-CoV-2 Mpro from marine compounds. RSC Adv 2021; 11:22206-22213. [PMID: 35480831 PMCID: PMC9034196 DOI: 10.1039/d1ra03852d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Preventing the biological activity of SARS-CoV-2 main protease using natural compounds is of great interest. In this context, using a combination of AutoDock Vina and fast pulling of ligand simulations, eleven marine fungi compounds were identified that probably play as highly potent inhibitors for preventing viral replication. In particular, four compounds including M15 (3-O-(6-O-α-l-arabinopyranosyl)-β-d-glucopyranosyl-1,4-dimethoxyxanthone), M8 (wailupemycins H), M11 (cottoquinazolines B), and M9 (wailupemycins I) adopted the predicted ligand-binding free energy of −9.87, −9.82, −9.62, and −9.35 kcal mol−1, respectively, whereas the other adopted predicted ligand-binding free energies in the range from −8.54 to −8.94 kcal mol−1. The results were obtained using a combination of Vina and FPL simulations. Notably, although, AutoDock4 adopted higher accurate results in comparison with Vina, Vina is proven to be a more suitable technique for rapidly screening ligand-binding affinity with a large database of compounds since it requires much smaller computing resources. Furthermore, FPL is better than Vina to classify inhibitors upon ROC-AUC analysis. Preventing the biological activity of SARS-CoV-2 main protease using natural compounds is of great interest.![]()
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Nam Dao Hong
- University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Nguyen Khoa Hien
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam.,Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology Hue City Thua Thien Hue Province Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, Hue University Hue City Thua Thien Hue Province Vietnam
| | | | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
26
|
Cao DT, Huong Doan TM, Pham VC, Minh Le TH, Chae JW, Yun HY, Na MK, Kim YH, Pham MQ, Nguyen VH. Molecular design of anticancer drugs from marine fungi derivatives. RSC Adv 2021; 11:20173-20179. [PMID: 35479875 PMCID: PMC9033662 DOI: 10.1039/d1ra01855h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the most potential targets in cancer therapy. We have demonstrated using a combination of molecular docking and fast pulling of ligand (FPL) simulations that marine fungi derivatives can be possible inhibitors, preventing the biological activity of Hsp90. The computational approaches were validated and compared with previous experiments. Based on the benchmark of available inhibitors of Hsp90, the GOLD docking package using the ChemPLP scoring function was found to be superior over both Autodock Vina and Autodock4 in the preliminary estimation of the ligand-binding affinity and binding pose with the Pearson correlation, R = -0.62. Moreover, FPL calculations were also indicated as a suitable approach to refine docking simulations with a correlation coefficient with the experimental data of R = -0.81. Therefore, the binding affinity of marine fungi derivatives to Hsp90 was evaluated. Docking and FPL calculations suggest that five compounds including 23, 40, 46, 48, and 52 are highly potent inhibitors for Hsp90. The obtained results enhance cancer therapy research.
