1
|
Raguraman R, Munshi A, Ramesh R. Interleukin-24: A Multidimensional Therapeutic for Treatment of Human Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70013. [PMID: 40338095 PMCID: PMC12058350 DOI: 10.1002/wnan.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
The field of targeted therapy exploits the selective expression of therapeutic genes or proteins in diseased cells. While this area is gaining attraction in the context of cardiovascular diseases, diabetes, and other major health disorders, it has been most extensively explored in the realm of cancer. Targeted therapy has gained significance in the cancer field for its potential to address the limitations of conventional treatments and enhance patient survival. Interleukin-24 (IL-24), a versatile cytokine, has been evaluated as a cancer therapeutic in various preclinical cancer models and clinical trials, and has yielded promising results. Consequently, multiple studies highlight IL-24 as a viable "anti-cancer" therapeutic, with successful outcomes observed in combination therapies involving small molecule inhibitors, chemotherapeutic drugs, and radiation. Despite the evidence validating the tumor-suppressing properties of IL-24 in cancer models, there is a dearth of information regarding its role in other human diseases. The objective of this review is to offer a synopsis of the potential role of IL-24 in diverse human diseases. Additionally, it provides a comprehensive review of the progress in cancer therapy utilizing IL-24. Finally, from the author's standpoint, the review also addresses some of the limitations that impede the translational potential of IL-24-based therapy in clinical settings. It offers arguments in favor of incorporating IL-24-based targeted therapy as an effective and safer alternative for current treatment modalities, thereby highlighting its potential to revolutionize the field of therapeutics.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Anupama Munshi
- Department of Radiation Oncology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Rajagopal Ramesh
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| |
Collapse
|
2
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Rezaee A, Daglia M, Aschner M, Sanaye PM, Kumar AP, Khan H. Unraveling the role of the IL-20 cytokine family in neurodegenerative diseases: Mechanisms and therapeutic insights. Int Immunopharmacol 2025; 152:114399. [PMID: 40068518 DOI: 10.1016/j.intimp.2025.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
The IL-20 cytokine family, comprising IL-19, IL-20, IL-22, IL-24, and IL-26, has emerged as a critical player in the pathogenesis of neurodegenerative diseases due to its multiple roles in inflammation, tissue repair, and immune modulation. These cytokines signal through IL-20 receptor complexes (IL-20RA/IL-20RB and IL-22RA1/IL-20RB), triggering diverse immune processes. Recent evidence highlights their significant contributions to neuroinflammation and neurodegeneration in central nervous system disorders. IL-20 family cytokines impact microglial activation, which, when dysregulated, exacerbates neuronal damage. Specifically, IL-20 and IL-24 are linked to elevated pro-inflammatory markers in glial cells, promoting neurodegeneration. In contrast, IL-22 exhibits dual functionality, exerting protective and pathological roles depending on the inflammatory milieu. Key mechanisms involve the regulation of blood-brain barrier integrity, oxidative stress, and autophagy. IL-22 and IL-24 also protect neurons by enhancing antioxidant defenses and maintaining epithelial barrier function, while their dysregulation contributes to blood-brain barrier disruption and protein aggregate accumulation, hallmark features of Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Elevated IL-22 levels in Alzheimer's disease and IL-19's regulatory role in multiple sclerosis suggest they may serve as potential biomarkers and therapeutic targets. IL-26's role in amplifying inflammatory cascades further underscores the complexity of this cytokine family in neurodegenerative pathology. Therapeutically, strategies targeting IL-20 cytokines include monoclonal antibodies, receptor modulation, and recombinant cytokine administration. These approaches aim to mitigate neuroinflammation, restore immune balance, and protect neuronal integrity. This review underscores the IL-20 family's emerging relevance in neurodegenerative diseases, highlighting its potential for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
4
|
Jin H, Zhao YR, Huang F, Hong Z, Jia XY, Wang H, Wang YG. Vaccinia virus-mediated oncolytic immunotherapy: Emerging strategies for gastrointestinal cancer treatment at dawn. Virology 2025; 602:110303. [PMID: 39577274 DOI: 10.1016/j.virol.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Oncolytic vaccinia virus (VVs) based immunotherapy is a rapidly developing treatment for gastrointestinal (GI) cancers. Conventional treatments, such as chemotherapy, radiotherapy and surgery achieve good effects in early-stage GI cancers, but effects are limited in advanced disease. Immunotherapy has limited efficacy in GI cancers due to tumor heterogeneity and complex immunosuppressive mechanisms. Oncolytic VV immunotherapy is a novel treatment approach showing promising results in preclinical and clinical trials. Oncolytic VV's intracytoplasmic replication and assembly mechanism, diverse mature forms, and use methods make it extremely safe and versatile for drug delivery. Combining oncolytic VV with conventional therapies and immunotherapy (e.g., ICIs, CAR-T) enhances tumor regression and survival compared to monotherapies. Researchers are establishing response protocols and improvement strategies, rapidly developing VV tumor oncolytic immunotherapy. This article focuses on oncolytic vaccinia development and outlook in gastrointestinal cancer therapy, advantages when combined with other drugs to improve clinical survival, safety, and risk reduction for patients.
Collapse
Affiliation(s)
- Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Ya-Ru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Zhang Hong
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiao-Yuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan Hospital, 311201, Hangzhou, China.
