1
|
Szurman-Zubrzycka M, Kocjan A, Spałek E, Gajecka M, Jędrzejek P, Nawrot M, Szarejko I, Kwasniewska J. To divide or not to divide? NAC8 (SOG1) as a key regulator of DNA damage response in barley (Hordeum vulgare L.). DNA Repair (Amst) 2025; 146:103810. [PMID: 39951954 DOI: 10.1016/j.dnarep.2025.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
We identified several new TILLING mutants of barley (Hordeum vulgare L.) with missense mutations in the HvNAC8 gene, a homolog of the SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) gene in Arabidopsis thaliana. In Arabidopsis, SOG1 is the primary regulator of the DNA Damage Response (DDR) pathway. We aimed to transfer this knowledge to barley, an agriculturally important crop. Our detailed analysis of the hvnac8.k mutant revealed an impaired DDR pathway. The hvnac8.k mutant accumulates DNA damage under genotoxic stress induced by zeocin, but it also shows increased DNA damage under normal growth conditions. Despite this, the frequency of dividing cells in the root meristem of the mutant treated with zeocin is much less affected than in the wild type. This suggests that the mutant bypasses the typical DDR regulation, where cell division is halted to allow DNA repair following damage. We also analyzed our mutant under aluminum (Al³⁺) stress. Aluminum ions, present in acidic soils that constitute approximately 50 % of arable land, are a common stressor that significantly reduce barley yield. Al³ ⁺ is known to cause DNA damage and activate DDR. Consequently, we aimed to assess whether the hvnac8.k phenotype could confer a beneficial effect under aluminum stress, a widespread agronomic challenge. Our findings suggest that modulation of the DDR pathway has the potential to improve aluminum tolerance in barley.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Anna Kocjan
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Emilia Spałek
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Monika Gajecka
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Paulina Jędrzejek
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Małgorzata Nawrot
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Iwona Szarejko
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| |
Collapse
|
2
|
Evaristo G, Harmath C, Segal JP, Shergill A, Setia N. Diagnostic Challenges due to a Germline Missense MSH2 Variant in a Patient With Immunotherapy-Responsive Locally Advanced Rectal Adenocarcinoma. Cancer Rep (Hoboken) 2024; 7:e70037. [PMID: 39696980 DOI: 10.1002/cnr2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rapid and accurate identification of mismatch repair (MMR) deficiency and Lynch syndrome is critical in the prognostication and clinical management of patients with colorectal carcinoma. CASE DESCRIPTION We describe here a young woman who developed a locally aggressive rectal adenocarcinoma with intact MMR protein expression by immunohistochemistry and absence of histologic evidence of MMR deficiency-associated increased tumoral immune response. Germline DNA-targeted sequencing identified MSH2 variant p.R711P, initially classified as a variant of undetermined significance. Somatic tumoral DNA analysis revealed the identical MSH2 variant, high tumor mutational burden, and microsatellite instability, in addition to superimposed alterations in β2-microglobulin gene, possibly explaining the altered intratumoral immunity. Consequently, the patient was started on immunotherapy, leading to successful disease control (33 month follow-up). CONCLUSION The findings emphasize the utility of an integrative approach in the assessment of MMR status for determining candidacy for immunotherapy, especially in the setting of missense variants in MMR genes.
Collapse
Affiliation(s)
- Gertruda Evaristo
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Carla Harmath
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Jeremy P Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Ardaman Shergill
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Namrata Setia
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Incorvaia L, Bazan Russo TD, Gristina V, Perez A, Brando C, Mujacic C, Di Giovanni E, Bono M, Contino S, Ferrante Bannera C, Vitale MC, Gottardo A, Peri M, Galvano A, Fanale D, Badalamenti G, Russo A, Bazan V. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ Precis Oncol 2024; 8:190. [PMID: 39237751 PMCID: PMC11377838 DOI: 10.1038/s41698-024-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Homologous recombination (HR) and mismatch repair (MMR) defects are driver mutational imprints and actionable biomarkers in DNA repair-defective tumors. Although usually thought as mutually exclusive pathways, recent preclinical and clinical research provide preliminary evidence of a functional crosslink and crosstalk between HRR and MMR. Shared core proteins are identified as key players in both pathways, broadening the concept of DNA repair mechanism exclusivity in specific tumor types. These observations may result in unexplored forms of synthetic lethality or hypermutable tumor phenotypes, potentially impacting the cancer risk management, and considerably expanding in the future the therapeutic window for DNA repair-defective tumors.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Peri
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
5
|
Briaud P, Gautier T, Rong V, Mereghetti L, Lanotte P, Hiron A. The Streptococcus agalactiae Exonuclease ExoVII Is Required for Resistance to Exogenous DNA-Damaging Agents. J Bacteriol 2023; 205:e0002423. [PMID: 37162366 PMCID: PMC10294681 DOI: 10.1128/jb.00024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Streptococcus agalactiae is a human pathogen responsible for severe invasive infections in newborns. In this bacterium, XseB, a part of the ExoVII exonuclease, was shown to be specifically more abundant in the hypervirulent ST-17 strains. In Escherichia coli, ExoVII is associated either with mismatch repair or with recombinational DNA repair and is redundant with other exonucleases. In this study, the biological role of S. agalactiae ExoVII was examined. The ΔexoVII mutant strain was subjected to different DNA-damaging agents, as well as a large set of mutants impaired either in the mismatch repair pathway or in processes of recombinational DNA repair. Our results clarified the role of this protein in Gram-positive bacteria as we showed that ExoVII is not significantly involved in mismatch repair but is involved in bacterial recovery after exposure to exogenous DNA-damaging agents such as ciprofloxacin, UV irradiation, or hydrogen peroxide. We found that ExoVII is more particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway. Depending on the tested agent, ExoVII appeared to be fully redundant or nonredundant with another exonuclease, RecJ. The importance of each exonuclease, ExoVII or RecJ, in the process of DNA repair is thus dependent on the considered DNA lesion. IMPORTANCE This study examined the role of the ExoVII exonuclease of Streptococcus agalactiae within the different DNA repair processes. Our results concluded that ExoVII is involved in bacterial recovery after exposure to different exogenous DNA-damaging agents but not in the mismatch repair pathway. We found that ExoVII is particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway.
Collapse
Affiliation(s)
- P. Briaud
- Université de Tours, INRAE, ISP, Tours, France
| | - T. Gautier
- Université de Tours, INRAE, ISP, Tours, France
| | - V. Rong
- Université de Tours, INRAE, ISP, Tours, France
| | - L. Mereghetti
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - P. Lanotte
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - A. Hiron
- Université de Tours, INRAE, ISP, Tours, France
| |
Collapse
|
6
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
7
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
8
|
Wang F, Xia Z, Zou M, Zhao L, Jiang S, Zhou Y, Zhang C, Ma Y, Bao Y, Sun H, Wang W, Wang J. The autotetraploid potato genome provides insights into highly heterozygous species. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1996-2005. [PMID: 35767385 PMCID: PMC9491450 DOI: 10.1111/pbi.13883] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Potato (Solanum tuberosum L.) originated in the Andes and evolved its vegetative propagation strategy through short day-dependent tuber development. Herein, we present a high-quality, chromosome-scale reference genome sequence of a tetraploid potato cultivar. The total length of this genome assembly was 2.67 Gb, with scaffold N50 and contig N50 sizes of 46.24 and 2.19 Mb, respectively. In total, 1.69 Gb repetitive sequences were obtained through de novo annotation, and long terminal repeats were the main transposable elements. A total of 126 070 protein-coding genes were annotated, of which 125 077 (99.21%) were located on chromosomes. The 48 chromosomes were classified into four haplotypes. We annotated 31 506 homologous genes, including 5913 (18.77%) genes with four homologues, 11 103 (35.24%) with three homologues, 12 177 (38.65%) with two homologues and 2313 (7.34%) with one homologue. MLH3, MSH6/7 and RFC3, which are the genes involved in the mismatch repair pathway, were found to be significantly expanded in the tetraploid potato genome relative to the diploid potato genome. Genome-wide association analysis revealed that cytochrome P450, flavonoid synthesis, chalcone enzyme, glycosyl hydrolase and glycosyl transferase genes were significantly correlated with the flesh colours of potato tuber in 150 tetraploid potatoes. This study provides valuable insights into the highly heterozygous autotetraploid potato genome and may facilitate the development of tools for potato cultivar breeding and further studies on autotetraploid crops.
