1
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Pu J, Yan X, Zhang H. The potential of circular RNAs as biomarkers and therapeutic targets for gastric cancer: A comprehensive review. J Adv Res 2024:S2090-1232(24)00551-4. [PMID: 39617262 DOI: 10.1016/j.jare.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a global health concern, contributing significantly to cancer-related mortality rates. Early detection is vital for improving patient outcomes. Recently, circular RNAs (circRNAs) have emerged as crucial players in the development and progression of various cancers, including GC. AIM This comprehensive review underscores the promising potential of circRNAs as innovative biomarkers for the early diagnosis of GC, as well as their possible utility as therapeutic targets for this life-threatening disease. Specifically, the review focuses on recent findings, mechanistic insights, and clinical applications of circRNAs in GC. KEY SCIENTIFIC CONCEPTS OF REVIEW Dysregulation of circRNAs has been consistently observed in GC tissues, offering potential diagnostic value due to their stability in bodily fluids such as blood and urine. For instance, circPTPN22 and hsa_circ_000200. Furthermore, the expression levels of circRNAs such as circCUL2, hsa_circ_0000705 and circSHKBP1 have shown strong associations with critical clinical features of GC, including diagnosis, prognosis, tumor size, lymph node metastasis, tumor-node-metastasis (TNM) stage, and treatment response. Additionally, circRNAs such as circBGN, circLMO7, and circMAP7D1 have shown interactions with specific microRNAs (miRNAs), proteins, and other molecules that play key roles in development and progression of GC. This further highlighting their potential as therapeutic targets. Despite their potential, several challenges need to be addressed to effectively apply circRNAs as GC biomarkers. These include standardizing detection methods, establishing cutoff values for diagnostic accuracy, and validating findings in larger patient cohorts. Moreover, the functional mechanisms by which circRNAs contribute to GC pathogenesis and therapeutic resistance warrant further investigation. Advances in circRNAs research could provide valuable insights into the early detection and targeted treatment of GC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junlin Pu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Jiang X, Peng M, Liu Q, Peng Q, Oyang L, Li S, Xu X, Shen M, Wang J, Li H, Wu N, Tan S, Lin J, Xia L, Tang Y, Luo X, Liao Q, Zhou Y. Circular RNA hsa_circ_0000467 promotes colorectal cancer progression by promoting eIF4A3-mediated c-Myc translation. Mol Cancer 2024; 23:151. [PMID: 39085875 PMCID: PMC11290134 DOI: 10.1186/s12943-024-02052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RT‒qPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- University of South China, Hengyang, Hunan, 421001, China
| | - Mengzhou Shen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Haofan Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- University of South China, Hengyang, Hunan, 421001, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China.
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
4
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
5
|
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med 2024; 22:207. [PMID: 38414006 PMCID: PMC10897999 DOI: 10.1186/s12967-024-05001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
6
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol 2023; 12:91. [PMID: 37828589 PMCID: PMC10568798 DOI: 10.1186/s40164-023-00451-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The emergence of circRNA-based protein translation strategy will be a promising direction in the field of biomedicine.
Collapse
Affiliation(s)
- Xin-Yi Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
7
|
Wang C, Jiang H, Peng J, Weng D, Zhang Y, Zhou Y, Zhang Q. Circular RNA circ_SKA3 enhances gastric cancer development by targeting miR-520h. Histol Histopathol 2023; 38:317-328. [PMID: 36134741 DOI: 10.14670/hh-18-521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE To explore the mechanisms of action of circ_SKA3 in gastric cancer (GC), which are still not fully understood. METHODS Subcellular localization assay was used to analyze the localization of circ_SKA3, and Actinomycin D assay was applied to confirm the stability of circ_SKA3. The levels of circ_SKA3, microRNA (miR)-520h, and cell division cycle 42 (CDC42) mRNA were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of CDC42 and proliferating cell nuclear antigen (PCNA) were assessed by western blot. Cell proliferation, colony formation, cell cycle distribution, apoptosis, migration, and invasion were detected by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU) incorporation, colony formation, flow cytometry, and transwell assays, respectively. Directed relationship between miR-520h and circ_SKA3 or CDC42 was verified by a dual-luciferase reporter assay. Mouse xenograft experiments were used to elucidate the impact of circ_SKA3 in vivo. RESULTS Overexpression of circ_SKA3 was validated in GC tissues and cells. The down-regulation of circ_SKA3 suppressed proliferation, cell cycle progression, colony formation, migration, invasion, and promoted cell apoptosis in vitro, as well as weakening tumor growth in vivo. Circ_SKA3 directly bound to miR-520h, and circ_SKA3 regulated CDC42 expression through miR-520h. Circ_SKA3 exerted regulatory effects on GC cell behaviors by inhibiting miR-520h. Furthermore, CDC42 was a functional target of miR-520h in regulating GC cell behaviors. CONCLUSION Our findings established a strong molecular mechanism, the miR-520h/CDC42 axis, at least in part, for the oncogenic role of circ_SKA3 in GC.
Collapse
Affiliation(s)
- Chuntao Wang
- Department of Thyroid Gastroenterology and Thoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Hao Jiang
- Department of Hepatopancreatobiliary Surgery, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Jiaqun Peng
- Department of Thyroid Gastroenterology and Thoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Duanshun Weng
- Department of Thyroid Gastroenterology and Thoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Yu Zhang
- Department of Thyroid Gastroenterology and Thoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Yanxun Zhou
- Department of Gastroenterology, Suizhou Central Hospital, Suizhou, Hubei, China
| | - Qin Zhang
- Department of Thyroid Gastroenterology and Thoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei, China.
| |
Collapse
|
8
|
Tan S, Hu L, Lei R, Wang R, Chen J. Circ_0000467 regulates proliferation, migration, invasion, and apoptosis in gastric cancer by targeting the miR-622/ROCK2 axis. Histol Histopathol 2023; 38:185-197. [PMID: 35929525 DOI: 10.14670/hh-18-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth as a cause of cancer-induced mortality worldwide. Recently, some studies have demonstrated that circular RNAs (circRNAs) play vital roles in human cancers, including GC. METHODS The expression levels of circ_0000467, microRNA-622 (miR-622), and Rho-associated coiled-coil-containing protein kinase2 (ROCK2) were determined by RT-qPCR assay. The protein expression was quantified by western blot assay. The interaction relationship between miR-622 and circ_0000467 or ROCK2 was confirmed by dual-luciferase reporter assay and RIP assay. The biological behaviors of GC cells including proliferation, apoptosis, migration, and invasion were determined by EdU assay, colony-forming assay, flow cytometry, and transwell assay. The effects of circ_0000467 silencing in vivo were assessed by a xenograft experiment in nude mice. RESULTS MiR-622 was downregulated and ROCK2 was upregulated in GC tissues and cells. Loss-of-function experiment revealed that overexpression of miR-622 decreased proliferation, migration, and invasion while it increased apoptosis in GC cells. Furthermore, ROCK2 was a functional target of miR-622, and upregulation of ROCK2 abolished miR-622-induced effects on GC cells. What's more, circ_0000467 was upregulated in GC, and inhibition of miR-622 reversed silencing of circ_0000467-caused effects on GC cells, suggesting that miR-622 was a target of circ_0000467. The suppression of circ_0000467 was able to slow the tumor growth in vivo. CONCLUSION Mechanistically, circ_0000467 functioned as an oncogenic regulator in GC by specifically binding to miR-622 to upregulate ROCK2, which might be novel diagnostic markers for GC.
