1
|
Silva-Neto HA, Barbeira PJS, Coltro WKT, Piccin E. 3D printing of electrochemical cell for voltammetric detection and photodegradation monitoring of folic acid in juice samples. Food Chem 2024; 444:138677. [PMID: 38359702 DOI: 10.1016/j.foodchem.2024.138677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
In this study, compact 3D-printed carbon black (CB) electrodes were manufactured for using in folic acid (FA) analysis in fruit samples. Before application in FA analysis, the electrode surfaces were characterized by high-resolution scanning electron microscopy and voltammetry using well-known redox probes. Square wave voltammetric study presented linear responses in the range between 10 and 200 µmol/L (R2 > 0.99), exhibited a suitable detection limit (LOD) of ∼ 5.1 µmol/L and acceptable performance in terms of reproducibility and anti-interference experiments. The analysis of FA in four different food samples using the proposed method agreed statistically with a comparative technique based on spectrophotometric measurements. Moreover, results from photostability experiments indicated that FA can be degraded after 5 and 20 min of UV exposure. These results successfully demonstrated the analytical feasibility of the 3D-printed electrodes as sensing material and for monitoring the photostability of FA in different fruit matrices.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil; Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.
| | - Paulo J S Barbeira
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP 13084-971, Brazil
| | - Evandro Piccin
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil; Departamento do Química, Universidade Federal de São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
2
|
Fallah F, Shishehbore MR, Sheibani A. Fabrication of a novel sensor based on Cu quantum dot and SH-SiO 2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO 2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine. Talanta 2023; 252:123776. [PMID: 35987127 DOI: 10.1016/j.talanta.2022.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
In this research, a novel electrochemical sensor with excellent sensitivity was fabricated based on Cu quantum dot (Cu QD) and SH-SiO2 nanoparticles immobilized on copper-metal-organic frameworks (Cu-MOFs) for determining piroxicam and simultaneous determination of norepinephrine, piroxicam and epinephrine. The nanoparticles were synthesized and characterized using FT-IR, EDX, FESEM, TEM and BET, and were subsequently used to modify carbon paste electrode. Cu QD-SH-SiO2@Cu-MOF for electrode modification possesses a distinctive structure and a high conductivity that raises the electron transfer rate and enhances the performance of electrochemical sensors. Square wave voltammetry was applied to investigate the redox properties of Cu QD-SH-SiO2@Cu-MOF/CPE, voltammograms showed three distinct anodic peaks at 0.41, 0.62 and 1.06 V in the presence of norepinephrine, piroxicam, and epinephrine. Various experimental parameters including the type and pH of electrolyte and scan rate were investigated. The calibration graph was obtained over the range 0.2-34285.0 μM including three linear segments. Also, the limit of detection was calculated as 0.05 μM of piroxicam. The introduced sensor was satisfactorily utilized for electrochemical determination of norepinephrine, piroxicam, and epinephrine in real samples. The obtained results using the introduced sensor were validated by high-performance liquid chromatography and the statistical tests confirmed the good agreement of them.
Collapse
Affiliation(s)
- Fatemeh Fallah
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - M Reza Shishehbore
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Ali Sheibani
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
3
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
4
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022; 61:e202117125. [PMID: 35238468 DOI: 10.1002/anie.202117125] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/31/2022]
Abstract
For the reliable determination of trace chemicals in the brain, we created a SERS platform based on a functionalized AuNPs array formed at a liquid/liquid interface in a uniform fashion over a large substrate area through ternary regulations for real-time quantification of trace norepinephrine (NE). The rigid molecule, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1) was designed and co-assembled at AuNPs with 4-mercaptophenylboronic acid (MPBA) to chemically define NE via dual recognition. Meanwhile, the rigid structure assembly of RP1 and MPBA efficiently fixed the interparticle gap, guaranteeing reproducible SERS analysis. Furthermore, the Raman peak of C≡C group in the silent region was taken as a response element to further improve the accuracy. Combined with microdialysis, this SERS platform was developed for in-the-field testing of NE in rat brain microdialysates following anxiety.