Collapse
Affiliation(s)
- Fang Wang
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Long Zhao
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
| | - Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Yun Zhou
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Chenji Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Yongzhen Ma
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
| | - Yuting Bao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Haihong Sun
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Wenquan Wang
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Jian Wang
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| |
Collapse
|
9
|
Li B, He Y, Li P, Chen X. Leptin Receptor Overlapping Transcript (LEPROT) Is Associated with the Tumor Microenvironment and a Prognostic Predictor in Pan-Cancer. Front Genet 2021; 12:749435. [PMID: 34804118 PMCID: PMC8596502 DOI: 10.3389/fgene.2021.749435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Leptin receptor overlapping transcript (LEPROT) is reported to be involved in metabolism regulation and energy balance as well as molecular signaling of breast cancer and osteosarcoma. LEPROT is expressed in various tissue and is suggested to be involved in cancer developments but with contradictory roles. The comprehensive knowledge of the effects of LEPROT on cancer development and progression across pan-cancer is still missing. Methods The expressions of LEPROT in cancers were compared with corresponding normal tissues across pan-cancer types. The relationships between expression and methylation of LEPROT were then demonstrated. The correlations of LEPROT with the tumor microenvironment (TME), including immune checkpoints, tumor immune cells infiltration (TII), and cancer-associated fibroblasts (CAFs), were also investigated. Co-expression analyses and functional enrichments were conducted to suggest the most relevant genes and the mechanisms of the effects in cancers for LEPROT. Finally, the correlations of LEPROT with patient survival and immunotherapy response were explored. Results LEPROT expression was found to be significantly aberrant in 15/19 (78.9%) cancers compared with corresponding normal tissues; LEPROT was downregulated in 12 cancers and upregulated in three cancers. LEPROT expressions were overall negatively correlated with its methylation alterations. Moreover, LEPROT was profoundly correlated with the TME, including immune checkpoints, TIIs, and CAFs. According to co-expression analyses and functional enrichments, the interactions of LEPROT with the TME may be mediated by the interleukin six signal transducer/the Janus kinase/signal transducers and activators of the transcription signaling pathway. Prognostic values may exist for LEPROT to predict patient survival and immunotherapy response in a context-dependent way. Conclusions LEPROT affects cancer development by interfering with the TME and regulating inflammatory or immune signals. LEPROT may also serve as a potential prognostic marker or a target in cancer therapy. This is the first study to investigate the roles of LEPROT across pan-cancer.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Li
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Multiomics analysis of tumor mutational burden across cancer types. Comput Struct Biotechnol J 2021; 19:5637-5646. [PMID: 34745455 PMCID: PMC8531462 DOI: 10.1016/j.csbj.2021.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Whether tumor mutational burden (TMB) is related to improved survival outcomes or the promotion of immunotherapy in various malignant tumors remains controversial, and we lack a comprehensive understanding of TMB across cancers. Based on the data obtained from The Cancer Genome Atlas (TCGA), we conducted a multiomics analysis of TMB across 21 cancer types to identify characteristics related to TMB and determine the mechanism as it relates to prognosis, gene expression, gene mutation and signaling pathways. In our study, TMB was found to have a significant relationship with prognosis for 21 tumors, and the relationship was different in different tumors. TMB may also be related to different outcomes for patients with different tumor subtypes. TMB was confirmed to be correlated with clinical information, such as age and sex. Mutations in GATA3 and MAP3K1 in beast invasive carcinoma (BRCA), TCF7L2 in colon adenocarcinoma (COAD), NFE2L2 in esophageal carcinoma (ESCA), CIC and IDH1 in brain lower grade glioma (LGG), CDH1 in stomach adenocarcinoma (STAD), and TP53 in uterine corpus endometrial carcinoma (UCEC) were demonstrated to be correlated with lower TMB. Moreover, we identified differentially expressed genes (DEGs) and differentially methylated regions (DMRs) according to different TMB levels in 21 cancers. We also investigated the correlation between enrichment of signaling pathways, immune cell infiltration and TMB. In conclusion, we identified multiomic characteristics related to the TMB in 21 tumors, providing support for a comprehensive understanding of the role of TMB in different tumors.
Collapse
|
11
|
Phillips MA, Steenwyk JL, Shen XX, Rokas A. Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational Consequences in a Fungal Phylum. Genome Biol Evol 2021; 13:evab219. [PMID: 34554246 PMCID: PMC8597960 DOI: 10.1093/gbe/evab219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Although loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between five and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.
Collapse
Affiliation(s)
| | | | - Xing-Xing Shen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, USA
| |
Collapse
|
12
|
Muthye V, Lavrov DV. Multiple Losses of MSH1, Gain of mtMutS, and Other Changes in the MutS Family of DNA Repair Proteins in Animals. Genome Biol Evol 2021; 13:evab191. [PMID: 34402879 PMCID: PMC8438181 DOI: 10.1093/gbe/evab191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.
Collapse
Affiliation(s)
- Viraj Muthye
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
13
|
Strelnikova SR, Krinitsina AA, Komakhin RA. Effective RNAi-Mediated Silencing of the Mismatch Repair MSH2 Gene Induces Sterility of Tomato Plants but Not an Increase in Meiotic Recombination. Genes (Basel) 2021; 12:1167. [PMID: 34440341 PMCID: PMC8394773 DOI: 10.3390/genes12081167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.
Collapse
Affiliation(s)
- Svetlana R. Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| | - Anastasiya A. Krinitsina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| |
Collapse
|
14
|
Dhakras P, Uboha N, Horner V, Reinig E, Matkowskyj KA. Gastrointestinal cancers: current biomarkers in esophageal and gastric adenocarcinoma. Transl Gastroenterol Hepatol 2020; 5:55. [PMID: 33073050 DOI: 10.21037/tgh.2020.01.08] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Esophageal and gastric adenocarcinomas are frequently diagnosed at an advanced stage and have a dismal prognosis. Even in patients with potentially curative cancer, nearly 50% will develop recurrent disease despite aggressive treatments. A number of biomarkers currently guide treatment decisions for patients with esophageal and gastric adenocarcinoma and include human epidermal growth factor receptor 2 (HER2) amplification, mismatch repair deficiency/microsatellite instability (dMMR/MSI-H) and program death-ligand 1 (PD-L1) expression. This review will focus on the function, testing and FDA-approved targeted therapies for HER2, dMMR/MSI-H and PD-L1. In addition, a number of novel targets in esophageal and gastric cancer are being studied in clinical trials. Neurotrophic-tropomyosin receptor kinase (NTRK), claudin-18 (CLDN18)/Rho GTPase activating protein 26 (ARHGAP26) gene fusion, fibroblast growth factor receptor (FGFR), lymphocyte-activation gene 3 (LAG3) and T cell immunoglobulin and mucin-domain containing-3 (TIM3) will be briefly reviewed. Despite several biomarkers used in the selection of treatment therapies, treatment outcomes remain poor. Future research efforts will focus on the identification of new biomarkers, moving existing biomarkers into earlier lines of therapy, and evaluating new combinations of existing biomarkers and therapies.