Collapse
Affiliation(s)
- Duc Tuan Cao
- Hai Phong University of Medicine and Pharmacy Haiphong Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thi Hong Minh Le
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Min-Kyun Na
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van Hung Nguyen
- Hai Phong University of Medicine and Pharmacy Haiphong Vietnam
| |
Collapse
|
27
|
Ngo ST, Tam NM, Pham MQ, Nguyen TH. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. J Chem Inf Model 2021; 61:2302-2312. [PMID: 33829781 PMCID: PMC8043216 DOI: 10.1021/acs.jcim.1c00159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has killed millions of people worldwide since its outbreak in December 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, developing an effective therapy is an urgent task, which requires accurately estimating the ligand-binding free energy to SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with the experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The molecular docking approach was manipulated using Autodock Vina (Vina) and Autodock4 (AD4) protocols to preliminarily investigate the ligand-binding affinity and pose to SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4, and for free energy methods, FEP is the most accurate method, followed by LIE, FPL, and MM-PBSA (FEP > LIE ≈ FPL > MM-PBSA). Moreover, atomistic simulations revealed that the van der Waals interaction is the dominant factor. The residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and Gln189 are essential elements affecting the binding process. Our benchmark provides guidelines for further investigations using computational approaches.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational
Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000,
Vietnam
- Faculty of Applied Sciences, Ton Duc
Thang University, Ho Chi Minh City 700000,
Vietnam
| | - Nguyen Minh Tam
- Faculty of Applied Sciences, Ton Duc
Thang University, Ho Chi Minh City 700000,
Vietnam
- Computional Chemistry Research Group, Ton
Duc Thang University, Ho Chi Minh City 700000,
Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology,
Vietnam Academy of Science and Technology, Hanoi 100000,
Vietnam
- Institute of Natural Products Chemistry,
Vietnam Academy of Science and Technology, Hanoi 100000,
Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational
Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000,
Vietnam
- Faculty of Applied Sciences, Ton Duc
Thang University, Ho Chi Minh City 700000,
Vietnam
| |
Collapse
|
28
|
Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv 2021; 11:17478-17486. [PMID: 35479689 PMCID: PMC9032918 DOI: 10.1039/d1ra02529e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide recently, leading to global social and economic disruption. Although the emergently approved vaccine programs against SARS-CoV-2 have been rolled out globally, the number of COVID-19 daily cases and deaths has remained significantly high. Here, we attempt to computationally screen for possible medications for COVID-19 via rapidly estimating the highly potential inhibitors from an FDA-approved drug database against the main protease (Mpro) of SARS-CoV-2. The approach combined molecular docking and fast pulling of ligand (FPL) simulations that were demonstrated to be accurate and suitable for quick prediction of SARS-CoV-2 Mpro inhibitors. The results suggested that twenty-seven compounds were capable of strongly associating with SARS-CoV-2 Mpro. Among them, the seven top leads are daclatasvir, teniposide, etoposide, levoleucovorin, naldemedine, cabozantinib, and irinotecan. The potential application of these drugs in COVID-19 therapy has thus been discussed.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nguyen Xuan Ha
- Faculty of Chemistry and Environment, Thuyloi University, Ministry of Agriculture and Rural Development Hanoi Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Da Nang, University of Science and Technology Da Nang City Vietnam
| | | |
Collapse
|
29
|
Chaves EJF, Gomes da Cruz LE, Padilha IQM, Silveira CH, Araujo DAM, Rocha GB. Discovery of RTA ricin subunit inhibitors: a computational study using PM7 quantum chemical method and steered molecular dynamics. J Biomol Struct Dyn 2021; 40:5427-5445. [PMID: 33526002 DOI: 10.1080/07391102.2021.1878058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerd Bruno Rocha
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
30
|
Tam NM, Nam PC, Quang DT, Tung NT, Vu VV, Ngo ST. Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. RSC Adv 2021; 11:2926-2934. [PMID: 35424256 PMCID: PMC8694027 DOI: 10.1039/d0ra09858b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
SARS-CoV-2 rapidly infects millions of people worldwide since December 2019. There is still no effective treatment for the virus, resulting in the death of more than one million patients. Inhibiting the activity of SARS-CoV-2 main protease (Mpro), 3C-like protease (3CLP), is able to block the viral replication and proliferation. In this context, our study has revealed that in silico screening for inhibitors of SARS-CoV-2 Mpro can be reliably done using the monomeric structure of the Mpro instead of the dimeric one. Docking and fast pulling of ligand (FPL) simulations for both monomeric and dimeric forms correlate well with the corresponding experimental binding affinity data of 24 compounds. The obtained results were also confirmed via binding pose and noncovalent contact analyses. Our study results show that it is possible to speed up computer-aided drug design for SARS-CoV-2 Mpro by focusing on the monomeric form instead of the larger dimeric one.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Pham Cam Nam