Collapse
Affiliation(s)
- Shengquan Tan
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Lingbo Hu
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Rui Lei
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Ruo Wang
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Jiaquan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.
| |
Collapse
|
9
|
Liu J, Chen S, Li Z, Teng W, Ye X. Hsa_circ_0040809 and hsa_circ_0000467 promote colorectal cancer cells progression and construction of a circRNA-miRNA-mRNA network. Front Genet 2022; 13:993727. [PMID: 36339002 PMCID: PMC9631208 DOI: 10.3389/fgene.2022.993727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Circular RNAs (circRNAs) have been demonstrated to be closely involved in colorectal cancer (CRC) pathogenesis and metastasis. More potential biomarkers are needed to be searched for colorectal cancer (CRC) diagnosis and treatment. The objective of this study is to seek differentially expressed circRNAs (DEcircRNAs), test their roles in CRC and construct a potential competing endogenous RNA (ceRNA) network. Methods: CircRNA microarrays were obtained from Gene Expression Omnibus, and differential expression was analyzed by R software. The relative expressions of DEcircRNAs were confirmed in CRC tissues and cell lines by qRT-PCR. MTs and Transwell experiments were performed for detecting the roles of circRNAs on CRC cell proliferation and migration, respectively. Targeted miRNAs of circRNAs and targeted mRNAs of miRNAs were predicted and screened by bioinformatics methods. A ceRNA network of DEcircRNAs was constructed by Cytoscape. To further verify the potential ceRNA network, the expressions of miRNAs and mRNAs in knockdown of DEcircRNAs CRC cells were detected by qRT-PCR. Results: Two DEcircRNAs (hsa_circ_0040809 and hsa_circ_0000467) were identified and validated in CRC tissues and cell lines. The results of MTs and Transwell experiments showed that hsa_circ_0040809 and hsa_circ_0000467 promoted CRC proliferation and migration. Bioinformatics analysis screened 3 miRNAs (miR-326, miR-330-5p, and miR-330-3p) and 2 mRNAs (FADS1 and RUNX1), and a ceRNA network was constructed. In knockdown of hsa_circ_0040809 HCT-116 cells, the expression of miR-330-3p was significantly upregulated, while RUNX1 was significantly downregulated. In knockdown of hsa_circ_0000467 HCT-116 cells, the expressions of miR-326 and miR-330-3p were upregulated, while FADS1was downregulated. Conclusion: We found that hsa_circ_0040809 and hsa_circ_0000467 were upregulated in CRC tissues and cell lines, and promoted CRC cell progression. A circRNA-miRNA-mRNA network based on hsa_circ_0040809 and hsa_circ_0000467 was constructed.
Collapse
Affiliation(s)
- Jingfu Liu
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shan Chen
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhen Li
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenhao Teng
- Department of Gastrointestinal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xianren Ye
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, China
- *Correspondence: Xianren Ye,
| |
Collapse
|
10
|
Huang Y, Chen Z, Zhou X, Huang H. Circ_0000467 Exerts an Oncogenic Role in Colorectal Cancer via miR-330-5p-Dependent Regulation of TYRO3. Biochem Genet 2022; 60:1488-1510. [PMID: 35039980 DOI: 10.1007/s10528-021-10171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Colorectal cancer (CRC) remains one of the most frequent neoplasms of digestive tract worldwide. Circular RNAs (circRNAs) have been identified to serve crucial regulatory roles in the pathogenesis of human cancers. However, the role and regulatory mechanism of circ_0000467 in the progression of CRC are still unclear. The expression levels of circ_0000467, microRNA-330-5p (miR-330-5p), and tyrosine receptor kinase 3 (TYRO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-330-5p and circ_0000467 or TYRO3 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor assay and Immunohistochemistry (IHC) assay were implemented to analyze CRC tumor growth in vivo. Circ_0000467 was a stable circRNA and was highly expressed in CRC tumor tissues and cells. Silencing of circ_0000467 could inhibit the proliferation, migration, invasion, and glycolysis and accelerated the apoptosis of CRC cells in vitro and hindered tumor growth in vivo. Mechanistically, circ_0000467 directly interacted with miR-330-5p and circ_0000467 depletion inhibited CRC cell malignant progression by regulating miR-330-5p. Furthermore, TYRO3 was a target of miR-330-5p and circ_0000467 upregulated TYRO3 expression by sponging miR-330-5p. Moreover, TYRO3 overexpression counteracted the inhibitory effect of miR-330-5p overexpression or circ_0000467 knockdown on CRC cell progression. Altogether, circ_0000467 knockdown suppressed CRC cell malignant development through modulating the miR-330-5p/TYRO3 network, providing a novel molecular target of CRC therapy.
Collapse
Affiliation(s)
- Yubao Huang
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China.
| | - Zhiyu Chen
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| | - Xiong Zhou
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| | - Hai Huang
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| |
Collapse
|
11
|
Role of circular RNAs in disease progression and diagnosis of cancers: An overview of recent advanced insights. Int J Biol Macromol 2022; 220:973-984. [PMID: 35977596 DOI: 10.1016/j.ijbiomac.2022.08.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is a crucial regulator of tumor progression and cells in the TME release a number of molecules that are responsible for anaplasticity, invasion, metastasis of tumor, establishing stem cell niches, up-regulation and down-regulation of various pathways in cancer cells, interfering with immune surveillance and immune escape. Moreover, they can serve as diagnostic markers, and determine effective therapies. Among them, CircRNAs have gained special attention due to their involvement in mutated pathways in cancers. By functioning as a molecular sponge for miRNAs, binding with proteins, and directing selective splicing. CircRNAs modify the immunological environment of cancers to promote their growth. Besides of critical role in tumor growth, circRNAs are emerging as potential candidates as biomarkers for diagnosis cancer therapy. Also, circRNAs vaccination even offers a novel approach to tumor immunotherapy. Over the recent years, studies are advocating that circRNAs have tissue specific tumor specific expression patterns, which indicates their potential clinical utility. Especially, circRNAs have emerged as potential predictive and prognostic biomarkers. Although, there has been significant progress in deciphering the role of circRNA in cancers, literature lacks comprehensive overview on this topic. Keeping in view of these significant discoveries, this review systematically discusses circRNA and their role in the tumor in different dimensions.
Collapse
|
12
|
Yan J, Shao Y, Lu H, Ye Q, Ye G, Guo J. Hsa_circ_0001020 Serves as a Potential Biomarker for Gastric Cancer Screening and Prognosis. Dig Dis Sci 2022; 67:3753-3762. [PMID: 34424459 DOI: 10.1007/s10620-021-07211-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are an intriguing class of RNAs with covalently closed-loop structures. With characteristics of high stability and disease-specific expression, circRNAs are emerging as ideal targets for cancer therapy. However, the screening utility and clinical value of circRNAs in gastric cancer (GC) remain largely elusive. We detected levels of hsa_circ_0001020 in cell lines and tissue and plasma samples and investigated its clinicopathological correlations. Kaplan-Meier survival curves and regression analyses were used to analyze its prognostic value. Receiver operating characteristic curves and biomarker combinations were examined to verify its screening value. Bioinformatics analysis was also performed to predict potential biological functions. Our tests found that hsa_circ_0001020 was significantly upregulated in GC cell lines, GC tissue samples, and even in plasma. High hsa_circ_0001020 expression levels in GC tissues were significantly associated with distal metastasis and blood carbohydrate antigen 19-9 (CA19-9). GC patients with high hsa_circ_0001020 had a lower overall survival and disease-free survival time than the low levels. Regression analysis suggested that the level of hsa_circ_0001020 expression was an independent prognostic factor for survival time. As a biomarker for GC, hsa_circ_0001020 showed a superior AUC, sensitivity, and specificity than carcinoembryonic antigen and CA19-9, and was suitable for combination with clinical tumor biomarkers. Bioinformatics analysis provided valuable clues for the possible oncogenic pathways of GC, such as the FoxO and p53 signaling pathways. In conclusion, our study found that hsa_circ_0001020 in GC could be a reliable biomarker to screen for GC and predict prognosis.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China.,Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Yongfu Shao
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Haoxuan Lu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Qihua Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China.,Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
13
|
Chen S, Hong K, Zhou L, Ran R, Huang J, Zheng Y, Xing M, Cai Y. Hsa_circRNA_0017620 regulated cell progression of non-small-cell lung cancer via miR-520a-5p/KRT5 axis. J Clin Lab Anal 2022; 36:e24347. [PMID: 35302673 PMCID: PMC8993624 DOI: 10.1002/jcla.24347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background CircRNA is a very important functional RNA that plays an important role in the development and metabolism of cancer. However, the study of circRNA in NSCLC has not been fully elucidated. Methods The expression of hsa_circ_0017620, SFMBT2, miR‐520a‐5p, and KRT5 was determined using qRT‐PCR. KRT5, Twist1, E‐cadherin, and Ki67 protein expression were measured with western blot. The positive expression rates of Ki67 and Vimentin were determined by immunohistochemistry assay. 5‐Ethynyl‐2’‐deoxyuridine (EdU), colony formation, and MTT assays were used to assess cell proliferation. Transwell migration and invasion assay were applied to determine cell migration and invasion. Dual‐luciferase reporter and RNA immunoprecipitation assays were used to verify the relationship among hsa_circ_0017620, miR‐520a‐5p, and KRT5. The animal experiment was used to ensure the effects of hsa_circ_0017620 on tumor growth in vivo. Results Hsa_circ_0017620 was upregulated in NSCLC cells and tissues. MiR‐520a‐5p had been verified to be a target miRNA of hsa_circ_0017620 and KRT5 had been verified to be a target mRNA of miR‐520a‐5p in NSCLC cells. Knockdown of hsa_circ_0017620 inhibited cell proliferation, migration, and invasion in NSCLC cells, which was reversed by downregulating miR‐520a‐5p or upregulating KRT5 in NSCLC. Overexpression of hsa_circ_0017620 had opposite effects in NSCLC. Moreover, hsa_circ_0017620 silencing inhibited tumor growth in vivo of NSCLC. Conclusion In this study, we found that hsa_circ_0017620 played an important role in NSCLC progression. Hsa_circ_0017620 regulated cell proliferation, invasion, and migration through targeting miR‐520a‐5p/KRT5 axis in NSCLC, providing a potential new target for the treatment and diagnosis of NSCLC.