Collapse
Affiliation(s)
- Purabi Dhakras
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Nataliya Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI, USA.,UW Carbone Cancer Center, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Vanessa Horner
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA.,Wisconsin State Lab of Hygiene, Madison, WI, USA
| | - Erica Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA.,UW Carbone Cancer Center, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
15
|
Wang H, Cao Q, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. CHEMOSPHERE 2020; 246:125614. [PMID: 31883478 DOI: 10.1016/j.chemosphere.2019.125614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), and MutSγ (MSH2/MSH7). MutLα (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase δ and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress.
Collapse
Affiliation(s)
- Hetong Wang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qijiang Cao
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Muhammad Arfan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
16
|
Negishi T, Yamada K, Miyamoto K, Mori E, Taira K, Fujii A, Goto Y, Arimoto-Kobayashi S, Okamoto K. Mismatch repair systems might facilitate the chromosomal recombination induced by N-nitrosodimethylamine, but not by N-nitrosodiethylamine, in Drosophila. Mutagenesis 2020; 35:197-206. [PMID: 32109288 DOI: 10.1093/mutage/geaa008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/03/2020] [Indexed: 11/14/2022] Open
Abstract
Mismatch repair (MMR) systems play important roles in maintaining the high fidelity of genomic DNA. It is well documented that a lack of MMR increases the mutation rate, including base exchanges and small insertion/deletion loops; however, it is unknown whether MMR deficiency affects the frequency of chromosomal recombination in somatic cells. To investigate the effects of MMR on chromosomal recombination, we used the Drosophila wing-spot test, which efficiently detects chromosomal recombination. We prepared MMR (MutS)-deficient flies (spel1(-/-)) using a fly line generated in this study. The spontaneous mutation rate as measured by the wing-spot test was slightly higher in MutS-deficient flies than in wild-type (spel1(+/-)) flies. Previously, we showed that N-nitrosodimethylamine (NDMA)-induced chromosomal recombination more frequently than N-nitrosodiethylamine (NDEA) in Drosophila. When the wing-spot test was performed using MMR-deficient flies, unexpectedly, the rate of NDMA-induced mutation was significantly lower in spel1(-/-) flies than in spel1(+/-) flies. In contrast, the rate of mutation induced by NDEA was higher in spel1(-/-) flies than in spel1(+/-) flies. These results suggest that in Drosophila, the MutS homologue protein recognises methylated DNA lesions more efficiently than ethylated ones, and that MMR might facilitate mutational chromosomal recombination due to DNA double-strand breaks via the futile cycle induced by MutS recognition of methylated lesions.
Collapse
Affiliation(s)
- Tomoe Negishi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan.,Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Ina, Kita-Adachi-gun, Saitama, Japan
| | - Kenji Yamada
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Keiko Miyamoto
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Emiko Mori
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Kentaro Taira
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Asei Fujii
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Yuki Goto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| |
Collapse
|
17
|
Brown SD, Mpaulo SJ, Asogwa MN, Jézéquel M, Whitby MC, Lorenz A. DNA sequence differences are determinants of meiotic recombination outcome. Sci Rep 2019; 9:16446. [PMID: 31712578 PMCID: PMC6848502 DOI: 10.1038/s41598-019-52907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022] Open
Abstract
Meiotic recombination is essential for producing healthy gametes, and also generates genetic diversity. DNA double-strand break (DSB) formation is the initiating step of meiotic recombination, producing, among other outcomes, crossovers between homologous chromosomes (homologs), which provide physical links to guide accurate chromosome segregation. The parameters influencing DSB position and repair are thus crucial determinants of reproductive success and genetic diversity. Using Schizosaccharomyces pombe, we show that the distance between sequence polymorphisms across homologs has a strong impact on meiotic recombination rate. The closer the sequence polymorphisms are to each other across the homologs the fewer recombination events were observed. In the immediate vicinity of DSBs, sequence polymorphisms affect the frequency of intragenic recombination events (gene conversions). Additionally, and unexpectedly, the crossover rate of flanking markers tens of kilobases away from the sequence polymorphisms was affected by their relative position to each other amongst the progeny having undergone intragenic recombination. A major regulator of this distance-dependent effect is the MutSα-MutLα complex consisting of Msh2, Msh6, Mlh1, and Pms1. Additionally, the DNA helicases Rqh1 and Fml1 shape recombination frequency, although the effects seen here are largely independent of the relative position of the sequence polymorphisms.
Collapse
Affiliation(s)
- Simon D Brown
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Samantha J Mpaulo
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Mimi N Asogwa
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marie Jézéquel
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Alexander Lorenz
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
18
|
Novel Genetic Markers for Early Detection of Elevated Breast Cancer Risk in Women. Int J Mol Sci 2019; 20:ijms20194828. [PMID: 31569399 PMCID: PMC6801521 DOI: 10.3390/ijms20194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
This study suggests that two newly discovered variants in the MSH2 gene, which codes for a DNA mismatch repair (MMR) protein, can be associated with a high risk of breast cancer. While variants in the MSH2 gene are known to be linked with an elevated cancer risk, the MSH2 gene is not a part of the standard kit for testing patients for elevated breast cancer risk. Here we used the results of genetic testing of women diagnosed with breast cancer, but who did not have variants in BRCA1 and BRCA2 genes. Instead, the test identified four variants with unknown significance (VUS) in the MSH2 gene. Here, we carried in silico analysis to develop a classifier that can distinguish pathogenic from benign mutations in MSH2 genes taken from ClinVar. The classifier was then used to classify VUS in MSH2 genes, and two of them, p.Ala272Val and p.Met592Val, were predicted to be pathogenic mutations. These two mutations were found in women with breast cancer who did not have mutations in BRCA1 and BRCA2 genes, and thus they are suggested to be considered as new bio-markers for the early detection of elevated breast cancer risk. However, before this is done, an in vitro validation of mutation pathogenicity is needed and, moreover, the presence of these mutations should be demonstrated in a higher number of patients or in families with breast cancer history.