- Department of Chemistry, The University of Danang, University of Science and Technology Danang Vietnam
| | | | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
31
|
Ngo ST, Quynh Anh Pham N, Thi Le L, Pham DH, Vu VV. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J Chem Inf Model 2020; 60:5771-5780. [PMID: 32530282 PMCID: PMC7323056 DOI: 10.1021/acs.jcim.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and
Computational Biophysics, Ton Duc Thang
University, Ho Chi Minh City 700000,
Vietnam
- Faculty of Applied Sciences,
Ton Duc Thang University, Ho Chi Minh
City 700000, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty of Chemical Engineering,
Ho Chi Minh City University of Technology
(HCMUT), Ho Chi Minh City 700000,
Vietnam
| | - Ly Thi Le
- School of Biotechnology,
International University, Ho Chi Minh
Ciy 700000, Vietnam
| | - Duc-Hung Pham
- Division of Immunobiology,
Cincinnati Children’s Hospital Medical
Center, Cincinnati, Ohio 45229, United
States
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen
Tat Thanh University, Ho Chi Minh City 700000,
Vietnam
| |
Collapse
|
32
|
Ngo ST, Vu VV, Phung HTT. Computational investigation of possible inhibitors of the winged-helix domain of MUS81. J Mol Graph Model 2020; 103:107771. [PMID: 33340918 DOI: 10.1016/j.jmgm.2020.107771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
The methyl methanesulfonate and ultraviolet sensitive 81 (MUS81) is a structure-specific endonuclease that is highly conserved in eukaryotes and essential for homologous recombination repair. The winged-helix domain at the N-terminus of MUS81 (wMUS81) can bind DNA substrates and regulate the endonuclease activity. The repression of MUS81 activity could enhance the sensitivity to antitumor compounds of different tumour cells. Thus, MUS81 is a potential therapeutic target in cancer therapy. However, specific inhibitors of MUS81 have remained elusive. Here, for the first time, we attempt to discover the compounds disrupting the wMUS81 activity. The binding affinity of available drugs to wMUS81 was first estimated by molecular docking. pKa values were taken into consideration to eliminate unlikely protonation states of the ligands. Top-lead compounds were then estimated the binding affinity using the fast pulling ligand simulations. Finally, the free energy perturbation method accurately defined the absolute binding free energy of the top four ligands, revealing the most potential inhibitors of wMUS81 including simeprevir and nilotinib. Binding of simeprevir destabilizes the β-hairpin region of wMUS81, likely disturbing the wMUS81 function. The van der Waals free binding energy majorly modulates the ligand-binding mechanism. The two conserved residues Leu189 and Arg196 are likely important in monitoring the interacting process of simeprevir to wMUS81.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| | - Van Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
33
|
Ngo ST. Estimating the ligand-binding affinity via λ-dependent umbrella sampling simulations. J Comput Chem 2020; 42:117-123. [PMID: 33078419 DOI: 10.1002/jcc.26439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The umbrella sampling (US) approach has been demonstrated to be a very efficient method for estimating the ligand-binding affinity. However, most of the calculated values overestimate experimental ones that are probably caused by the inaccurate representation of the interaction between the ligand and the surrounding molecules. The issue can be resolved via the implementation aspects of λ-alteration simulation into the US approach, which we call the λ-dependent umbrella sampling (λUS) scheme. In particular, the electrostatic and van der Waals interactions were simultaneously changed by using the coupling parameter λ during λUS simulations. The mean value of obtained results, ∆ G US λ = 0.20 = - 11.59 ± 1.51 kcal mol-1 , is in good fitting to the mean value of respective experiments, ∆GEXP = - 11.26 ± 0.89 kcal mol-1 . Moreover, the correlation between the proposed approach and experiment is quite good with a value of R US λ = 0.20 = 0.82 ± 0.10 . The λUS scheme significantly enhances the calculated accuracy since the RMSE of the proposed scheme is smaller than traditional US simulations, RMSE US λ = 0.20 = 2.99 ± 0.82 kcal mol-1 versus RMSE US λ = 0.00 = 5.48 ± 0.81 kcal mol-1 . Furthermore, the precision is increased since the computed error via λUS approach, δ US λ = 0.20 = 1.51 kcal mol-1 , was smaller than those of the US simulation, δ US λ = 0.00 = 1.78 kcal mol-1 . Overall, the proposed approach perhaps provides an efficient way to accurately and precisely estimate the ligand-binding free energy.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
34
|
Pham MQ, Vu KB, Han Pham TN, Thuy Huong LT, Tran LH, Tung NT, Vu VV, Nguyen TH, Ngo ST. Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations. RSC Adv 2020; 10:31991-31996. [PMID: 35518150 PMCID: PMC9056572 DOI: 10.1039/d0ra06212j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.