Collapse
Affiliation(s)
- Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kelin Hong
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Long Zhou
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ruizhi Ran
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jinqi Huang
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yong Zheng
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Maohui Xing
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yanli Cai
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
14
|
circABCB10 Promotes Malignant Progression of Gastric Cancer Cells by Preventing the Degradation of MYC. JOURNAL OF ONCOLOGY 2021; 2021:4625033. [PMID: 34950208 PMCID: PMC8692003 DOI: 10.1155/2021/4625033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of circABCB10 in gastric cancer and the molecular mechanism of promoting malignant progression of gastric cancer cells by preventing the degradation of MYC by hsa-miR-1252-5p. Methods The expression of circABCB10 in gastric cancer tissues and cells was detected by real-time quantitative PCR. MTT, Transwell, clone formation, and TUNEL assay were used to detect the effects of circABCB10 on the proliferation, invasion, and apoptosis of gastric cancer cells. A subcutaneous tumor-bearing model was established to study the inhibitory effect of knockdown circABCB10 on gastric cancer proliferation. The dual luciferase reporter gene assay and RNA pull-down assay were used to verify the regulatory effect of circABCB10 on miR-1252-5p and the regulatory effect of miR-1252-5p on MYC. Results Compared with paracancerous tissues and gastric mucosal epithelial cells, the expression of circABCB10 was significantly increased in human gastric cancer tissues and gastric cancer cells. circABCB10 knockout significantly decreased cell viability and invasion ability and promoted cell apoptosis (P < 0.01). Subcutaneous tumor-bearing experiments in nude mice demonstrated that circABCB10 knockdown inhibited the proliferation of gastric cancer cells. circABCB10 can act as a sponge for miR-1252-5p in gastric cancer cells. Meanwhile, MYC is the target gene of miR-1252-5p. Overexpression of miR-1252-5p and knockdown of MYC reversed the promoting effect of circABCB10 on gastric cancer. Conclusion circABCB10 can promote the proliferation, invasion, and clonal formation of gastric cancer cells by targeting miR-1252-5p and upregulating the expression of MYC. circABCB10/miR-1252-5p/MYC constitutes the regulatory mechanism of ceRNA.
Collapse
|
15
|
Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 2021; 12:911-946. [PMID: 33131025 PMCID: PMC8674396 DOI: 10.1007/s13238-020-00799-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.
Collapse
Affiliation(s)
- Guoxia Wen
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
16
|
Rajgopal S, Fredrick SJ, Parvathi VD. CircRNAs: Insights into Gastric Cancer. Gastrointest Tumors 2021; 8:159-168. [PMID: 34722469 DOI: 10.1159/000517303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Gastric cancer (GC) is recorded as the fifth most common cancer globally. The classic resemblance of early symptoms of chronic gastritis including nausea, dysphagia, and dyspepsia with GC is the current challenge limiting the early diagnosis of GC. The current diagnostic procedures of GC are limited due to their invasive nature. This directs the research question toward alternative approaches, specifically at the molecular level. Recent advances in molecular regulation of cancer suggest the prominence of circular RNAs (circRNAs) in the multistep process of tumourigenesis. Summary CircRNAs are a class of non-coding RNAs, abundant in eukaryotes, with key roles in regulating genes and miRNAs as well as the alteration of processes involved in pathological conditions. Research studies have demonstrated the participation of circRNAs in the initiation and progression of tumours. This review provides a comprehensive insight into the potential of circRNAs as disease biomarkers for the early detection and treatment of GC. Key Messages This study is an amalgamation of the implications and future prospects of circRNAs for the detection and potential treatment of GC.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sherine Joanna Fredrick
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
17
|
Zhang Y, Wang Y, Su X, Wang P, Lin W. The Value of Circulating Circular RNA in Cancer Diagnosis, Monitoring, Prognosis, and Guiding Treatment. Front Oncol 2021; 11:736546. [PMID: 34722285 PMCID: PMC8551378 DOI: 10.3389/fonc.2021.736546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
Liquid biopsy includes non-invasive analysis of circulating tumor-derived substances. It is a novel, innovative cancer screening tool that overcomes the limitations of current invasive tissue examinations in precision oncology. Circular RNA (circRNA) is a recent, novel, and attractive liquid biomarker showing stability, abundance, and high specificity in various diseases, especially in human cancers. This review focused on the emerging potential of human circRNA in body fluids as the liquid biopsy biomarkers for cancers and the methods used to detect the circRNA expression and summarized the construction of circRNA biomarkers in body fluids for treating human cancers and their limitations before they become part of routine clinical medicine. Furthermore, the future opportunities and challenges of translating circRNAs in liquid biopsy into clinical practices were explored.
Collapse
Affiliation(s)
- Yunjing Zhang
- Department of Nephrology, The Fourth Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| | - Ying Wang
- Department of Nephrology, The Fourth Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| | - Xinwan Su
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
18
|
Xu T, Li Y, Zhu N, Su Y, Li J, Ke K. circSKA3 acts as a sponge of miR-6796-5p to be associated with outcomes of ischemic stroke by regulating matrix metalloproteinase 9 expression. Eur J Neurol 2021; 29:486-495. [PMID: 34725884 DOI: 10.1111/ene.15164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to screen the circular RNAs (circRNAs) influencing matrix metalloproteinase 9 (MMP9) through the competing endogenous RNA (ceRNA) network and evaluate the prognostic value of these circRNAs for acute ischemic stroke. METHODS A total of 220 ischemic stroke patients and 62 healthy subjects were included in this study. RNA was isolated from blood collected in PAXgene tubes. Illumina sequencing, quantitative real-time polymerase chain reaction (qRT-PCR) validation, and luciferase reporter assay were explored to construct and verify the existence of a circRNA-microRNA (miRNA)-matrix metalloproteinase-9 (MMP9) network. The 215 ischemic stroke patients were recruited in a prognostic cohort. They were prospectively followed up for 3 months after stroke onset, and a poor functional outcome was defined as a major disability or death. RESULTS After Illumina sequencing, six circRNAs were predicted to bind miRNAs and then regulate MMP9 messenger RNA (mRNA). qRT-PCR showed that only circSKA3 was significantly increased in ischemic stroke patients compared to healthy controls and positively associated with MMP9 mRNA expression. Luciferase reporter assay further verified a direct interaction between circSKA3, MMP9, and hsa-miR-6796-5p. Patients in the top tertile of circSKA3 had a 2.672-fold (p < 0.05) risk of poor functional outcome, compared with those in the bottom tertile (p for trend = 0.016). The outcome was predicted by circSKA3 with area under the receiver operating characteristic curve at 0.614 (p = 0.004). CONCLUSIONS circSKA3 functioned as a ceRNA for hsa-miR-6796-5p to aggravate the progression of ischemic stroke via targeting MMP9. Baseline circSKA3 was positively associated with poor outcomes of ischemic stroke. circSKA3 may be a potential biomarker or therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Tian Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuqing Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ning Zhu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Su
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junrui Li
- First Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Fan HN, Zhao XY, Liang R, Chen XY, Zhang J, Chen NW, Zhu JS. CircPTK2 inhibits the tumorigenesis and metastasis of gastric cancer by sponging miR-134-5p and activating CELF2/PTEN signaling. Pathol Res Pract 2021; 227:153615. [PMID: 34562827 DOI: 10.1016/j.prp.2021.153615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CircRNAs are a new subset of noncoding RNAs formed by covalent closed loops and play crucial roles in the regulation of cancer gene expression. However, the roles and underlying mechanisms of circRNAs in gastric cancer (GC) remain indistinct. This study aimed to explore the role and mechanism of hsa_circ_0006421 (circPTK2) in GC. METHODS The differential expression of circRNAs between GC tissues and adjacent normal tissues were identified by a circRNA expression profiling. Associations of circPTK2 or miR-134-5p expression with clinicopathological characteristics and prognosis of GC patients were analyzed by chi-square of Fisher's exact tests and Kaplan-Meier analysis. CCK8, colony formation, EdU assays and animal models were performed to assess the effects of circPTK2 on proliferation and invasion of GC cells. CircPTK2-specific probes were used to purify the RNA pulled down from the circPTK2, and enrichment of circPTK2 and miR-134-5p was detected by qRT-PCR. The effects of circPTK2 on miR-134-5p expression and CELF2/PTEN signaling were examined by qRT-PCR and Western blotting analysis. RESULTS Low expression of circPTK2 and high expression of miR-134-5p were related to the poor survival, and high expression of miR-134-5p was related to the tumor recurrence in GC patients. Overexpressing circPTK2 suppressed the proliferation, colony formation, DNA synthesis and cell invasion as well as xenograft tumor growth and lung metastasis in vitro and in vivo, whereas silencing circPTK2 had the opposite effects. Moreover, circPTK2 was negatively correlated and co-localized with miR-134-5p in the cytoplasm of GC tissue cells. circPTK2 bound to and sponged miR-134-5p in GC cells, and miR-134-5p facilitated cell growth and invasion but attenuated circPTK2 induced tumor suppressive effects and CELF2/PTEN signaling activation in GC cells. CONCLUSIONS circPTK2 functions as a tumor suppressor in GC by sponging miR-134-5p and activating the CELF2/PTEN axis.