Collapse
|
19
|
Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, Kawashita N, Tatsumi-Miyajima J. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24:999-1011. [PMID: 31273487 DOI: 10.1007/s10147-019-01494-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Collapse
Affiliation(s)
- Kazuo Tamura
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan.
| | - Motohide Kaneda
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mashu Futagawa
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Miho Takeshita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Sanghyuk Kim
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Norihito Kawashita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Junko Tatsumi-Miyajima
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| |
Collapse
|
20
|
Barnum KJ, Nguyen YT, O'Connell MJ. XPG-related nucleases are hierarchically recruited for double-stranded rDNA break resection. J Biol Chem 2019; 294:7632-7643. [PMID: 30885940 DOI: 10.1074/jbc.ra118.005415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
dsDNA breaks (DSBs) are resected in a 5'→3' direction, generating single-stranded DNA (ssDNA). This promotes DNA repair by homologous recombination and also assembly of signaling complexes that activate the DNA damage checkpoint effector kinase Chk1. In fission yeast (Schizosaccharomyces pombe), genetic screens have previously uncovered a family of three xeroderma pigmentosum G (XPG)-related nucleases (XRNs), known as Ast1, Exo1, and Rad2. Collectively, these XRNs are recruited to a euchromatic DSB and are required for ssDNA production and end resection across the genome. Here, we studied why there are three related but distinct XRN enzymes that are all conserved across a range of species, including humans, whereas all other DSB response proteins are present as single species. Using S. pombe as a model, ChIP and DSB resection analysis assays, and highly efficient I-PpoI-induced DSBs in the 28S rDNA gene, we observed a hierarchy of recruitment for each XRN, with a progressive compensatory recruitment of the other XRNs as the responding enzymes are deleted. Importantly, we found that this hierarchy reflects the requirement for different XRNs to effect efficient DSB resection in the rDNA, demonstrating that the presence of three XRN enzymes is not a simple division of labor. Furthermore, we uncovered a specificity of XRN function with regard to the direction of transcription. We conclude that the DSB-resection machinery is complex, is nonuniform across the genome, and has built-in fail-safe mechanisms, features that are in keeping with the highly pathological nature of DSB lesions.
Collapse
Affiliation(s)
- Kevin J Barnum
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Y Tram Nguyen
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Matthew J O'Connell
- From the Department of Oncological Sciences and .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
21
|
Imtiaz H, Afroz S, Hossain MA, Bellah SF, Rahman MM, Kadir MS, Sultana R, Mazid MA, Rahman MM. Genetic polymorphisms in CDH1 and Exo1 genes elevate the prostate cancer risk in Bangladeshi population. Tumour Biol 2019; 41:1010428319830837. [PMID: 30880589 DOI: 10.1177/1010428319830837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The polymorphisms of invasion suppressor gene CDH1 and DNA mismatch repair gene Exo1 have been reported to play critical role in the development, tumorigenesis, and progression of several kinds of cancers including prostate cancer. This study was designed to analyze the contribution of single-nucleotide polymorphisms of the CDH1 (-160C/A) and Exo1 (K589E) to prostate cancer susceptibility in Bangladeshi population. The study included 100 prostate cancer cases and age-matched 100 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to determine the genetic polymorphisms. A significant association was found between CDH1 -160C/A (rs16260) and Exo1 (rs1047840, K589E) polymorphisms and prostate cancer risk. In case of CDH1 -160C/A polymorphism, the frequencies of the three genotypes C/C,C/A, and A/A were 45%, 48%, and 7% in cases and 63%, 32%, and 5% in controls, respectively. The heterozygote C/A genotype and combined C/A + A/A genotypes showed 2.10-fold (odds ratio = 2.1000, 95% confidence interval = 1.2956-4.0905, p = 0.013) and 2.08-fold (odds ratio = 2.0811, 95% confidence interval = 1.1820-3.6641, p = 0.011) increased risk of prostate cancer, respectively, when compared with homozygous C/C genotypes. The variant A allele also was associated with increased risk of prostate cancer (odds ratio = 1.6901, 95% confidence interval = 1.0740-2.6597, p = 0.0233). In case of Exo1 (K589E) polymorphism, G/A heterozygote, A/A homozygote, and combined G/A + A/A genotypes were found to be associated with 2.30-, 4.85-, and 3.04-fold higher risk of prostate cancer, respectively (odds ratio = 2.3021, 95% confidence interval = 2.956-4.0905, p = 0.0031; odds ratio = 4.8462, 95% confidence interval = 1.0198-23.0284, p = 0.0291; OR = 3.0362, 95% confidence interval = 1.7054-5.4053, p = 0.0001, respectively). The "A" allele showed significant association with increased susceptibility (2.29-fold) to prostate cancer (odds ratio = 2.2955, 95% confidence interval = 1.4529-3.6270, p = 0.0004). Our results suggest that CDH1 -160C/A and Exo1 K589E polymorphisms are associated with increased susceptibility to prostate cancer in Bangladeshi population.
Collapse
Affiliation(s)
- Hasnain Imtiaz
- 1 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sharmin Afroz
- 1 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Amir Hossain
- 2 Department of Pharmacy, ASA University Bangladesh, Dhaka, Bangladesh
| | - Sm Faysal Bellah
- 3 Department of Pharmacy, Manarat International University, Dhaka, Bangladesh
| | - Md Mostafizur Rahman
- 1 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Shahin Kadir
- 1 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | | | - Md Abdul Mazid
- 5 Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Md Mustafizur Rahman
- 1 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
22
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
23
|
Sarma S, Pandey AK, Sharma K, Ravi M, Sreelakshmi Y, Sharma R. MutS-Homolog2 silencing generates tetraploid meiocytes in tomato ( Solanum lycopersicum). PLANT DIRECT 2018; 2:e00017. [PMID: 31245679 PMCID: PMC6508528 DOI: 10.1002/pld3.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 05/16/2023]
Abstract
MSH2 is the core protein of MutS-homolog family involved in recognition and repair of the errors in the DNA. While other members of MutS-homolog family reportedly regulate mitochondrial stability, meiosis, and fertility, MSH2 is believed to participate mainly in mismatch repair. The search for polymorphism in MSH2 sequence in tomato accessions revealed both synonymous and nonsynonymous SNPs; however, SIFT algorithm predicted that none of the SNPs influenced MSH2 protein function. The silencing of MSH2 gene expression by RNAi led to phenotypic abnormalities in highly silenced lines, particularly in the stamens with highly reduced pollen formation. MSH2 silencing exacerbated formation of UV-B-induced thymine dimers and blocked light-induced repair of the dimers. The MSH2 silencing also affected the progression of male meiosis to a varying degree with either halt of meiosis at zygotene stage or formation of diploid tetrads. The immunostaining of male meiocytes with centromere localized CENPC (centromere protein C) antibody showed the presence of 48 univalent along with 24 bivalent chromosomes suggesting abnormal tetraploid meiosis. The mitotic cells of root tips of silenced lines showed diploid nuclei but lacked intervening cell plates leading to cells with syncytial nuclei. Thus, we speculate that tetraploid pollen mother cells may have arisen due to the fusion of syncytial nuclei before the onset of meiosis. It is likely that in addition to mismatch repair (MMR), MSH2 may have an additional role in regulating ploidy stability.