Collapse
Affiliation(s)
- Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Khanh B Vu
- School of Biotechnology, International University Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - T Ngoc Han Pham
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Le Thi Thuy Huong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Linh Hoang Tran
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Civil Energeering, Ho Chi Minh University of Technology (HCMUT) Ho Chi Minh Vietnam
| | - Nguyen Thanh Tung
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
35
|
Peng C, Wang J, Xu Z, Cai T, Zhu W. Accurate prediction of relative binding affinities of a series of HIV-1 protease inhibitors using semi-empirical quantum mechanical charge. J Comput Chem 2020; 41:1773-1780. [PMID: 32352193 DOI: 10.1002/jcc.26218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 11/05/2022]
Abstract
A major challenge in computer-aided drug design is the accurate estimation of ligand binding affinity. Here, a new approach that combines the adaptive steered molecular dynamics (ASMD) and partial atomic charges calculated by semi-empirical quantum mechanics (SQMPC), namely ASMD-SQMPC, is suggested to predict the ligand binding affinities, with 24 HIV-1 protease inhibitors as testing examples. In the ASMD-SQMPC, the relative binding free energy (ΔG) is reflected by the average maximum potential of mean force (<PMF>max ) between bound and unbound states. The correlation coefficient (R2 ) between the <PMF>max and experimentally determined ΔG is 0.86, showing a significant improvement compared with the conventional ASMD (R2 = 0.52). Therefore, this study provides an efficient approach to predict the relative ΔG and reveals the significance of precise partial atomic charges in the theoretical simulations.
Collapse
Affiliation(s)
- Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China
| | - Tingting Cai
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, China
| |
Collapse
|
36
|
Mai NT, Lan NT, Vu TY, Duong PTM, Tung NT, Phung HTT. Estimation of the ligand-binding free energy of checkpoint kinase 1 via non-equilibrium MD simulations. J Mol Graph Model 2020; 100:107648. [PMID: 32653524 DOI: 10.1016/j.jmgm.2020.107648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Checkpoint kinase 1 (CHK1) is a serine/threonine-protein kinase that is involved in cell cycle regulation in eukaryotes. Inhibition of CHK1 is thus considered as a promising approach in cancer therapy. In this study, the fast pulling of ligand (FPL) process was applied to predict the relative binding affinities of CHK1 inhibitors using non-equilibrium molecular dynamics (MD) simulations. The work of external harmonic forces to pull the ligand out of the binding cavity strongly correlated with the experimental binding affinity of CHK1 inhibitors with the correlation coefficient of R = -0.88 and an overall root mean square error (RMSE) of 0.99 kcal/mol. The data indicate that the FPL method is highly accurate in predicting the relative binding free energies of CHK1 inhibitors with an affordable CPU time. A new set of molecules were designed based on the molecular modeling of interactions between the known inhibitor and CHK1 as inhibitory candidates. Molecular docking and FPL results exhibited that the binding affinities of developed ligands were similar to the known inhibitor in interaction with the catalytic site of CHK1, producing very potential CHK1 inhibitors of that the inhibitory activities should be further evaluated in vitro.
Collapse
Affiliation(s)
- Nguyen Thi Mai
- Laboratory of Theoretical and Computational Biophysics, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ngo Thi Lan
- Institute of Materials Science & Graduate University of Science and Technology, Academy of Science and Technology, Hanoi, Viet Nam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Phuong Thi Mai Duong
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Academy of Science and Technology, Hanoi, Viet Nam.