Collapse
Affiliation(s)
- Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Xiang-Yun Zhao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| |
Collapse
|
20
|
Ghafouri-Fard S, Honarmand Tamizkar K, Jamali E, Taheri M, Ayatollahi SA. Contribution of circRNAs in gastric cancer. Pathol Res Pract 2021; 227:153640. [PMID: 34624593 DOI: 10.1016/j.prp.2021.153640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed neoplasms in the world. A number of environmental and lifestyle factors, particularly chronic infection with Helicobacter pylori, have been found to partake in the pathogenesis of GC. The advent of high-throughput genome and transcriptome analysis has enhanced the knowledge about molecular mechanisms of the pathogenesis of GC. However, data regarding the expression of several circRNAs, such as circLMTK2, are not consistent. We explain the role of circRNAs in the development of GC. We searched databases for the newest publications using the terms gastric cancer and circRNA. Each circRNA alteration, downstream targets, its impacts on cancer cells, and the prognostic and diagnostic roles of these circRNAs have been discussed. Taken together, circRNAs can be putative biomarkers in GC and potential targets for the treatment of this cancer. Yet, this field is still in its infancy and needs further experiments for reaching the clinical application. As these transcripts are stable in circulation, they can be used in non-invasive methods of cancer detection and patients' follow-up.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand Tamizkar
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
21
|
Chen H, Wu C, Luo L, Wang Y, Peng F. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p. Open Med (Wars) 2021; 16:1415-1427. [PMID: 34616917 PMCID: PMC8464181 DOI: 10.1515/med-2021-0358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Hui Chen
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Chen Wu
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Liang Luo
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Yuan Wang
- Department of Pediatric Infectious Diseases, Sichuan Mianyang 404 Hospital, 621000, Mianyang, China
| | - Fangxing Peng
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, No. 56, Yuejin Street, Fucheng District, 621000, Mianyang, Sichuan, China
| |
Collapse
|
22
|
Yesharim L, Mojbafan M, Abiri M. Hints From the Cellular Functions to the Practical Outlook of Circular RNAs. Front Genet 2021; 12:679446. [PMID: 34220952 PMCID: PMC8247595 DOI: 10.3389/fgene.2021.679446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Although it has been about 30 years since the discovery of circular RNAs (circRNAs) in mammalian cells, these subtypes of RNAs' capabilities have come into focus in recent years. The unique structure and various functional roles of circRNAs in many cellular processes have aroused researchers' interest and raised many questions about whether circRNAs can facilitate the diagnosis and treatment of diseases. To answer these questions, we will illustrate the main known functions and regulatory roles of circRNAs in the cell after presenting a brief history of the discovery of circRNAs and the main proposed theories of the biogenesis of circRNAs. Afterward, the practical application of circRNAs as biomarkers of different pathophysiological conditions will be discussed, mentioning some examples and challenges in this area. We also consider one of the main questions that human beings have always been faced, "the origin of life," and its possible connection to circRNAs. Finally, focusing on the various capabilities of circRNAs, we discuss their potential therapeutic applications considering the immunity response toward exogenous circRNAs. However, there are still disputes about the exact immune system reaction, which we will discuss in detail.
Collapse
Affiliation(s)
- Liora Yesharim
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mojbafan
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Ali-Asghar Children’s Hospital, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Abstract
Circular RNAs (CircRNAs), belonging to non-coding RNAs, exert a crucial modulatory role in cancer progression. In this study, circRNA microarray analysis was utilized to screen differentially expressed circRNA in colorectal cancer (CRC) and circ_0000467 was identified as one circRNA whose expression was significantly upregulated in CRC. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) indicated that circ_0000467 and engrailed-2 (EN2) expression levels were up-modulated, while the expression level of miR-382-5p was down-modulated in CRC tissues. The depletion of circ_0000467 expression was found to impede the multiplication, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in CRC cells, which were examined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Transwell experiments. Dual-luciferase reporter assay was used to verify the targeting relationship between circ_0000467 and miR-382-5p. It was also revealed that circ_0000467 could up-regulate EN2 expression via repressing miR-382-5p in CRC cells. Furthermore, EN2 overexpression counteracted the suppressing effects of circ_0000467 knockdown on the malignant behaviors of CRC cells. To sum up, circ_0000467 facilitates CRC development by modulating the miR-382-5p/EN2 axis, and circ_0000467 is a promising target for CRC therapy.
Collapse
Affiliation(s)
- Lu Xie
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei Province, China
| | - Zhihong Pan
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei Province, China
| |
Collapse
|
24
|
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 2021; 19:910-928. [PMID: 33598105 PMCID: PMC7851342 DOI: 10.1016/j.csbj.2021.01.018] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.
Collapse
Key Words
- AML, acute myloid leukemia
- BSJ, back-splice junction
- Biomarker
- CLL, chronic lymphocytic leukemia
- CML, chronic myeloid leukemia
- CRC, colorectal cancer
- Cancer
- Circular RNAs
- EIciRNAs, exon–intron RNAs
- EMT, epithelial-mesenchymal transition
- Functions
- GC, gastric cancer
- HCC, hepatocellular carcinoma
- ISH, in situ hybridization
- LUAD, lung adenocarcinoma
- MER, miRNA response elements
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- PCR, polymerase chain reaction
- PDAC, pancreatic ductal adenocarcinoma
- RBP, RNA-binding protein
- RNA, ribonucleic acid
- RNase, ribonuclease
- RT-PCR, reverse transcription-PCR
- TNM, tumor node metastases
- UTR, untranslated regions
- ccRCC, clear cell renal cell carcinoma
- ceRNAs, endogenous RNAs
- ciRNAs, circular intronic RNAs
- ciRS-7, circular RNA sponge for miR-7
- circRNAs, circular RNAs
- ecircRNAs, exonic circular RNAs
- lncRNAs, long ncRNA
- miRNAs, microRNAs
- ncRNAs, noncoding RNAs
- qPCR, quantitative PCR
- rRNA, ribosomal RNA
- siRNAs, small interfering RNAs
- snRNA, small nuclear RNA
- tricRNAs, tRNA intronic circRNAs
Collapse
Affiliation(s)
- Xiaozhu Tang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Ren
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, Liu L, Du M. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer 2021; 20:13. [PMID: 33430880 PMCID: PMC7798340 DOI: 10.1186/s12943-020-01298-z] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, particularly because of its high mortality rate in patients who are diagnosed at late stages. Conventional biomarkers originating from blood are widely used for cancer diagnosis, but their low sensitivity and specificity limit their widespread application in cancer screening among the general population. Currently, emerging studies are exploiting novel, highly-accurate biomarkers in human body fluids that are obtainable through minimally invasive techniques, which is defined as liquid biopsy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs generated mainly by pre-mRNA splicing. Following the rapid development of high-throughput transcriptome analysis techniques, numerous circRNAs have been recognized to exist stably and at high levels in body fluids, including plasma, serum, exosomes, and urine. CircRNA expression patterns exhibit distinctly differences between patients with cancer and healthy controls, suggesting that circRNAs in body fluids potentially represent novel biomarkers for monitoring cancer development and progression. In this study, we summarized the expression of circRNAs in body fluids in a pan-cancer dataset and characterized their clinical applications in liquid biopsy for cancer diagnosis and prognosis. In addition, a user-friendly web interface was developed to visualize each circRNA in fluids (https://mulongdu.shinyapps.io/circrnas_in_fluids/).