Collapse
Affiliation(s)
- Supriya Sarma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Arun Kumar Pandey
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Kapil Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Maruthachalam Ravi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKeralaIndia
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Rameshwar Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| |
Collapse
|
24
|
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet 2017; 63:1081-1091. [PMID: 28555368 PMCID: PMC5668335 DOI: 10.1007/s00294-017-0711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Collapse
|
25
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
26
|
Pereira-Gómez M, Sanjuán R. Effect of mismatch repair on the mutation rate of bacteriophage ϕX174. Virus Evol 2016; 1:vev010. [PMID: 27774282 PMCID: PMC5014478 DOI: 10.1093/ve/vev010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Viral mutation rates vary widely in nature, yet the mechanistic and evolutionary determinants of this variability remain unclear. Small DNA viruses mutate orders of magnitude faster than their hosts despite using host-encoded polymerases for replication, which suggests these viruses may avoid post-replicative repair. Supporting this, the genome of bacteriophage ϕX174 is completely devoid of GATC sequence motifs, which are required for methyl-directed mismatch repair in Escherichia coli. Here, we show that restoration of the randomly expected number of GATC sites leads to an eightfold reduction in the rate of spontaneous mutation of the phage, without severely impairing its replicative capacity over the short term. However, the efficacy of mismatch repair in the presence of GATC sites is limited by inefficient methylation of the viral DNA. Therefore, both GATC avoidance and DNA under-methylation elevate the mutation rate of the phage relative to that of the host. We also found that the effects of GATC sites on the phage mutation rate vary extensively depending on their specific location within the phage genome. Finally, the mutation rate reduction afforded by GATC sites is fully reverted under stress conditions, which up-regulate repair pathways and expression of error-prone host polymerases such as heat and treatment with the base analog 5-fluorouracil, suggesting that access to repair renders the phage sensitive to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| |
Collapse
|
27
|
Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, Sanges R, Vyverman W, Montresor M, Ferrante MI. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics 2015; 16:930. [PMID: 26572248 PMCID: PMC4647503 DOI: 10.1186/s12864-015-1983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. RESULTS The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. CONCLUSIONS Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.
Collapse
Affiliation(s)
- Shrikant Patil
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Sara Moeys
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Peter von Dassow
- Facultad de Ciencias Biológicas, Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Chile, Santiago, Chile. .,UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France.
| | - Marie J J Huysman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Daniel Mapleson
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | | |
Collapse
|
28
|
Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans 2015; 44:3505-26. [DOI: 10.1039/c4dt02700k] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing numbers of DNA structures are being revealed using a diverse range of transition metal complexes and biophysical spectroscopic techniques. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.
Collapse
Affiliation(s)
- Benjamin J. Pages
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Elisé P. Wright
- School of Medicine
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Janice R. Aldrich-Wright
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| |
Collapse
|
29
|
van Dam JCJ, Schaap PJ, Martins dos Santos VAP, Suárez-Diez M. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2014; 8:111. [PMID: 25279447 PMCID: PMC4181829 DOI: 10.1186/s12918-014-0111-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. RESULTS We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. CONCLUSIONS Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.
Collapse
Affiliation(s)
- Jesse CJ van Dam
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Peter J Schaap
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Vitor AP Martins dos Santos
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
- />LifeGlimmer GmbH, Markelstrasse 38, Berlin, Germany
| | - María Suárez-Diez
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
30
|
Duan F, Song C, Dai L, Cui S, Zhang X, Zhao X. The significance of Exo1 K589E polymorphism on cancer susceptibility: evidence based on a meta-analysis. PLoS One 2014; 9:e96764. [PMID: 24810280 PMCID: PMC4014567 DOI: 10.1371/journal.pone.0096764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022] Open
Abstract
The exonuclease1 (Exo1) gene is a key component of mismatch repair (MMR) by resecting the damaged strand, which is the only exonuclease involved in the human MMR system. The gene product is a member of the RAD2 nuclease family and functions in DNA replication, repair and recombination. However, whether Exo1 is required to activate MMR-dependent DNA damage response (DDR) remains unknown, the conclusions of the Exo1 polymorphisms on cancer susceptibility studies were not consistent. We carried out a meta-analysis of 7 case-control studies to clarify the association between the Exo1 K589E polymorphism and cancer risk. Overall,a significant association of the Exo1 K589E polymorphism with cancer risk in all genetic models (Lys vs Glu: OR = 1.51, 95%CI:1.39-1.99, P<0.01; Glu/Lys vs Glu/Glu: OR = 1.43, 95%CI:1.28-1.60, P<0.01; Lys/Lys vs Glu/Glu: OR = 2.45, 95%CI:1.90-3.17, P<0.01; Lys/Lys+Glu/Lys vs Glu/Glu: OR = 1.53, 95%CI:1.38-1.71, P<0.01; Glu/Glu vs Glu/Lys+Lys/Lys: OR = 2.27, 95%CI:1.79-2.89, P<0.01). In the stratified analysis by ethnicity, significantly increased risk was observed in Asian population (Lys vs Glu: OR = 1.53, 95%CI:1.39-1.69, P<0.01; Glu/Lys vs Glu/Glu: OR = 1.50, 95%CI:1.34-1.69, P<0.01; Lys/Lys vs Glu/Glu: OR = 2.48, 95%CI:1.84-3.34, P<0.01; Lys/Lys+Glu/Lys vs Glu/Glu: OR = 1.58, 95%CI:1.41-1.78, P<0.01; Glu/Glu vs Glu/Lys+Lys/Lys: OR = 2.18, 95%CI:1.62-2.93, P<0.01). Subgroup analysis based on smoking suggested Exo1 K589E polymorphism conferred significant risk among smokers (Lys/Lys+Glu/Lys vs Glu/Glu: OR = 2.16, 95%CI:1.77-2.63, P<0.01), but not in non-smokers (Lys/Lys+Glu/Lys vs Glu/Glu: OR = 0.89, 95%CI:0.64-1.24, P = 0.50). In conclusion, Exo1 K589E Lys allele may be used as a novel biomarker for cancer susceptibility, particularly in smokers.
Collapse
Affiliation(s)
- Fujiao Duan
- Department of Hospital Infection Management, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Chunhua Song
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Liping Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoqin Zhang
- Department of Hospital Infection Management, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Xia Zhao
- Department of Hospital Infection Management, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Delayed lysis confers resistance to the nucleoside analogue 5-fluorouracil and alleviates mutation accumulation in the single-stranded DNA bacteriophage ϕX174. J Virol 2014; 88:5042-9. [PMID: 24554658 DOI: 10.1128/jvi.02147-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Rates of spontaneous mutation determine viral fitness and adaptability. In RNA viruses, treatment with mutagenic nucleoside analogues selects for polymerase variants with increased fidelity, showing that viral mutation rates can be adjusted in response to imposed selective pressures. However, this type of resistance is not possible in viruses that do not encode their own polymerases, such as single-stranded DNA viruses. We previously showed that serial passaging of bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU) favored substitutions in the lysis protein E (P. Domingo-Calap, M. Pereira-Gomez, and R. Sanjuán, J. Virol. 86:: 9640-9646, 2012, doi:10.1128/JVI.00613-12). Here, we found that approximately half (6/12) of the amino acid replacements in the N-terminal region of this protein led to delayed lysis, and two of these changes (V2A and D8A) also conferred partial resistance to 5-FU. By delaying lysis, the V2A and D8A substitutions allowed the virus to increase the burst size per cell in the presence of 5-FU. Furthermore, these substitutions tended to alleviate drug-induced mutagenesis by reducing the number of rounds of copying required for population growth, revealing a new mechanism of resistance. This form of mutation rate regulation may also be utilized by other viruses whose replication mode is similar to that of bacteriophage ϕX174. IMPORTANCE Many viruses display high rates of spontaneous mutations due to defects in proofreading or postreplicative repair, allowing them to rapidly adapt to changing environments. Viral mutation rates may have been optimized to achieve high adaptability without incurring an excessive genetic load. Supporting this, RNA viruses subjected to chemical mutagenesis treatments have been shown to evolve higher-fidelity polymerases. However, many viruses cannot modulate replication fidelity because they do not encode their own polymerase. Here, we show a new mechanism for regulating viral mutation rates. We found that, under mutagenic conditions, the single-stranded bacteriophage ϕX174 evolved delayed lysis, and that this allowed the virus to increase the amount of progeny produced per cell. As a result, the viral population was amplified in fewer infection cycles, reducing the chances for mutation appearance.