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
37
|
Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3'-oxime derivatives. Sci Rep 2020; 10:11429. [PMID: 32651416 PMCID: PMC7351726 DOI: 10.1038/s41598-020-68134-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The addition of chalcone and amine components into indirubin-3′-oxime resulted in 15 new derivatives with high yields. Structures of new derivatives were also elucidated through 1D, 2D-NMR and HR-MS(ESI) spectra and X-ray crystallography. All designed compounds were screened for cytotoxic activity against four human cancer cell lines (HepG2, LU-1, SW480 and HL-60) and one human normal kidney cell line (HEK-293). Compound 6f exhibited the most marked cytotoxicity meanwhile cytotoxicity of compounds 6e, 6h and 6l was more profound toward cancer cell lines than toward normal cell. These new derivatives were further analyzed via molecular docking studies on GSK-3β enzyme. Docking analysis shows that most of the derivatives exhibited potential inhibition activity against GSK-3β with characteristic interacting residues in the binding site. The fast pulling of ligand scheme was then employed to refine the binding affinity and mechanism between ligands and GSK-3β enzyme. The computational results are expected to contribute to predicting enzyme target of the trial inhibitors and their possible interaction, from which the design of new cytotoxic agents could be created in the future.
Collapse
|
38
|
Ngo ST, Hong ND, Quynh Anh LH, Hiep DM, Tung NT. Effective estimation of the inhibitor affinity of HIV-1 protease via a modified LIE approach. RSC Adv 2020; 10:7732-7739. [PMID: 35492181 PMCID: PMC9049864 DOI: 10.1039/c9ra09583g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
The inhibition of the Human Immunodeficiency Virus Type 1 Protease (HIV-1 PR) can prevent the synthesis of new viruses. Computer-aided drug design (CADD) would enhance the discovery of new therapies, through which the estimation of ligand-binding affinity is critical to predict the most efficient inhibitor. A time-consuming binding free energy method would reduce the usefulness of CADD. The modified linear interaction energy (LIE) approach emerges as an appropriate protocol that performs this task. In particular, the polar interaction free energy, which is obtained via numerically resolving the linear Poisson-Boltzmann equation, plays as an important role in driving the binding mechanism of the HIV-1 PR + inhibitor complex. The electrostatic interaction energy contributes to the attraction between two molecules, but the vdW interaction acts as a repulsive factor between the ligand and the HIV-1 PR. Moreover, the ligands were found to adopt a very strong hydrophobic interaction with the HIV-1 PR. Furthermore, the results obtained corroborate the high accuracy and precision of computational studies with a large correlation coefficient value R = 0.83 and a small RMSE δ RMSE = 1.25 kcal mol-1. This method is less time-consuming than the other end-point methods, such as the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and free energy perturbation (FEP) approaches. Overall, the modified LIE approach would provide ligand-binding affinity with HIV-1 PR accurately, precisely, and rapidly, resulting in a more efficient design of new inhibitors.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Nam Dao Hong
- University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment Ho Chi Minh City Vietnam
| | | | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
39
|
Nguyen NT, Nguyen TH, Pham TNH, Huy NT, Bay MV, Pham MQ, Nam PC, Vu VV, Ngo ST. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J Chem Inf Model 2019; 60:204-211. [DOI: 10.1021/acs.jcim.9b00778] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nguyen Thanh Nguyen
- Department of Theoretical Physics, Ho Chi Minh City University of Science, Ho Chi Minh City 700000, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - T. Ngoc Han Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Truong Huy
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Mai Van Bay
- Department of Chemical Engineering, The University of Da Nang, University of Science and Technology, Da Nang City 550000, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Da Nang, University of Science and Technology, Da Nang City 550000, Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
40
|
Ngo ST, Nguyen TH, Tung NT, Nam PC, Vu KB, Vu VV. Oversampling Free Energy Perturbation Simulation in Determination of the Ligand‐Binding Free Energy. J Comput Chem 2019; 41:611-618. [DOI: 10.1002/jcc.26130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational BiophysicsTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational BiophysicsTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Pham Cam Nam