Collapse
Affiliation(s)
- Lu Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
5
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Shi
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Mengmeng Liu
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 shanghai CHINA
| | - Limin Zhang
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Yang Tian
- East China Normal University Dept. of Chemistry Dongchuan Road 500 200062 Shanghai CHINA
| |
Collapse
|
6
|
Siavash Sazideh, Masoud Reza Shishehbore. Electrochemical Determination of Cisplatin at Modified Carbon Paste Electrode with Graphene Nano Sheets/Gold Nano Particles and a Hydroquinone Derivative in Biological Samples. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193521110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
8
|
Iraqui S, Kashyap SS, Rashid MH. NiFe 2O 4 nanoparticles: an efficient and reusable catalyst for the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. NANOSCALE ADVANCES 2020; 2:5790-5802. [PMID: 36133875 PMCID: PMC9417505 DOI: 10.1039/d0na00591f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/09/2020] [Indexed: 05/04/2023]
Abstract
Benzaldehyde is one of the most important and versatile organic chemicals for industrial applications. This study explores a milder approach for the fabrication of NiFe2O4 nanoparticles (NPs) for use as a catalyst in the selective oxidation of benzyl alcohol to benzaldehyde. A co-precipitation method coupled with hydrothermal aging has been adopted to synthesize NiFe2O4 NPs in the absence of any additive. Different techniques such as electron microscopy, diffractometry, and photoelectron spectroscopy have been used to characterize the products. The results showed that the synthesized NiFe2O4 NPs are spherical, pure, and highly crystalline with sizes below 12 nm possessing superparamagnetic behaviour. The catalytic activity of the synthesized NiFe2O4 NPs has been assessed in the selective oxidation of benzyl alcohol under ambient reaction conditions. A conversion of 85% benzyl alcohol with 100% selectivity has been attained with t-butyl hydroperoxide at 60 °C in 3 h. With the optimized reaction conditions, the generality of the newly developed protocol has been expanded to a wide array of substituted benzyl alcohols with good performance. The NiFe2O4 nanocatalysts are magnetically separable and are reusable up to five cycles without loss of catalytic activity.
Collapse
Affiliation(s)
- Saddam Iraqui
- Department of Chemistry, Rajiv Gandhi University Rono Hills Doimukh 791 112 Arunachal Pradesh India
| | | | - Md Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University Rono Hills Doimukh 791 112 Arunachal Pradesh India
| |
Collapse
|
9
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
10
|
Xie H, Niu Y, Deng Y, Cheng H, Ruan C, Li G, Sun W. Electrochemical aptamer sensor for highly sensitive detection of mercury ion with Au/Pt@carbon nanofiber‐modified electrode. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hui Xie
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Yanyan Niu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Ying Deng
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Hui Cheng
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Chengxiang Ruan
- Jiangxi Key Laboratory of Surface Engineering Jiangxi Science and Technology Normal University Nanchang China
| | - Guangjiu Li
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| |
Collapse
|
11
|
Uzunoğlu D, Ergüt M, Kodaman CG, Özer A. Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe3+ Ions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04760-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Mohadeseh Safaei, Beitollahi H, Shishehbore MR. Electrochemical Sensing of Levodopa in Presence of Tryptophan Using Modified Graphite Screen Printed Electrode with Magnetic Core-Shell Fe3O4@SiO2/GR Nanocomposite. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2020. [DOI: 10.3103/s1068375520020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Vafaee‐Shahi S, Shishehbore MR, Sheibani A, Tabatabaee M. Amplified oxadiazole derivative nano MgO–multiwall carbon nanotubes modified carbon paste electrode for the determination of dopamine in presence of morphine. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Ali Sheibani
- Department of Chemistry, Yazd BranchIslamic Azad University Yazd Iran
| | | |
Collapse
|