1
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
2
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|
3
|
Jing C, Lv L, Wang X. Recent advances of ratiometric sensors in food matrices: mycotoxins detection. Crit Rev Food Sci Nutr 2023; 64:10695-10713. [PMID: 37366245 DOI: 10.1080/10408398.2023.2227264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The public health problem caused by mycotoxins contamination has received a great deal of attention worldwide. Mycotoxins produced by filamentous fungi widely distributed in foodstuffs can cause adverse impacts on humans and livestock, posing serious health threats. Particularly worth mentioning is that mycotoxins can accumulate in organisms and be enriched through the food chain. Improving early trace detection and control from the source is a more desirable approach than the contaminated food disposal process to ensure food safety. Conventional sensors are susceptible to interference from various components in intricate food matrices when detecting trace mycotoxins. The application of ratiometric sensors avoids signal fluctuations, and reduce background influences, which casts new light on developing sensors with superior performance. This work is the first to provide an overview of the recent progress of ratiometric sensors in the detection of mycotoxins in intricate food matrices, and highlight the output types of ratiometric signal with respect to accurate quantitative analysis. The prospects of this field are also included in this paper and are intended to have key ramifications on the development of sensing detection conducive to food safety.
Collapse
Affiliation(s)
- Chunyang Jing
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Liangrui Lv
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Liu Y, Guo W, Zhang Y, Lu X, Yang Q, Zhang W. An accurate and ultrasensitive ratiometric electrochemical aptasensor for determination of Ochratoxin A based on catalytic hairpin assembly. Food Chem 2023; 423:136301. [PMID: 37178599 DOI: 10.1016/j.foodchem.2023.136301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Ochratoxin A (OTA) pollution in agricultural products has raised the pressing to develop sensitive, accurate and convenient detection methods. Herein, an accurate and ultrasensitive ratiometric electrochemical aptasensor was proposed based on catalytic hairpin assembly (CHA) for OTA detection. In this strategy, the target recognition and CHA reaction were both accomplished in the same system, which avoided tedious multi-steps operation and extra reagents, providing the advantage of convenience with only a one-step reaction and without enzyme. The labeled Fc and MB were used as the signal-switching molecules, avoiding various interferences and greatly improving the reproducibility (RSD: 3.197%). This aptasensor achieved trace-level detection for OTA with LOD of 81 fg/mL in the linear range of lower concentration (100 fg/mL-50 ng/mL). Moreover, this strategy was successfully applied to OTA detection in cereals with comparable results of HPLC-MS. This aptasensor provided a viable platform for accurate, ultrasensitive, and one-step detection of OTA in food.
Collapse
Affiliation(s)
- Yaxing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wei Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Qian Yang
- School of Public Health, Hebei University, Baoding 071002, China.
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Qu C, Xin L, Yu S, Wei M. A homogeneous electrochemical aptasensor based on
DNA
assembly for zearalenone detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenling Qu
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Lingkun Xin
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Songcheng Yu
- Department of Sanitary Chemistry, College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Min Wei
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
6
|
Wei M, Yue S, Liu Y. An amplified electrochemical aptasensor for ochratoxin A based on DNAzyme-mediated DNA walker. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|