- Department of Chemical EngineeringThe University of Da Nang, University of Science and Technology Da Nang City Vietnam
| | - Khanh B. Vu
- NTT Hi‐Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Van V. Vu
- NTT Hi‐Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
41
|
Prediction of AChE-ligand affinity using the umbrella sampling simulation. J Mol Graph Model 2019; 93:107441. [DOI: 10.1016/j.jmgm.2019.107441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022]
|
42
|
Mamidi AS, Ray A, Surolia N. Structural Analysis of PfSec62-Autophagy Interacting Motifs (AIM) and PfAtg8 Interactions for Its Implications in RecovER-phagy in Plasmodium falciparum. Front Bioeng Biotechnol 2019; 7:240. [PMID: 31608276 PMCID: PMC6773812 DOI: 10.3389/fbioe.2019.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Autophagy is a degradative pathway associated with many pathological and physiological processes crucial for cell survival. During ER stress, while selective autophagy occurs via ER-phagy, the re-establishment of physiologic ER homeostasis upon resolution of a transient ER stress is mediated by recovER-phagy. Recent studies demonstrated that recovER-phagy is governed via association of Sec62 as an ER-resident autophagy receptor through its autophagy interacting motifs (AIM)/LC3-interacting region (LIR) toAtg8/LC3. Atg8 is an autophagy protein, which is central to autophagosome formation and maturation. Plasmodium falciparum Atg8 (PfAtg8) has both autophagic and non-autophagic functions critical for parasite survival. Since Plasmodium also has Sec62 in the ER membrane and is prone to ER stress due to drastic transformation during their complex intraerythrocytic cycle; hence, we initiated the studies to check whether recovER-phagy occurs in the parasite. To achieve this, a comprehensive study based on the computational approaches was carried out. This study embarks upon identification of AIM sequences in PfSec62 by carrying out peptide-protein docking simulations and comparing the interactions of these AIMs with PfAtg8, based on the molecular dynamic simulations. Detailed analysis is based on electrostatic surface complementarity, peptide-protein interaction strength, mapping of non-covalent bond interactions and rupture force calculated from steered MD simulations. Potential mean forces and unbinding free energies (ΔGdissociation) using Jarzynski's equality were also computed for the AIM/LIR motif complexes with PfAtg8/HsLC3 autophagy proteins to understand their dissociation free energy profiles and thereby their binding affinities and stability of the peptide-protein complexes. Through this study, we predict Sec62 mediated recovER-phagy in Plasmodium falciparum, which might open new avenues to explore novel drug targets for antimalarial drug discovery.
Collapse
Affiliation(s)
- Ashalatha Sreshty Mamidi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Division of Biological Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, India
| | - Ananya Ray
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Namita Surolia
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
43
|
Tung N, Derreumaux P, Vu VV, Nam PC, Ngo ST. C-Terminal Plays as the Possible Nucleation of the Self-Aggregation of the S-Shape Aβ 11-42 Tetramer in Solution: Intensive MD Study. ACS OMEGA 2019; 4:11066-11073. [PMID: 31460204 PMCID: PMC6648102 DOI: 10.1021/acsomega.9b00992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Amyloid beta (Aβ) peptides are characterized as the major factors associated with neuron death in Alzheimer's disease, which is listed as the most common form of neurodegeneration. Disordered Aβ peptides are released from proteolysis of the amyloid precursor protein. The Aβ self-assembly process roughly takes place via five steps: disordered forms → oligomers → photofibrils → mature fibrils → plaques. Although Aβ fibrils are often observed in patient brains, oligomers were recently indicated to be major neurotoxic elements. In this work, the neurotoxic compound S-shape Aβ11-42 tetramer (S4Aβ11-42) was investigated over 10 μs of unbiased MD simulations. In particular, the S4Aβ11-42 oligomer adopted a high dynamics structure, resulting in unsuccessful determination of their structures in experiments. The C-terminal was suggested as the possible nucleation of the Aβ42 aggregation. The sequences 27-35 and 39-40 formed rich β-content, whereas other residues mostly adopted coil structures. The mean value of the β-content over the equilibrium interval is ∼42 ± 3%. Furthermore, the dissociation free energy of the S4Aβ11-42 peptide was predicted using a biased sampling method. The obtained free energy is ΔG US = -58.44 kcal/mol which is roughly the same level as the corresponding value of the U-shape Aβ17-42 peptide. We anticipate that the obtained S4Aβ11-42 structures could be used as targets for AD inhibitor screening over the in silico study.
