1
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
2
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rosa SG, Brüning CA, Pesarico AP, Souza ACGD, Nogueira CW. Anti-inflammatory and antinociceptive effects of 2,2`-dipyridyl diselenide through reduction of inducible nitric oxide synthase, nuclear factor-kappa B and c-Jun N-terminal kinase phosphorylation levels in the mouse spinal cord. J Trace Elem Med Biol 2018; 48:38-45. [PMID: 29773191 DOI: 10.1016/j.jtemb.2018.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022]
Abstract
Appropriate treatment of pain requires analgesics and anti-inflammatory drugs generally associated with undesirable side effects and not fully effective in a significant proportion of patients. Organoselenium compounds elicit a plenty of pharmacological effects in different animal models. Among these compounds, the 2,2`-dipyridyl diselenide (DPD) has a potent antioxidant effect and low toxicity. In this way, the aim of this study was to investigate the possible DPD antinociceptive effect and its mechanism of action, as well as the safety of the compound. Female Swiss mice were treated with vehicle or DPD (0.01-50 mg/kg) intragastrically. Dose-response curve and time-course of the antinociceptive effect of DPD were performed on formalin and tail immersion tests. Morphine (2.5 mg/kg, subcutaneous, 15 min earlier) was used as a positive control in behavioral tests. The results showed that DPD presents a rapid antinociceptive effect in low doses, without changing the spontaneous locomotor activity and parameters of toxicity in mice. The DPD antinociceptive effect was also confirmed in male Swiss mice in both formalin and tail immersion tests. In addition, DPD reduced the paw edema induced by 2.5% formalin and ear edema induced by 2.5% croton oil. l-arginine (600 mg/kg, intraperitoneally) reduced the DPD antinociceptive effect in the first phase of the formalin test. Moreover, DPD attenuated the increase in iNOS, NF-κB and JNK phosphorylation in the spinal cord of mice injected with formalin. These results showed that DPD exerts peripheral and central nociceptive actions associated with anti-inflammatory effect and this organoselenium compound could be an interesting alternative therapy for pain treatment.
Collapse
Affiliation(s)
- Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - César Augusto Brüning
- Laboratório de Bioquímica e Neurofarmacologia Molecular, Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Ana Cristina Guerra de Souza
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Sauer M, Haubner C, Richter G, Ehler J, Mencke T, Mitzner S, Margraf S, Altrichter J, Doß S, Nöldge-Schomburg G. Impaired Cell Viability and Functionality of Hepatocytes After Incubation With Septic Plasma-Results of a Second Prospective Biosensor Study. Front Immunol 2018; 9:1448. [PMID: 29988573 PMCID: PMC6026797 DOI: 10.3389/fimmu.2018.01448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Liver dysfunction (LD) and liver failure are associated with poor outcome in critically ill patients. In patients with severe sepsis or septic shock, LD occurred in nearly 19% of patients. An early diagnosis of LD at time of initial damage of the liver can lead to a better prognosis of these patients because an early start of therapy is possible. We performed a second prospective study with septic patients to test a new cell-based cytotoxicity device (biosensor) to evaluate clinical relevance for early diagnosis of LD and prognostic capacity. In the clinical study, 99 intensive care unit patients were included in two groups. From the patients of the septic group (n = 51, SG), and the control (non-septic) group [n = 49, control group (CG)] were drawn 20 ml blood at inclusion, after 3, and 7 days for testing with the biosensor. Patients’ data were recorded for hospital survival, organ function, and demographic data, illness severity [acute physiology and chronic health evaluation (APACHE) II-, sepsis-related organ failure assessment (SOFA) scores], cytokines, circulating-free deoxyribonucleic acid/neutrophil-derived extracellular traps (cf-DNA/NETs), microbiological results, and pre-morbidity. For the developed cytotoxicity test, the human liver cell line HepG2/C3A was used. Patients’ plasma was incubated in a microtiter plate assay with the test cells and after 6 days incubation the viability (trypan blue staining, XTT-test) and functionality (synthesis of albumin, cytochrome 1A2 activity) was analyzed. An impairment of viability and functionality of test cells was only seen in the SG compared with the CG. The plasma of non-survivors in the SG led to a more pronounced impairment of test cells than the plasma of survivors at inclusion. In addition, the levels of cf-DNA/NETs were significantly higher in the SG at inclusion, after 3, and after 7 days compared with the CG. The SG showed an in-hospital mortality of 24% and the values of bilirubin, APACHE II-, and SOFA scores were markedly higher at inclusion than in the CG. Hepatotoxicity of septic plasma was already detected with the liver cell-based biosensor at inclusion and also in the course of disease. The biosensor may be a tool for early diagnosis of LD in septic patients and may have prognostic relevance.
Collapse
Affiliation(s)
- Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany.,Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Cristof Haubner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Georg Richter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Thomas Mencke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Steffen Mitzner
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany.,Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Stefan Margraf
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Jens Altrichter
- Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Sandra Doß
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Yang N, Liang Y, Yang P, Wang W, Zhang X, Wang J. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats. Exp Ther Med 2016; 12:463-468. [PMID: 27347079 DOI: 10.3892/etm.2016.3262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients.