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Ke Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shanyue Tan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qianyu Yuan
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Huanhuan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xian Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - David C Christiani
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Mulong Du
- Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Chen H, Liang C, Wang X, Liu Y, Yang Z, Shen M, Han C, Ren C. The prognostic value of circRNAs for gastric cancer: A systematic review and meta-analysis. Cancer Med 2020; 9:9096-9106. [PMID: 33108710 PMCID: PMC7724307 DOI: 10.1002/cam4.3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths worldwide. Novel biomarkers circRNAs can play an important role in the development of gastric cancer as oncogenes or tumor suppressor genes. The purpose of this study was to clarify the relationship between the abnormal expression of multiple circRNAs and their prognostic value in gastric cancer patients through a meta-analysis. We researched articles reporting the relationship between circRNAs and the prognosis of gastric cancer published in PubMed, Cochrane, Embase, Web of Science, Wanfang, CNKI, and VIP databases before 31 December 2019. Thirty-five articles were selected for the meta-analysis, involving 3135 gastric cancer patients. The total HR values (95% CI) of OS and DFS related to highly expressed circRNAs that indicated worse prognosis were 1.83 (1.64-2.03; p < 0.001) and 1.66 (1.33-2.07; p < 0.001), respectively. The total HR (95% CI) of OS and DFS related to highly expressed circRNAs that indicated better prognosis was 0.54 (0.45-0.66; p < 0.001) and 0.58 (0.43-0.78; p < 0.001), respectively. Two panels of five circRNAs predicted a more considerable HR value (circ_0009910, hsa_circ_0000467, hsa_circ_0065149, hsa_circ_0081143, and circDLST; and circSMARCA5, circLMTK2, hsa_circ_0001017, hsa_circ_0061276, and circ-KIAA1244). The results of the meta-analysis were 2.63 (2.08-3.33; p < 0.001) and 0.39 (0.27-0.59; p < 0.001) for OS, respectively. The two panels of dysregulated circRNAs can be considered as more suitable potential prognostic tumor biomarkers in patients with gastric cancer because of their larger HR values.
Collapse
Affiliation(s)
- Hui Chen
- Geriatric MedicineNorthern Jiangsu People’s HospitalYangzhouChina
| | - Chengtong Liang
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| | - Xuechun Wang
- Department of Laboratory MedicineDalian Medical UniversityDalianChina
| | - Yu Liu
- Department of Laboratory MedicineMedical College of Yangzhou UniversityYangzhouChina
| | - Zhanjun Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
| | - Ming Shen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
| | - Chongxu Han
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| | - Chuanli Ren
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| |
Collapse
|
27
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
28
|
Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front Mol Biosci 2020; 7:577938. [PMID: 33195421 PMCID: PMC7655967 DOI: 10.3389/fmolb.2020.577938] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are rapidly coming to the fore as major regulators of gene expression and cellular functions. They elicit their influence via a plethora of diverse molecular mechanisms. It is not surprising that aberrant circRNA expression is common in cancers and they have been implicated in multiple aspects of cancer pathophysiology such as apoptosis, invasion, migration, and proliferation. We summarize the emerging role of circRNAs as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
| | | | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| |
Collapse
|
29
|
Downregulated Expression of linc-ROR in Gastric Cancer and Its Potential Diagnostic and Prognosis Value. DISEASE MARKERS 2020; 2020:7347298. [PMID: 33163123 PMCID: PMC7607276 DOI: 10.1155/2020/7347298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Background Gastric cancer (GC) is one of the global mortality diseases and has a poor prognosis due to the lack of ideal tumor biomarkers. Numerous studies have shown that long noncoding RNAs (lncRNAs) can affect the occurrence and development of cancer through a variety of signaling pathways. The abnormal expression and specificity of lncRNAs in tumors make them potential biomarkers of cancers. Nevertheless, the diagnostic roles of lncRNAs in GC have been poorly understood. So this study focuses on the clinical diagnostic value of lncRNAs in GC. Materials and Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to investigate the expression of the linc-ROR (long intergenic noncoding RNA, regulator of reprogramming) in 105 paired GC tissues and adjacent normal tissues. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were established to assess the diagnostic value of linc-ROR. The relationship between expression of linc-ROR and clinicopathological factors of patients with GC was further explored. Kaplan-Meier analysis was performed to evaluate the prognostic value of linc-ROR expression. Results The linc-ROR expression level was significantly decreased in GC tissues compared with its adjacent nontumor tissues (n = 105, P < 0.001). We also discovered that linc-ROR was evidently downregulated in 68.6% (72/105) of GC tissues. The AUC's value of linc-ROR was up to 0.6495, with sensitivity and specificity of 0.7524 and 0.5143, respectively. Intriguingly, the linc-ROR expression levels were obviously associated with tumor differentiation (P = 0.004). Notably, the overall survival rate of GC patients with high expression of linc-ROR was significantly higher than those with low expression. Conclusion Our data revealed that linc-ROR has clinical potential as a biomarker for the diagnosis of GC and assessment of its prognosis.
Collapse
|
30
|
Wu W, Zhen T, Yu J, Yang Q. Circular RNAs as New Regulators in Gastric Cancer: Diagnosis and Cancer Therapy. Front Oncol 2020; 10:1526. [PMID: 33072546 PMCID: PMC7531269 DOI: 10.3389/fonc.2020.01526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed cancers that causes high mortality in the world. Although the surgery tools and chemotherapies have significantly improved the overall survival of patients with GC, the early diagnosis of GC remains insufficient and many patients diagnosed with advanced stages of GC are not able to benefit from curative therapy. Circular RNAs (circRNAs), novel members of the non-coding cancer genome, are being explored with regards to various cancer types including GC. CircRNAs could work as miRNA sponges to regulate cell proliferation, cell migration, and cell cycle in GC. In addition, it was found that abnormal expression of circRNAs was associated with pathological characteristics in GC tissues, which could help to act as potential markers of early diagnosis or predictors of prognosis. Although various functional circRNAs have been discovered and characterized, the studies of circRNAs in GC are still at early stages compared with other RNAs. In order to provide a whole view to better understand the circRNAs in the occurrence and development of GC, we review the current knowledge on circRNAs in relation to their expression and regulation in GC as well as their potential to be diagnosis markers, and their role in drug resistance will be mentioned. It is helpful to address their possibility from basic research into practical application.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Tianyuan Zhen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Junmin Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
Halajzadeh J, Dana PM, Asemi Z, Mansournia MA, Yousefi B. An insight into the roles of piRNAs and PIWI proteins in the diagnosis and pathogenesis of oral, esophageal, and gastric cancer. Pathol Res Pract 2020; 216:153112. [PMID: 32853949 DOI: 10.1016/j.prp.2020.153112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
P-Element induced wimpy testis (PIWI)-interacting RNA (piRNA) is a member of the non-coding RNAs family. Four PIWI proteins are found to be expressed in humans. The number of studies focusing on the roles of piRNAs and PIWI proteins in the field of cancer is increasing. Oral, esophageal, and gastric cancers are considered as important causes of death. PIWI proteins and piRNAs are suggested to be involved in the pathogenesis of these diseases. Thus, studying these molecules may be beneficial for finding new therapeutics. Since it is shown that currently used biomarkers for these cancers have low sensitivity and specificity, there is a necessity for identifying novel non-invasive biomarkers which are highly sensitive and specific. This paper will provide an insight into current knowledge about the functions of PIWI proteins and piRNAs in the oral, esophageal, and gastric cancer. We discuss how PIWI proteins and piRNAs can be involved in the pathogenesis of these cancers. Moreover, we review the studies concerning with the roles of PIWI proteins and piRNAs as biomarkers which are used for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Jamal Halajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Science, Maragheh, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Guo J, Su Y, Zhang M. Circ_0000140 restrains the proliferation, metastasis and glycolysis metabolism of oral squamous cell carcinoma through upregulating CDC73 via sponging miR-182-5p. Cancer Cell Int 2020; 20:407. [PMID: 32863766 PMCID: PMC7448321 DOI: 10.1186/s12935-020-01501-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a more common cancer in the world. Emerging evidence suggests that circular RNAs (circRNAs) participate in the progression of OSCC. However, the role of circ_0000140 in OSCC is still unknown. Methods The expression of circ_0000140 and microRNA-182-5p (miR-182-5p) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Also, cell proliferation, migration and invasion were measured by colony formation and transwell assays, respectively. Western blot (WB) analysis was used to test the levels of proliferation, metastasis and glycolysis metabolism-related proteins as well as cell division cycle 73 (CDC73) protein. Further, the extracellular acidification rate (ECAR) of cells was detected by the Seahorse XF Extracellular Flux Analyzer. The lactate acid level of cells was tested by Lactate Assay Kit. Moreover, dual-luciferase reporter was used to verify the interaction between miR-182-3p and circ_0000140 or CDC73, and RNA immunoprecipitation (RIP) assay was employed to further confirm the relationship between miR-182-3p and circ_0000140. In addition, mice xenograft models were built to measure the effect of circ_0000140 on OSCC tumor growth in vivo. Results Circ_0000140 was lowly expressed in OSCC, and its overexpression hindered proliferation, migration, invasion and glycolysis metabolism in OSCC cells. MiR-182-5p could be sponged by circ_0000140, and its mimic could invert the suppression of circ_0000140 overexpression on OSCC progression. CDC73 could be targeted by miR-182-3p, and its silencing could reverse the inhibition of miR-182-3p inhibitor on OSCC progression. Further, overexpressed circ_0000140 reduced the OSCC tumor growth in vivo. Conclusions Circ_0000140 might play an anti-cancer role in OSCC, which provided a novel target for clinical therapy of OSCC.