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China.
| |
Collapse
|
5
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
6
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
7
|
Wang J, Zeng X, Gou J, Zhu X, Yin D, Yin L, Shen X, Dai Y, Pan X. Antiviral activity of luteolin against porcine epidemic diarrhea virus in silico and in vitro. BMC Vet Res 2024; 20:288. [PMID: 38961481 PMCID: PMC11221151 DOI: 10.1186/s12917-024-04053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87 µM and 68.5 µM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6 µM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Jiaojiao Gou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaojie Zhu
- China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
8
|
Rath P, Chauhan A, Ranjan A, Aggarwal D, Rani I, Choudhary R, Shahwan M, Ramniwas S, Joshi H, Haque S, Mathkor DM, Tuli HS. Luteolin: A promising modulator of apoptosis and survival signaling in liver cancer. Pathol Res Pract 2024; 260:155430. [PMID: 39038389 DOI: 10.1016/j.prp.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India.
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India.
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India.
| | - Renuka Choudhary
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shafiul Haque
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| |
Collapse
|
9
|
Zhang J, Xiao Y, Zhang J, Yang Y, Zhang L, Liang F. Recent advances of engineered oncolytic viruses-based combination therapy for liver cancer. J Transl Med 2024; 22:3. [PMID: 38167076 PMCID: PMC10763442 DOI: 10.1186/s12967-023-04817-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is a major malignant tumor, which seriously threatens human health and increases the economic burden on patients. At present, gene therapy has been comprehensively studied as an excellent therapeutic measure in liver cancer treatment. Oncolytic virus (OV) is a kind of virus that can specifically infect and kill tumor cells. After being modified by genetic engineering, the specificity of OV infection to tumor cells is increased, and its influence on normal cells is reduced. To date, OV has shown its effectiveness and safety in experimental and clinical studies on a variety of tumors. Thus, this review primarily introduces the current status of different genetically engineered OVs used in gene therapy for liver cancer, focuses on the application of OVs and different target genes for current liver cancer therapy, and identifies the problems encountered in OVs-based combination therapy and the corresponding solutions, which will provide new insights into the treatment of liver cancer.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Jie Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| |
Collapse
|
10
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Singh Tuli H, Rath P, Chauhan A, Sak K, Aggarwal D, Choudhary R, Sharma U, Vashishth K, Sharma S, Kumar M, Yadav V, Singh T, Yerer MB, Haque S. Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives. Cancers (Basel) 2022; 14:5373. [PMID: 36358791 PMCID: PMC9658186 DOI: 10.3390/cancers14215373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Kanupriya Vashishth
- Department of Cardiology, Advance Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura 140401, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 133001, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, Delhi 110007, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Ailia MJ, Yoo SY. In Vivo Oncolytic Virotherapy in Murine Models of Hepatocellular Carcinoma: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10091541. [PMID: 36146619 PMCID: PMC9505175 DOI: 10.3390/vaccines10091541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to cause direct tumor cell lysis while sparing normal tissue and their capacity to stimulate potent immune responses directed against uninfected tumor cells and distant metastases. Oncolytic virotherapy (OVT) is a promising cancer treatment, but before it can become a standard option in practice, several challenges-systemic viral delivery optimization/enhancement, inter-tumoral virus dispersion, anti-cancer immunity cross-priming, and lack of artificial model systems-need to be addressed. Addressing these will require an in vivo model that accurately mimics the tumor microenvironment and allows the scientific community to design a more precise and accurate OVT. Due to their close physiologic resemblance to humans, murine cancer models are the likely preferred candidates. To provide an accurate assessment of the current state of in vivo OVT in HCC, we have reviewed a comprehensively searched body of work using murine in vivo HCC models for OVT.
Collapse
|
14
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
15
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
16
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
17
|
Wang C, Li Q, Xiao B, Fang H, Huang B, Huang F, Wang Y. Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal 2021; 35:e23677. [PMID: 33274495 PMCID: PMC7957971 DOI: 10.1002/jcla.23677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) is an IL-10 family member and a secreted cytokine characterized by cancer-targeted toxicity and can activate apoptosis by sensitizing cancer cells to chemotherapy. Cytotoxic effects of luteolin on different types of cancer cells suppress their growth by acting on the components of the apoptosis signaling cascade. Therefore, our study aimed to prove whether oncolytic vaccinia virus (VV) that harbors IL-24 (VV-IL-24) combine with luteolin exerts a synergistic inhibitory effect in liver cancer cells. METHODS Impacts on cell viability of VV-IL-24 and luteolin were assessed by MTT in various liver cancer cell lines. Then, liver cancer cell apoptosis was analyzed via flow cytometry and Western blotting. Besides, the MHCC97-H xenograft mouse model was employed as a means of assessing in vivo antitumor efficacy. RESULTS MTT assay confirmed that the combination treatment decreased liver cancer cells viability to a greater degree than treatment with VV-IL-24 or luteolin alone. Flow cytometry and Western blot assay proved that VV-IL-24 plus luteolin induced more liver cancer cells apoptosis than single treatment. Furthermore, in the MHCC97-H xenograft model, 15 days of treatment with VV-IL-24 plus luteolin inhibited tumor growth significantly more than single treatment. CONCLUSION These data confirm that the synergistic mechanism of VV-IL-24 and luteolin elicits a stronger tumor growth inhibition than any single therapy. Thus, the combination of VV-IL-24 and luteolin could provide the basis for preclinical research in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunming Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Qiang Li
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boduan Xiao
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Yigang Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|