Collapse
|
32
|
Viti C, Marchi E, Decorosi F, Giovannetti L. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 2013; 38:633-59. [PMID: 24188101 DOI: 10.1111/1574-6976.12051] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] contamination is one of the main problems of environmental protection because the Cr(VI) is a hazard to human health. The Cr(VI) form is highly toxic, mutagenic, and carcinogenic, and it spreads widely beyond the site of initial contamination because of its mobility. Cr(VI), crossing the cellular membrane via the sulfate uptake pathway, generates active intermediates Cr(V) and/or Cr(IV), free radicals, and Cr(III) as the final product. Cr(III) affects DNA replication, causes mutagenesis, and alters the structure and activity of enzymes, reacting with their carboxyl and thiol groups. To persist in Cr(VI)-contaminated environments, microorganisms must have efficient systems to neutralize the negative effects of this form of chromium. The systems involve detoxification or repair strategies such as Cr(VI) efflux pumps, Cr(VI) reduction to Cr(III), and activation of enzymes involved in the ROS detoxifying processes, repair of DNA lesions, sulfur metabolism, and iron homeostasis. This review provides an overview of the processes involved in bacterial and fungal Cr(VI) resistance that have been identified through 'omics' studies. A comparative analysis of the described molecular mechanisms is offered and compared with the cellular evidences obtained using classical microbiological approaches.
Collapse
Affiliation(s)
- Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente - sezione di Microbiologia, Università degli Studi di Firenze, Florence, Italy
| | | | | | | |
Collapse
|
33
|
Holgersson G, Bergström S, Ekman S, Brattström D, Henriksson R, Edlund P, Bergqvist M. Radiosensitizing biological modifiers enhancing efficacy in non-small-cell lung cancer treated with radiotherapy. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Georg Holgersson
- Department of Oncology, Entrance 78, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
- Section of Oncology, Department of Radiology, Oncology & Radiation Sciences, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Department of Oncology, Gävle Hospital, SE-801 87 Gävle, Sweden
| | | | - Simon Ekman
- Section of Oncology, Department of Radiology, Oncology & Radiation Sciences, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
| | - Daniel Brattström
- Section of Oncology, Department of Radiology, Oncology & Radiation Sciences, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences & Oncology, Umeå University Hospital, SE-901 87 Umeå, Sweden
| | - Per Edlund
- Section of Oncology, Department of Radiology, Oncology & Radiation Sciences, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
| | - Michael Bergqvist
- Section of Oncology, Department of Radiology, Oncology & Radiation Sciences, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Department of Oncology, Gävle Hospital, SE-801 87 Gävle, Sweden
| |
Collapse
|
34
|
Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K. MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 2013; 280:3467-79. [PMID: 23679952 DOI: 10.1111/febs.12344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Taira K, Kaneto S, Nakano K, Watanabe S, Takahashi E, Arimoto S, Okamoto K, Schaaper RM, Negishi K, Negishi T. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents. Mutagenesis 2013; 28:341-50. [PMID: 23446177 PMCID: PMC3630523 DOI: 10.1093/mutage/get010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O(6)-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the F'prolac from strain CC102 (F'CC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O(6)-alkylguanine. The results showed the repair of O(6)-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O(6)-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells.
Collapse
Affiliation(s)
- Kentaro Taira
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Satomi Kaneto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Kota Nakano
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Shinji Watanabe
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Eizo Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Sakae Arimoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Keinosuke Okamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | | | - Kazuo Negishi
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Tomoe Negishi
- *To whom correspondence should be addressed. Tel: +81 86 251 7946; Fax: +81 86 251 7926; E-mail:
| |
Collapse
|
36
|
Suzuki T, Ukai A, Honma M, Adachi N, Nohmi T. Restoration of mismatch repair functions in human cell line Nalm-6, which has high efficiency for gene targeting. PLoS One 2013; 8:e61189. [PMID: 23596518 PMCID: PMC3626652 DOI: 10.1371/journal.pone.0061189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 03/07/2013] [Indexed: 12/23/2022] Open
Abstract
Gene targeting is a powerful approach in reverse genetics. The approach has been hampered in most of human cell lines, however, by the poor targeting efficiency. Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, exhibits exceptionally high gene targeting efficiency and is used in DNA repair and the related research fields. Nonetheless, usage of the cell line is still limited partly because it lacks expression of MSH2, a component of mismatch repair complex, which leads to increased genome instability. Here, we report successful restoration of MSH2 expression in Nalm-6 cells and demonstrate that the recovery does not affect the high targeting efficiency. We recovered the expression by introduction of cDNA sequences corresponding to exons 9 to 16 at downstream of exon 8 of the MSH2 gene. Endogenous exons 9 to 16 were deleted in the cell line. The MSH2 expression substantially reduced spontaneous HPRT mutation frequency. Moreover, gene targeting efficiency in the MSH2-expressing cells was similar to that in the MSH2-lacking cells. In fact, we generated heterozygously REV3L knockout and the catalytically dead mutants in the MSH2-proficient Nalm-6 cells with efficiency of 20–30%. The established cell line, Nalm-6-MSH+, is useful for reverse genetics in human cells.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells. G3-GENES GENOMES GENETICS 2013; 3:741-756. [PMID: 23550123 PMCID: PMC3618361 DOI: 10.1534/g3.112.005397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Repetitive elements comprise a significant portion of most eukaryotic genomes. Minisatellites, a type of repetitive element composed of repeat units 15−100 bp in length, are stable in actively dividing cells but change in composition during meiosis and in stationary-phase cells. Alterations within minisatellite tracts have been correlated with the onset of a variety of diseases, including diabetes mellitus, myoclonus epilepsy, and several types of cancer. However, little is known about the factors preventing minisatellite alterations. Previously, our laboratory developed a color segregation assay in which a minisatellite was inserted into the ADE2 gene in the yeast Saccharomyces cerevisiae to monitor alteration events. We demonstrated that minisatellite alterations that occur in stationary-phase cells give rise to a specific colony morphology phenotype known as blebbing. Here, we performed a modified version of the synthetic genetic array analysis to screen for mutants that produce a blebbing phenotype. Screens were conducted using two distinctly different minisatellite tracts: the ade2-min3 construct consisting of three identical 20-bp repeats, and the ade2-h7.5 construct, consisting of seven-and-a-half 28-bp variable repeats. Mutations in 102 and 157 genes affect the stability of the ade2-min3 and ade2-h7.5 alleles, respectively. Only seven hits overlapped both screens, indicating that different factors regulate repeat stability depending upon minisatellite size and composition. Importantly, we demonstrate that mismatch repair influences the stability of the ade2-h7.5 allele, indicating that this type of DNA repair stabilizes complex minisatellites in stationary phase cells. Our work provides insight into the factors regulating minisatellite stability.