Collapse
Affiliation(s)
- Jia Guo
- Stomatological Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuanyuan Su
- Stomatological Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Meng Zhang
- Stomatological Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
33
|
Abstract
Gastric cancer (GC) is a common malignancy and is the third leading cause of cancer-related death. At present, there is no simple and effective screening method for early-stage GC, and the treatment results and prognosis are poor. With the continuous improvement of molecular biology techniques, research on circular RNA (circRNA) has gradually expanded over time. Much data supports the role of circRNA in tumorigenesis. Moreover, due to its structural specificity and biological stability, circRNA is anticipated to be a potential biomarker for tumor diagnosis. Studies have confirmed that circRNA can participate in the proliferation, invasion, metastasis, and apoptosis of GC. These findings will lead to novel directions for the diagnosis and treatment of GC. This article reviews the structure and function of circRNA, summarizes the current studies on circRNA, and discusses the potential diagnostic value of circRNA in GC.
Collapse
|
34
|
Chen YY, Feng Y, Mao QS, Ma P, Liu JZ, Lu W, Liu YF, Chen X, Hu YL, Xue WJ. Diagnostic and prognostic value of the peripheral natural killer cell levels in gastric cancer. Exp Ther Med 2020; 20:3816-3822. [PMID: 32855731 PMCID: PMC7444348 DOI: 10.3892/etm.2020.9101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral blood lymphocyte subsets have been reported to be useful as prognostic and/or diagnostic markers for patients with cancer. However, the clinical value of peripheral blood lymphocyte subsets in gastric cancer (GC) has remained elusive. In the present study, peripheral CD3+, CD4+ and CD8+ T lymphocytes, B cells (CD19+), regulatory T cells (Tregs; CD4+CD25+CD127-) and natural killer (NK) cells (CD3-CDl6+CD56+) were detected by flow cytometry in 122 patients with GC, 80 healthy donors (HDs) and 80 patients with gastric ulcer (GU). NK cells (CD56+) were detected by immunohistochemical (IHC) analysis in 20 GC and three GU tissue samples. A receiver-operating characteristic (ROC) curve was used to determine the threshold of the peripheral NK cell level and survival analysis was performed to assess its prognostic value in patients with GC. The results indicated that the peripheral NK cell proportion in patients with GC (18.77%) was significantly higher than that in the HD (12.19%) and GU (12.74%) groups. IHC analysis suggested that the NK level in GC tumor samples was correlated with that in paired serum samples. ROC curve analysis indicated that the peripheral NK cell level (15.16%) was able to effectively identify patients with GC, a diagnostic sensitivity of 75.41% and a specificity of 77.45% were determined. Multivariate logistic regression analysis revealed that the peripheral NK cell level was independently associated with the T stage and survival analysis demonstrated that high levels of peripheral NK cells were associated with poor prognosis of patients with GC. In conclusion, the peripheral NK cell level may be a diagnostic and prognostic marker for patients with GC.
Collapse
Affiliation(s)
- Yu-Yan Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jia-Zhou Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Li Y, Ge YZ, Xu L, Jia R. Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci 2020; 254:117176. [DOI: 10.1016/j.lfs.2019.117176] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
|
36
|
Circular RNAs in Gastric Cancer: Potential Biomarkers and Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2790679. [PMID: 32685459 PMCID: PMC7345955 DOI: 10.1155/2020/2790679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs), as a recently established group of endogenous noncoding RNAs, have been involved in the occurrence and development of different malignancies. Gastric cancer (GC) remains a globally significant contributor to death in cancer patients due to insufficient early diagnosis, limited treatment measures, and poor prognosis. An increasing number of studies have found that many circRNAs are dysregulated in GC and are closely associated with its tumorigenesis and metastasis. Thus, circRNAs have the potential to serve as diagnostic and prognostic biomarkers and even therapeutic targets. This review comprehensively summarizes the most recent findings on how circRNAs influence GC progression and their clinical value. In addition, we present several methological deficiencies in the studies and provide some promising ideas for future research.
Collapse
|
37
|
Nie H, Wang Y, Liao Z, Zhou J, Ou C. The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif 2020; 53:e12815. [PMID: 32515024 PMCID: PMC7377939 DOI: 10.1111/cpr.12815] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tumours are tumours that originate in the digestive tract and have extremely high morbidity and mortality. The main categories include: oesophageal, gastric, and colorectal cancers. Circular RNAs are a new class of non‐coding RNAs with a covalent closed‐loop structure without a 5’ cap or a 3’ poly A tail, which can encode a small amount of polypeptide. Recent studies have shown that circRNAs are involved in multiple biological processes during the development of gastrointestinal tumours including proliferation, invasion and metastasis, radio‐ and chemoresistance, and inflammatory responses. Also, the clinical and pathological characteristics of the patient, such as staging and lymph node metastasis, are closely associated with the expression level of circRNAs. Further investigation of the function and the role of circRNAs in the development of gastrointestinal tumours will provide new directions for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, the Fourth Hospital of Changsha, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Yang CM, Qiao GL, Song LN, Bao S, Ma LJ. Circular RNAs in gastric cancer: Biomarkers for early diagnosis. Oncol Lett 2020; 20:465-473. [PMID: 32565971 PMCID: PMC7285985 DOI: 10.3892/ol.2020.11623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are highly conserved and stable closed-loop non-coding RNAs. They are involved in numerous biological functions, including regulating gene transcription or protein translation by interacting with proteins and regulating expression of microRNAs. The aberrant expression of circRNAs has been reported in many cancers, including gastric cancer. By regulating gene expression, circRNAs are able to affect the proliferation, invasion and metastasis of gastric cancer. The current review focused on the characteristics and biological functions of circRNAs, the carcinogenic potential and the possible implications of circRNAs on the diagnosis and treatment of gastric cancer. In conclusion, circRNAs may serve as potential biomarkers for diagnosis, as well as therapeutic targets.
Collapse
Affiliation(s)
- Chun-Mei Yang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China.,Department of Clinical Laboratory Diagnostics, Beihua University, Jilin City, Jilin 132012, P.R. China
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Li-Na Song
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Shisan Bao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China.,Discipline of Pathology, School of Medical Science and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Li-Jun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
39
|
Xu G, Li M, Wu J, Qin C, Tao Y, He H. Circular RNA circNRIP1 Sponges microRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil Through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma. Cancer Manag Res 2020; 12:2789-2802. [PMID: 32425596 PMCID: PMC7186590 DOI: 10.2147/cmar.s246272] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hypoxia-induced chemoresistance is recognized as a major obstacle to the successful treatment of gastric cancer (GC). Circular RNAs (circRNAs) have been proposed to implicate in resistance to chemotherapeutic drugs. However, whether circNRIP1 is involved in the development of hypoxia-induced 5-fluorouracil (5-FU) resistance remains largely unknown. Methods Gene expression was evaluated using quantitative real-time polymerase chain reaction and Western blot. The impact of circNRIP1 on hypoxia-induced resistance to 5-FU was investigated by determining glucose consumption, lactate production and glucose-6-phosphate (G6P) levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide assay was performed to assess cell survival. Results circNRIP1 was upregulated in GC cells. Hypoxia induced the upregulation of circNRIP1 and reduced the sensitivity of GC cells to 5-FU, as evidenced by the increase in multidrug resistance 1 gene, P-glycoprotein, hypoxia-inducible factor-1α (HIF-1α) and G6P levels, glucose consumption, lactate production, as well as cell survival. Silencing of circNRIP1 enhanced the sensitivity of GC cells to 5-FU under a hypoxic condition. microRNA (miR)-138-5p was confirmed as a downstream target gene of circNRIP1, and upregulation of miR-138-5p could reverse the effect of circNRIP1 on hypoxia-induced 5-FU resistance. Additionally, HIF-1α was a target gene of miR-138-5p. More significantly, the effect of circNRIP1 on hypoxia-induced 5-FU resistance was markedly blocked by 2-DG treatment. Conclusion circNRIP1 functioned as a miR-138-5p sponge to enhance hypoxia-induced resistance to 5-FU through modulation of HIF-1α-dependent glycolysis, which provides a novel potential approach to overcome hypoxia-induced 5-FU resistance in GC.