Collapse
Affiliation(s)
- Nguyen
Thanh Tung
- Institute
of Materials Science, Vietnam Academy of
Science and Technology, Hanoi 10307, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical and Chemistry, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Laboratoire
de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT
Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Pham Cam Nam
- Department
of Chemical Engineering, The University
of Da Nang—University of Science and Technology, Da Nang City 550000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 758307, Vietnam
| |
Collapse
|
44
|
Ngo ST, Derreumaux P, Vu VV. Probable Transmembrane Amyloid α-Helix Bundles Capable of Conducting Ca2+ Ions. J Phys Chem B 2019; 123:2645-2653. [DOI: 10.1021/acs.jpcb.8b10792] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris, 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
45
|
Ngo ST, Vu KB, Bui LM, Vu VV. Effective Estimation of Ligand-Binding Affinity Using Biased Sampling Method. ACS OMEGA 2019; 4:3887-3893. [PMID: 31459599 PMCID: PMC6648447 DOI: 10.1021/acsomega.8b03258] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
The binding between two biomolecules is one of the most critical factors controlling many bioprocesses. Therefore, it is of great interest to derive a reliable method to calculate the free binding energy between two biomolecules. In this work, we have demonstrated that the binding affinity of ligands to proteins can be determined through biased sampling simulations. The umbrella sampling (US) method was applied on 20 protein-ligand complexes, including the cathepsin K (CTSK), type II dehydroquinase (DHQase), heat shock protein 90 (HSP90), and factor Xa (FXa) systems. The ligand-binding affinity was evaluated as the difference between the largest and smallest values of the free-energy curve, which was obtained via a potential of mean force analysis. The calculated affinities differ sizably from the previously reported experimental values, with an average difference of ∼3.14 kcal/mol. However, the calculated results are in good correlation with the experimental data, with correlation coefficients of 0.76, 0.87, 0.96, and 0.97 for CTSK, DHQase, HSP90, and FXa, respectively. Thus, the binding free energy of a new ligand can be reliably estimated using our US approach. Furthermore, the root-mean-square errors (RMSEs) of binding affinity of these systems are 1.13, 0.90, 0.37, and 0.25 kcal/mol, for CTSK, DHQase, HSP90, and FXa, respectively. The small RMSE values indicate the good precision of the biased sampling method that can distinguish the ligands exhibiting similar binding affinities.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical
and Computational Biophysics, Ton Duc Thang
University, Ho Chi Minh City 7000000, Vietnam
- Faculty
of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000000, Vietnam
| | - Khanh B. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
46
|
Sun X, Ding L, Liu HM. Probing the binding mode and unbinding mechanism of LSD1 inhibitors by combined computational methods. Phys Chem Chem Phys 2018; 20:29833-29846. [PMID: 30468219 DOI: 10.1039/c8cp03090a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine specific demethylase 1 (LSD1) has emerged as a potential drug target in cancer therapy and a variety of inhibitors have been reported. We have recently reported the discovery of a series of triazole-dithiocarbamate based compounds, which were basically confirmed as cofactor flavin adenine dinucleotide (FAD)-competing inhibitors by experiments. However, the binding modes of the inhibitors to the binding site were undetermined. Here, we employed computational methods including molecular docking, classical molecular dynamics (MD) and steered molecular dynamics (SMD) simulations to investigate the potential binding modes of these inhibitors to LSD1. Based on the high correlation between the mean non-equilibrium pulling work W and experimental binding affinity, we identified the optimal binding modes of this class of compounds with LSD1. Using the optimal inhibitor binding conformation, we then performed SMD to study the ligand unbinding mechanism with a lower pulling velocity at 0.0005 nm ps-1. We found that residue Arg316 plays a crucial role in the binding/unbinding process. Furthermore, a gatekeeper residue Trp756 influences the ligand unbinding process by acting like a switch via steric hindrance but can enhance the hydrophobic interaction with the inhibitor. Hydrophobic interaction also dominated the interaction between LSD1 and the inhibitors. The pivotal residues and interactions between LSD1 and inhibitors determined from this study can be used to improve the inhibition activity of this series of inhibitors in development and to discover new scaffolds as FAD-competing inhibitors in compound screening.