Collapse
|
38
|
Zhao H, Chen MS, Lo YH, Waltz SE, Wang J, Ho PC, Vasiliauskas J, Plattner R, Wang YL, Wang SC. The Ron receptor tyrosine kinase activates c-Abl to promote cell proliferation through tyrosine phosphorylation of PCNA in breast cancer. Oncogene 2013; 33:1429-37. [PMID: 23542172 DOI: 10.1038/onc.2013.84] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
Abstract
Multiple growth pathways lead to enhanced proliferation in malignant cells. However, how the core machinery of DNA replication is regulated by growth signaling remains largely unclear. The sliding clamp proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA machinery responsible for replicating the genome and maintaining genomic integrity. We previously reported that epidermal growth factor receptor (EGFR) triggered tyrosine 211 (Y211) phosphorylation of PCNA, which in turn stabilized PCNA on chromatin to promote cell proliferation. Here we show that the phosphorylation can also be catalyzed by the non-receptor tyrosine kinase c-Abl. We further demonstrate that, in the absence of EGFR, signaling to PCNA can be attained through the activation of the Ron receptor tyrosine kinase and the downstream non-receptor tyrosine kinase c-Abl. We show that Ron and c-Abl form a complex, and that activation of Ron by its ligand, hepatocyte growth factor-like protein (HGFL), stimulates c-Abl kinase activity, which in turn directly phosphorylates PCNA at Y211 and leads to an increased level of chromatin-associated PCNA. Correspondingly, HGFL-induced Ron activation resulted in Y211 phosphorylation of PCNA while silencing of c-Abl blocked this effect. We show that c-Abl and Y211 phosphorylation of PCNA is an important axis downstream of Ron, which is required for cell proliferation. Treatment with a specific peptide that inhibits Y211 phosphorylation of PCNA or with the c-Abl pharmacological inhibitor imatinib suppressed HGFL-induced cell proliferation. Our findings identify the pathway of Ron-c-Abl-PCNA as a mechanism of oncogene-induced cell proliferation, with potentially important implications for development of combination therapy of breast cancer.
Collapse
Affiliation(s)
- H Zhao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M-S Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Y-H Lo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S E Waltz
- 1] Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - J Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - P-C Ho
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Vasiliauskas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R Plattner
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Y-L Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S-C Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Jonson I, Ougland R, Larsen E. DNA repair mechanisms in Huntington's disease. Mol Neurobiol 2013; 47:1093-102. [PMID: 23361256 DOI: 10.1007/s12035-013-8409-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/13/2013] [Indexed: 11/25/2022]
Abstract
The human genome is under continuous attack by a plethora of harmful agents. Without the development of several dedicated DNA repair pathways, the genome would have been destroyed and cell death, inevitable. However, while DNA repair enzymes generally maintain the integrity of the whole genome by properly repairing mutagenic and cytotoxic intermediates, there are cases in which the DNA repair machinery is implicated in causing disease rather than protecting against it. One case is the instability of gene-specific trinucleotides, the causative mutations of numerous disorders including Huntington's disease. The DNA repair proteins induce mutations that are different from the genome-wide mutations that arise in the absence of repair enzymes; they occur at definite loci, they occur in specific tissues during development, and they are age-dependent. These latter characteristics make pluripotent stem cells a suitable model system for triplet repeat expansion disorders. Pluripotent stem cells can be kept in culture for a prolonged period of time and can easily be differentiated into any tissue, e.g., cells along the neural lineage. Here, we review the role of DNA repair proteins in the process of triplet repeat instability in Huntington's disease and also the potential use of pluripotent stem cells to investigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Ida Jonson
- Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, P. O. Box 4950 Nydalen, 0424 Oslo, Norway
| | | | | |
Collapse
|
40
|
Initiation of DNA damage responses through XPG-related nucleases. EMBO J 2012; 32:290-302. [PMID: 23211746 DOI: 10.1038/emboj.2012.322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/09/2012] [Indexed: 11/08/2022] Open
Abstract
Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness.
Collapse
|
41
|
Abstract
The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.
Collapse
|
42
|
Vageli DP, Giannopoulos S, Doukas SG, Kalaitzis C, Giannakopoulos S, Giatromanolaki A, Koukoulis GK, Touloupidis S. Mismatch repair hMSH2, hMLH1, hMSH6 and hPMS2 mRNA expression profiles in precancerous and cancerous urothelium. Oncol Lett 2012; 5:283-294. [PMID: 23255936 DOI: 10.3892/ol.2012.979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/26/2012] [Indexed: 01/15/2023] Open
Abstract
Changes in the expression of the mismatch repair (MMR) genes hMSH2, hMLH1, hMSH6 and hPMS2 reflect dysfunction of the DNA repair system that may allow the malignant transformation of tissue cells. The aim of the present study was to address the mRNA expression profiles of the mismatch DNA repair system in cancerous and precancerous urothelium. This is the first study to quantify MMR mRNA expression by applying quantitative real-time PCR (qPCR) and translate the results to mRNA phenotypic profiles (r, reduced; R, regular or elevated) in bladder tumors [24 urothelial cell carcinomas (UCCs) and 1 papillary urothelial neoplasm of low malignant potential (PUNLMP)] paired with their adjacent normal tissues (ANTs). Genetic instability analysis was applied at polymorphic sites distal or close to the hMSH2 and hMLH1 locus. Presenting our data, reduced hMSH2, hMSH6 and hPMS2 mRNA expression profiles were observed in cancerous and precancerous urothelia. Significantly, the ANTs of UCCs revealed the highest percentages of reduced hMSH2 (r(2)), hMSH6 (r(6)) and hPMS2 (p(2)) mRNA phenotypes relative to their tumors (P<0.03). In particular, combined r(2)r(6) (P<0.02) presented a greater difference between ANTs of low-grade UCCs vs. their tumors compared with ANTs of high-grade UCCs (P= 0.000). Reduced hMLH1 (r(1)) phenotype was not expressed in precancerous or cancerous urothelia. The hMSH6 mRNA was the most changed in UCCs (47.8%), while hMSH2, hMLH1 and hPMS2 showed overexpression (47.8, 35 and 30%, respectively) that was associated with gender and histological tumor grading or staging. Genetic instability was rare in polymorphic regions distal to hMLH1. Our data reveal a previously unrecognized hMSH2 and hMSH6 mRNA combined phenotype (r(2)r(6)) correlated with a precancerous urothelium and show that hMLH1 is transcriptionally activated in precancerous or cancerous urothelium. In the present study, it is demonstrated that reduction of hMSH6 mRNA is a frequent event in bladder tumorigenesis and reflects a common mechanism of suppression with hMSH2, while alterations of hMSH2 or hMLH1 mRNA expression in UCCs does not correlate with the allelic imbalance of polymorphic regions harboring the genes.
Collapse
Affiliation(s)
- Dimitra P Vageli
- Department of Pathology, Medical School, University of Thessaly, Larissa, Thessaly 41110
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hargreaves VV, Putnam CD, Kolodner RD. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. J Biol Chem 2012; 287:41232-44. [PMID: 23045530 DOI: 10.1074/jbc.m112.402495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatch repair are poorly understood. Here we show that ATP induces a conformational change within the C-terminal region of Msh6 that protects the trypsin cleavage site after Msh6 residue Arg(1124). An engineered disulfide bond within this region prevented the ATP-driven conformational change and resulted in an Msh2-Msh6 complex that bound mispaired bases but could not form sliding clamps or bind Mlh1-Pms1. The engineered disulfide bond also reduced mismatch repair efficiency in vivo, indicating that this ATP-driven conformational change plays a role in mismatch repair.