Collapse
Affiliation(s)
- Guangsong Xu
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Mingliang Li
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Jiang Wu
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Chunhong Qin
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Yin Tao
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Hongjie He
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| |
Collapse
|
40
|
Sun H, Wang Q, Yuan G, Quan J, Dong D, Lun Y, Sun B. Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR-20a. J Clin Lab Anal 2020; 34:e23235. [PMID: 32212290 PMCID: PMC7307365 DOI: 10.1002/jcla.23235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gastric carcinoma (GC) is a familiar carcinoma and serious threat to human health. We investigated the efficacy and mechanism of circular RNA hsa_circ_0001649 on the growth, migration, and invasion of GC cells. Methods microRNA (miR)‐20a and hsa_circ_0001649 expression was investigated by RT‐qPCR and was changed by cell transfection. CCK‐8, flow cytometry, and BrdU assays were, respectively, used to investigate the efficacies of hsa_circ_0001649 and miR‐20a on cell viability, apoptosis, and proliferation. Transwell assay was used to investigate the efficacies of hsa_circ_0001649 and miR‐20a on cell migration and invasion. Moreover, the levels of cyclin D1, Bax, cleaved caspase‐3, and signal pathway‐related proteins were investigated by Western blot. Results Hsa_circ_0001649 was downregulated in GC cells and tissues. Upregulation of hsa_circ_0001649 restrained viability, proliferation, migration, and invasion, while promoted apoptosis. Furthermore, miR‐20a was negatively regulated by hsa_circ_0001649 and miR‐20a overexpression reversed the efficacy of hsa_circ_0001649 upregulation. Finally, upregulation of hsa_circ_0001649 restrained ERK and Wnt/β‐catenin pathways while miR‐20a overexpression reversed these progresses. Conclusion Upregulation of hsa_circ_0001649 restrained GC cell growth and metastasis by downregulating miR‐20a and thereby inactivated ERK and Wnt/β‐catenin pathways.
Collapse
Affiliation(s)
- Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Gang Yuan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| |
Collapse
|
41
|
Chen H, Wang K, Pei D, Xu H. Appraising circular RNAs as novel biomarkers for the diagnosis and prognosis of gastric cancer: A pair-wise meta-analysis. J Clin Lab Anal 2020; 34:e23303. [PMID: 32196751 PMCID: PMC7439415 DOI: 10.1002/jcla.23303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs), proven as single‐stranded closed RNA molecules, have been implicated in the onset and development of multiple cancers. This study aimed to summarize existing evidences regarding the clinicopathologic, diagnostic, and prognostic significances of circRNAs in gastric cancer (GC). Methods Eligible studies were identified using online databases. The quality of the included studies was judged, and patients' clinical characteristics, diagnostic data, and overall survival (OS) were extracted from the electronic medical record. Fisher's method was adopted to determine P values for clinicopathologic features. The diagnostic and prognostic data from all included studies were merged. Results Thirty eligible studies were comprised of 2687 GC patients were enrolled in the meta‐analyses. Altered expressions of circRNAs in GC tissues were significantly associated with worse clinicopathologic features. Abnormally expressed circRNAs yielded a pooled sensitivity of 0.76 (95% CI: 0.69‐0.81) and a specificity of 0.77 (95% CI: 0.70‐0.83) in distinguishing GC from noncancerous controls, which corresponded to an area under the curve (AUC) of 0.83. The survival analysis showed that the oncogenic circRNA signature could be an independent risk factor of OS (HR = 2.11, 95% CI: 1.60‐2.78, P = .000). Patients with down‐regulated circRNAs (tumor suppressor genes) presented a significantly shorter OS time than those with high‐level circRNAs (HR = 0.33, 95% CI: 0.27‐0.42, P = .000). Stratified analyses based on sample type, control source, circRNA expression status, and cutoff setting also produced robust results. Conclusions CircRNAs may play an important role as potential diagnostic and prognostic biomarkers of GC.
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Clinical Laboratory, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Kun Wang
- Department of Clinical Laboratory, Huanghe Sanmenxia Hospital, Sanmenxia, China
| | - Dongxu Pei
- Department of Clinical Laboratory, Henan Province Hospital of TCM, Zhengzhou, China
| | - Haisheng Xu
- Department of Clinical Laboratory, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
42
|
Zhao W, Wang S, Qin T, Wang W. Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3. J Cell Biochem 2020; 121:3516-3525. [PMID: 32065448 DOI: 10.1002/jcb.29631] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
It is growingly recognized that messenger RNAs (mRNAs) are important regulators of various cancers. However, there are few reporters about the function of E2F3 in retinoblastoma (RB), which needs more exploration. In addition, the circRNA circ-0075804 was derived from the E2F3 host gene. The purpose of the study is to figure out the role and molecular regulation mechanism of E2F3 and circ-0075804 in RB. The role of E2F3 in RB was determined through E2F3 silencing and loss of expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. The interactions between E2F3 and circ-0075804 were validated through loss and gain function of circ-0075804. Besides, the role of circ-0075804 in RB was determined by several functional assays. And the binding ability between heterogeneous nuclear ribonucleoprotein K and circ-0075804 was verified by RNA pull-down, Western blot, and RT-qPCR assays. The expression of E2F3 was upregulated in RB cell lines. Furthermore, knockdown of E2F3 inhibited cell proliferation and induced cell apoptosis in RB. And circ-0075804 positively regulated the expression of E2F3. Moreover, circ-0075804 facilitated cell proliferation and suppressed cell apoptosis. Besides, HNRNPK could bind with circ-0075804 in RB. Finally, knockdown of E2F3 partly rescued the promoting role of circ-0075804 overexpression in RB. Overall, circ-0075804 promotes the proliferation of RB via combining HNRNPK to improve the stability of E2F3, which brings new light for treating RB.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingyu Qin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzhan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
43
|
Sun B, Sun H, Wang Q, Wang X, Quan J, Dong D, Lun Y. Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down-regulation of miR-145. J Clin Lab Anal 2020; 34:e23215. [PMID: 32020674 PMCID: PMC7307361 DOI: 10.1002/jcla.23215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background CircMAN2B2 is a newly discovered circRNA that has been found to be an oncogene in lung cancer and glioma. The present study was designed to reveal the role of circMAN2B2 in gastric carcinoma (GC). Methods qRT‐PCR method was utilized to examine circMAN2B2 expression in GC tissues and paracancerous tissues. Next, circMAN2B2 expression in SNU‐16 and AGS cells was silenced by transfection. CCK‐8 assay, colony formation assay, flow cytometer, Transwell assay, and Western blot were conducted for testing cell phenotype changes. Further, the downstream genes and signaling were uncovered by qRT‐PCR and Western blot. Results As relative to paracancerous tissues, circMAN2B2 was high‐expressed in GC tissues. Silence of circMAN2B2 clearly declined SNU‐16 and AGS cells viability, survival, migration but enhanced apoptosis. Meanwhile, silence of circMAN2B2 induced the cleavage of caspases (−3 and −9), down‐regulation of MMPs (−2 and −9), and up‐regulation of miR‐145. The impacts of circMAN2B2 silence toward SNU‐16 and AGS cells were attenuated by miR‐145 silence. Moreover, circMAN2B2 silence deactivated PI3K, AKT while activated JNK through regulating miR‐145. Conclusion This work presented the oncogenic function of circMAN2B2 in GC cells growth and migration. CircMAN2B2 exerted its function possibly through regulating miR‐145 as well as PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Xinhong Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| |
Collapse
|
44
|
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145:102854. [PMID: 31877535 PMCID: PMC6982584 DOI: 10.1016/j.critrevonc.2019.102854] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called "back-splicing" from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as "microRNA sponge" and "RNA binding protein sponge" have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran.
| | | | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, TarbiatModares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
45
|
Tang X, Zhu J, Liu Y, Chen C, Liu T, Liu J. Current Understanding of Circular RNAs in Gastric Cancer. Cancer Manag Res 2019; 11:10509-10521. [PMID: 31853202 PMCID: PMC6916696 DOI: 10.2147/cmar.s223204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Advanced diagnosis and high rates of relapse and metastasis are associated with the poor prognosis of this disease. GC has a complex etiopathogenesis of which the underlying mechanisms remain to be explored. Studies on circular RNAs (circRNAs), noncoding RNAs that may be potential targets in GC, have made substantial progress over the past few years. CircRNAs exert important effects on the onset and progression of GC. Hence, this article aims to summarize the findings of recent studies of circRNAs related to GC and to describe the underlying mechanisms and potential applications. The findings indicate that circRNAs participate in GC regulation, proliferation, invasion, and metastasis through regulating microRNAs, proteins, genes, and signaling pathways. In addition, dysregulated circRNAs may be used as novel diagnostic and prognostic biomarkers or therapeutic targets. This review is expected to facilitate a better understanding of GC, and it suggests novel circRNA-based methods to inhibit or prevent GC.