Collapse
Affiliation(s)
- Xudong Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | |
Collapse
|
47
|
Ngo ST, Hung HM, Hong ND, Tung NT. The influences of E22Q mutant on solvated 3Aβ 11-40 peptide: A REMD study. J Mol Graph Model 2018; 83:122-128. [PMID: 29902674 DOI: 10.1016/j.jmgm.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
The residue E22 plays a critical role in the aggregation process of Amyloid beta (Aβ) peptides. The effect of E22Q mutant on the shapes of the solvated Aβ11-40 trimer is clarified using a replica exchange molecular dynamics (REMD) simulation employing ∼20.6 μs of MD simulations with 48 disparate replicas. The increase of intramolecular polar contacts and salt bridge between the residue D23 to residues (24-29) was observed. The residual secondary structure of the mutated trimer is shifted in a similar way to the picture observed in previous investigations of F19W mutant. The free energy surface (FES) of the mutated E22Q system has a fewer number of minima in comparison with the wild-type trimer. The optimized shapes of the mutated E22Q form a significant increase in beta structure (47%) and serious decrease in coil content (46%) compared with the wild-type (of 36 and 56%, respectively). The binding affinity of constituting chains to the rest is of -43.7 ± 6.5 kcal/mol, implying that the representative structure of E22Q is more stable than the wild-type one. Furthermore, the E22Q mutant increases the size of stable structures due to larger collision cross section (CCS) and solvent accessible area (SASA). The observed results may enhance the Aβ inhibition throughout the contribution to the knowledge of the Aβ oligomerization/aggregation.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Nam Dao Hong
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
48
|
Tam NM, Vu KB, Vu VV, Ngo ST. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Chaves EJF, Padilha IQM, Araújo DAM, Rocha GB. Determining the Relative Binding Affinity of Ricin Toxin A Inhibitors by Using Molecular Docking and Nonequilibrium Work. J Chem Inf Model 2018; 58:1205-1213. [PMID: 29750861 DOI: 10.1021/acs.jcim.8b00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ricin is a ribosome-inactivating protein (RIP type 2) consisting of two subunits, ricin toxin A (RTA) and ricin toxin B (RTB). Because of its cytotoxicity, ricin has worried world authorities for its potential use as a chemical weapon; therefore, its inhibition is of great biotechnological interest. RTA is the target for inhibitor synthesis, and pterin derivatives are promising candidates to inhibit it. In this study, we used a combination of the molecular docking approach and fast steered molecular dynamics (SMD) to assess the correlation between nonequilibrium work, ⟨ W⟩, and the IC50 for six RTA inhibitors. The results showed that molecular docking is a powerful tool to predict good bioactive poses of RTA inhibitors, and ⟨ W⟩ presented a strong correlation with IC50 ( R2 = 0.961). Such a profile ranked the RTA inhibitors better than the molecular docking approach. Therefore, the combination of docking and fast SMD simulation was shown to be a promising tool to distinguish RTA-active inhibitors from inactive ones and could be used as postdocking filtering approach.
Collapse
Affiliation(s)
- Elton J F Chaves
- Department of Biotechnology , Federal University of Paraíba , 58051-900 João Pessoa - PB , Brazil
| | - Itácio Q M Padilha
- Department of Biotechnology , Federal University of Paraíba , 58051-900 João Pessoa - PB , Brazil
| | - Demétrius A M Araújo
- Department of Biotechnology , Federal University of Paraíba , 58051-900 João Pessoa - PB , Brazil
| | - Gerd B Rocha
- Department of Chemistry , Federal University of Paraíba , 58051-900 João Pessoa - PB , Brazil
| |
Collapse
|
50
|
|