Collapse
Affiliation(s)
- Victoria V Hargreaves
- Ludwig Institute for Cancer Research, Department of Medicine, Moores-University of California San Diego Cancer Center, and Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669, USA
| | | | | |
Collapse
|
44
|
Yang SY, Yang TY, Li YJ, Chen KC, Liao KM, Hsu KH, Tsai CR, Chen CY, Hsu CP, Hsia JY, Chuang CY, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Hsiung CA, Shen CY, Chang GC, Yang PC, Chen CJ. EGFR exon 19 in-frame deletion and polymorphisms of DNA repair genes in never-smoking female lung adenocarcinoma patients. Int J Cancer 2012; 132:449-58. [PMID: 22573488 DOI: 10.1002/ijc.27630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
We explored potential associations between genetic polymorphisms in genes related to DNA repair and detoxification metabolism and epidermal growth factor receptor (EGFR) mutations in a cohort of 410 never-smoking patients with lung adenocarcinoma. Multivariate-adjusted odds ratios (aORs) and corresponding 95% confidence intervals (CI) of EGFR mutation status in association with the genotypes of DNA repair and detoxification metabolism genes were evaluated using logistic regression analysis. We found an association between in-frame deletion in EGFR exon 19 and a single nucleotide polymorphism (SNP) rs1800566C/T located in NQO1 (aOR, 2.2 with 95% CI, 1.0-4.8) in female never-smokers. The SNP rs744154C/G in ERCC4 was also associated with the EGFR exon 19 in-frame deletion both in never-smokers (aOR, 1.7 with 95% CI, 1.0-3.0) and female never-smokers (aOR, 1.9 with 95% CI, 1.0-3.6). Although the association was marginally significant in multivariate logistic regression analysis, the A/A genotype of rs1047840 in EXO1 was associated with a 7.6-fold increase in the occurrence of the EGFR exon 19 in-frame deletion in female never-smokers. Moreover, risk alleles in NQO1, ERCC4 and EXO1 were associated with an increasing aOR of the EGFR exon 19 in-frame deletion both in never-smokers (p = 0.007 for trend) and female never-smokers (p = 0.002 for trend). Our findings suggest that the in-frame deletion in EGFR exon 19 is associated with polymorphisms in DNA repair and detoxification metabolism genes in never-smoking lung adenocarcinoma patients, especially in females.
Collapse
Affiliation(s)
- Shi-Yi Yang
- Genomics Research Center, Academia Sinica, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fung DCY, Li SS, Goel A, Hong SH, Wilkins MR. Visualization of the interactome: What are we looking at? Proteomics 2012; 12:1669-86. [DOI: 10.1002/pmic.201100454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- David C. Y. Fung
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Simone S. Li
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Apurv Goel
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Seok-Hee Hong
- School of Information Technologies; Faculty of Engineering and Information Technologies; The University of Sydney; New South Wales Australia
| | - Marc R. Wilkins
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| |
Collapse
|
46
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
47
|
Gammie AE, Erdeniz N. Characterization of pathogenic human MSH2 missense mutations using yeast as a model system: a laboratory course in molecular biology. CELL BIOLOGY EDUCATION 2012; 3:31-48. [PMID: 22039344 DOI: 10.1187/cbe.03-08-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 12/10/2003] [Indexed: 01/18/2023]
Abstract
This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.
Collapse
Affiliation(s)
- Alison E Gammie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.
| | | |
Collapse
|
48
|
Agnez-Lima LF, Melo JTA, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MHG, Di Mascio P, Galhardo RS, Menck CFM. DNA damage by singlet oxygen and cellular protective mechanisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:15-28. [PMID: 22266568 DOI: 10.1016/j.mrrev.2011.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species, as singlet oxygen ((1)O(2)) and hydrogen peroxide, are continuously generated by aerobic organisms, and react actively with biomolecules. At excessive amounts, (1)O(2) induces oxidative stress and shows carcinogenic and toxic effects due to oxidation of lipids, proteins and nucleic acids. Singlet oxygen is able to react with DNA molecule and may induce G to T transversions due to 8-oxodG generation. The nucleotide excision repair, base excision repair and mismatch repair have been implicated in the correction of DNA lesions induced by (1)O(2) both in prokaryotic and in eukaryotic cells. (1)O(2) is also able to induce the expression of genes involved with the cellular responses to oxidative stress, such as NF-κB, c-fos and c-jun, and genes involved with tissue damage and inflammation, as ICAM-1, interleukins 1 and 6. The studies outlined in this review reinforce the idea that (1)O(2) is one of the more dangerous reactive oxygen species to the cells, and deserves our attention.
Collapse
Affiliation(s)
- Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao H, Ho PC, Lo YH, Espejo A, Bedford MT, Hung MC, Wang SC. Interaction of proliferation cell nuclear antigen (PCNA) with c-Abl in cell proliferation and response to DNA damages in breast cancer. PLoS One 2012; 7:e29416. [PMID: 22238610 PMCID: PMC3251568 DOI: 10.1371/journal.pone.0029416] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/28/2011] [Indexed: 01/09/2023] Open
Abstract
Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA) is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211) enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.
Collapse
Affiliation(s)
- Huajun Zhao
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Po-Chun Ho
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yuan-Hung Lo
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Alexsandra Espejo
- Department of Molecular Carcinogenesis, M. D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Mark T. Bedford
- Department of Molecular Carcinogenesis, M. D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
- Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Shao-Chun Wang
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
50
|
Bayram S, Akkız H, Bekar A, Akgöllü E, Yıldırım S. The significance of Exonuclease 1 K589E polymorphism on hepatocellular carcinoma susceptibility in the Turkish population: a case-control study. Mol Biol Rep 2011; 39:5943-51. [PMID: 22205538 DOI: 10.1007/s11033-011-1406-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/17/2011] [Indexed: 02/07/2023]
Abstract
Exonuclease 1 (Exo 1) is an important nuclease involved in mismatch repair system that contributes to maintain genomic stability, to modulate DNA recombination, and to mediate cell cycle arrest. A guanine (G)/adenine (A) common single nucleotide polymorphism at first position of codon 589 in Exo 1 gene determines a glutamic acid (Glu, E) to lysine (Lys, K) (K589E) aminoacidic substitution which may alter cancer risk by influencing the activity of Exo 1 protein. Exo 1 K589E polymorphism has been studied in various cancers, but its association with hepatocellular carcinoma (HCC) has yet to be investigated. To determine the association of the Exo 1 K589E polymorphism with the risk of HCC development in a Turkish population, a hospital-based case-control study was designed consisting of 224 subjects with HCC and 224 cancer-free control subjects matched for age, gender, smoking and alcohol status. The genotype frequency of the Exo 1 K589E polymorphism was determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. Our data shows that the Lys/Lys genotype of the Exo 1 K589E polymorphism is associated with increased risk of HCC development in this Turkish population [odds ratio (OR) = 2.15, 95% confidence interval (CI): 1.13-4.09, P = 0.02]. Furthermore, according to stratified analysis, a significant association was observed between the homozygote Lys/Lys genotype and HCC risk in the subgroups of male gender (OR = 2.67, 95% CI: 1.27-5.61, P = 0.009) and patients with non-viral-related HCC (OR = 3.14, 95% CI: 1.09-8.99, P = 0.03). Because our results suggest for the first time that the Lys/Lys homozygote genotype of Exo 1 K589E polymorphism may be a genetic susceptibility factor for HCC in the Turkish population, further independent studies are required to validate our findings in a larger series, as well as in patients of different ethnic origins.
Collapse
Affiliation(s)
- Süleyman Bayram
- Department of Nursing, Adıyaman School of Health, Adıyaman University, 02040, Adıyaman, Turkey.
| | | | | | | | | |
Collapse
|