Collapse
Affiliation(s)
- Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
46
|
Zhou X, Liu J, Meng A, Zhang L, Wang M, Fan H, Peng W, Lu J. Gastric juice piR-1245: A promising prognostic biomarker for gastric cancer. J Clin Lab Anal 2019; 34:e23131. [PMID: 31777102 PMCID: PMC7171314 DOI: 10.1002/jcla.23131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Emerging reports demonstrated that PIWI‐interacting RNAs (piRNAs) played an indispensable role in tumorigenesis. However, it still remains elusive whether piR‐1245 in gastric juice specific in stomach could be employed as a biomarker for gastric cancer (GC). The present work is aiming at exploring the possibility of piR‐1245 in gastric juice as a potential marker to judge for diagnosis and prognosis of gastric cancer. Methods Gastric juice was collected from 66 GC patients and 66 healthy individuals. Quantitative real‐time reverse transcriptase polymerase chain reaction (qRT‐PCR) was employed to measure the levels of piR‐1245 expression. Then, the pattern of piR‐1245 expression in gastric juice was determined between GC patients and healthy individuals. A receiver operating characteristic (ROC) curve was constructed for distinguishing GC from healthy individuals. Results Gastric juice piR‐1245 levels in GC were higher than those of controls (P < .0001). The value of area under ROC (AUC) was 0.885 (sensitivity, 90.9%; specificity, 74.2%; 95% confidence interval, 0.8286 to 0.9414). High gastric juice piR‐1245 expression was signally correlated with tumor size (P = .013) and TNM stage (P = .001). GC patients with high piR‐1245 expression in gastric juice exerted a poorer overall survival (OS) (P = .0152) and progression‐free survival (PFS) (P = .013). COX regression analysis verified that gastric juice piR‐1245 expression was an independent prognostic risk variable for OS (P < .05). Conclusions The current study suggested that piR‐1245 in gastric juice had the potential to be a useful biomarker for GC detection and prognosis prediction.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianhong Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Aifeng Meng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lihong Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Min Wang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Hong Fan
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
47
|
Yu X, Ding H, Yang L, Yu Y, Zhou J, Yan Z, Guo J. Reduced expression of circRNA hsa_circ_0067582 in human gastric cancer and its potential diagnostic values. J Clin Lab Anal 2019; 34:e23080. [PMID: 31721300 PMCID: PMC7083425 DOI: 10.1002/jcla.23080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the global mortality diseases and has a poor prognosis due to the lack of ideal tumor biomarkers. Circular RNAs (circRNAs) are an abundant kind of endogenous RNAs that recently are found play a crucial role in the cancer occurrence and development. Nevertheless, little is known with regard to the diagnostic values of these circRNAs for GC. In this article of research, we investigated the role of hsa_circ_0067582 in clinical diagnosis of GC. MATERIALS AND METHODS We used divergent primers, and the expression levels of hsa_circ_0067582 in 93 fresh GC tissues and paired adjacent normal tissues from surgical patients were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Then, a receiver operating characteristic (ROC) curve was established to assess the diagnostic significance of hsa_circ_0067582. The relationship between expression of hsa_circ_0067582 and clinicopathological factors of patients was made further explored. RESULTS Hsa_circ_0067582 levels were significantly decreased in GC tissues contrasted with adjacent normal tissues (n = 93, P < .001). After that, we discovered that it was evidently downregulated in 81.7% (76/93) GC tissues. The area under the ROC curve (AUC) of hsa_circ_0067582 was up to 0.6937, the sensitivity was 66.67%, and the specificity was 61.29%. Moreover, the hsa_circ_0067582 levels were obviously associated with tumor diameter (P = .002) and carbohydrate antigen 19-9 (CA19-9, P = .01). Meanwhile, after operation, low-level group of hsa_circ_0067582 of GC patients was associated with better prognosis. CONCLUSION Our data imply that hsa_circ_000067582 may be a potential biomarker for GC diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Xiuchong Yu
- Department of Gastrointestinal Surgery, Ningbo First Hospital, Ningbo, China
| | - Haixiang Ding
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Liangwei Yang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Yu Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Jiaming Zhou
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Zhilong Yan
- Department of Gastrointestinal Surgery, Ningbo First Hospital, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Fang X, Wen J, Sun M, Yuan Y, Xu Q. CircRNAs and its relationship with gastric cancer. J Cancer 2019; 10:6105-6113. [PMID: 31762820 PMCID: PMC6856571 DOI: 10.7150/jca.32927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/18/2019] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), as a type of tissue specific RNA with more stable structure than linear RNAs, was poorly understood on its correlation with gastric cancer (GC). In this review, we outline the synthesis and characteristics of circRNAs and generalize their categories and functions. Through comprehensive analysis of the reported results, we find that circRNAs not only participate in the regulation of gastric cancer (GC) cell biological behaviors, such as proliferation, invasion, migration and epithelial mesenchymal transition (EMT), but also are related to the clinicopathological features of GC such as tumor differentiation, TNM stage and metastasis, etc. According to the present screening and verification results, circRNAs are suggested to be used as biomarkers for the early diagnosis and prognosis prediction of GC, and those circRNAs involved in the genesis and development of GC have the potential as novel targets for the individualized treatment of GC.
Collapse
Affiliation(s)
- Xinxin Fang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Jing Wen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| |
Collapse
|
49
|
Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer 2019; 18:136. [PMID: 31519189 PMCID: PMC6743094 DOI: 10.1186/s12943-019-1069-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumours in the world and has high morbidity and mortality. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently linked circular structures. In recent years, plentiful circRNAs have been discovered that participate in many biological processes, including the initiation and development of tumours. Increasing evidences suggest important biological functions of circRNAs, implying that circRNAs may serve as vital new biomarkers and targets for disease diagnosis and prognosis. Among these, circRNAs are tend to aberrantly expressed and are regarded as potential biomarkers in the carcinogenesis and progression of GC. This review systematically summarised the biogenesis, biological properties and functions of circRNAs, with a focus on their relationship with GC, as well as their probable clinical implications on GC. As our cognition of the relation between circRNAs and GC deepens, more molecular mechanisms of GC progression will be discovered, and new therapeutic strategies will be used for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Chan Shan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jinning Gao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
50
|
Yin GH, Gao FC, Tian J, Zhang WB. Hsa_circ_101882 promotes migration and invasion of gastric cancer cells by regulating EMT. J Clin Lab Anal 2019; 33:e23002. [PMID: 31420917 PMCID: PMC6868453 DOI: 10.1002/jcla.23002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background At present, gastric cancer (GC) is a serious threat to human life and health. Non‐coding circular RNAs (circRNAs) have been found abnormal expression in multiple tumors. However, circRNAs remain largely unknown in tumor progression. In the present study, we mainly examined the expression, function, and molecular mechanisms of a new circRNAs (hsa_circ_101882) in GC. Materials and methods The expression of hsa_circ_101882 in GC tissue, corresponding adjacent normal tissues, and GC cell lines was examined by RT‐PCR. The function of hsa_circ_101882 in GC was evaluated by MTT assay, cell migration, and invasion assay, colony formation assay, and flow cytometric assay. The effect of hsa_circ_101882 on epithelial‐to‐mesenchymal transition (EMT)‐related gene expression was detected by RT‐PCR and Western blot. Results Hsa_circ_101882 expression levels were significantly increased in GC tissue and GC cell lines. Functionally, low expression of hsa_circ_101882 revealed anti‐tumor effects via inhibiting cell growth, migration, and invasion and promoting cell apoptosis. Mechanically, the dysregulated expression of hsa_circ_101882 affects EMT signaling pathway, which was examined by detecting E‐cadherin, N‐cadherin, vimentin, and Snail expression levels. Conclusions Therefore, our research reveals that hsa_circ_101882 is considered a metastasis promoter by activating EMT and may serve as a critical oncogene and potential new biomarker in GC.
Collapse
Affiliation(s)
- Gui-Hua Yin
- Intensive-care Unit of Linyi Central Hospital, Linyi, China
| | - Fu-Cun Gao
- Galactophore Department of Linyi Central Hospital, Linyi, China
| | - Juan Tian
- Galactophore Department of Linyi Central Hospital, Linyi, China
| | - Wen-Bo Zhang
- Ultrasonic Department of Linyi Central Hospital, Linyi, China
| |
Collapse
|