Collapse
Affiliation(s)
- Nengli Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pei Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weijian Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuezheng Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
6
|
Vadász I, Dada LA, Briva A, Helenius IT, Sharabi K, Welch LC, Kelly AM, Grzesik BA, Budinger GRS, Liu J, Seeger W, Beitel GJ, Gruenbaum Y, Sznajder JI. Evolutionary conserved role of c-Jun-N-terminal kinase in CO2-induced epithelial dysfunction. PLoS One 2012; 7:e46696. [PMID: 23056407 PMCID: PMC3466313 DOI: 10.1371/journal.pone.0046696] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022] Open
Abstract
Elevated CO2 levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO2 signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO2 levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO2 levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO2-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO2 signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO2 signaling in mammals, diptera and nematodes.
Collapse
Affiliation(s)
- István Vadász
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Arturo Briva
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Iiro Taneli Helenius
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kfir Sharabi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Lynn C. Welch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Aileen M. Kelly
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Benno A. Grzesik
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jing Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Greg J. Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dakroub Z, Kreydiyyeh SI. Sphingosine-1-phosphate is a mediator of TNF-α action on the Na+/K+ ATPase in HepG2 cells. J Cell Biochem 2012; 113:2077-85. [PMID: 22271589 DOI: 10.1002/jcb.24079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We showed previously that TNF-α down-regulates the Na+/K+ ATPase in HepG2 cells. This work was undertaken to study the role of ceramide and its metabolites in TNF-α action. Treating HepG2 cells with the cytokine in presence of an inhibitor of sphingomyelinase, abrogated the effect of TNF-α on the ATPase. To confirm the involvement of ceramide or its metabolites, cells were incubated with exogenous ceramide. Ceramide reduced time-dependently the activity of the ATPase and its effect disappeared in presence of CAY 10466 or SHKI, respective inhibitors of ceramidase and spingosine kinase, suggesting that ceramide acts via sphingosine or sphingosine-1-phosphate (S1P). However, HepG2 cells treated with exogenous sphingosine showed a higher Na+/K+ ATPase activity inferring that S1P is the one responsible for the down-regulatory effect of TNF-α and ceramide. This hypothesis was confirmed by the observed inhibitory effect of exogenous S1P on the pump, which was maintained when JNK and NF-κB were inhibited separately or simultaneously. The concurrent, but not individual inhibition of the kinase and transcription factor in the absence of S1P imitated the effect of S1P. It was concluded that S1P down-regulates the ATPase by inhibiting both JNK and NF-κB. This conclusion was supported by the observed decrease in the phosphorylation of c-jun and the enhanced protein expression of IκB and lower NK-KB activity.
Collapse
Affiliation(s)
- Zeina Dakroub
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
8
|
Surface glycoproteomic analysis of hepatocellular carcinoma cells by affinity enrichment and mass spectrometric identification. Glycoconj J 2012; 29:411-24. [DOI: 10.1007/s10719-012-9420-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 12/30/2022]
|
9
|
Mondal AK, Das SK, Varma V, Nolen GT, McGehee RE, Elbein SC, Wei JY, Ranganathan G. Effect of endoplasmic reticulum stress on inflammation and adiponectin regulation in human adipocytes. Metab Syndr Relat Disord 2012; 10:297-306. [PMID: 22545589 DOI: 10.1089/met.2012.0002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity. Studies examining human adipose tissue have indicated that there is an increase in the ER stress transcript HSPA5 with increased body mass index (BMI). However, it is not established whether ER stress results in changes in adiponectin levels or multimerization in human adipocytes. We examined whether the induction of ER stress using tunicamycin, thapsigargin, or palmitate alters the messenger RNA (mRNA) and protein expression of adiponectin and the mRNA expression of chaperones ERP44 and ERO1 in adult-derived human adipocyte stem (ADHAS) cells. ER stress was measured using key indicators of ER stress-HSPA5, ERN1, CHOP, and GADD34, as well as changes in eIF2α phosphorylation. Because ER stress is suggested to be the proximal cause of inflammation in adipocytes, we further examined the change in inflammatory status by quantitating the change in Iκβ-α protein following the induction of ER stress. Our studies indicate that: (1) ER stress markers were increased to a higher degree using tunicamycin or thapsigargin compared to palmitate; (2) ER stress significantly decreased adiponectin mRNA in response to tunicamycin and thapsigargin, but palmitate did not decrease adiponectin mRNA levels. In all three instances, the induction of ER stress was accompanied by a decrease in adiponectin protein as well as adiponectin multimerization. All three inducers of ER stress increased tumor necrosis factor-α (TNF-α) mRNA and decreased Iκβ-α protein in adipocytes. The data suggest that ER stress modifies adiponectin secretion and induces inflammation in ADHAS cells.
Collapse
Affiliation(s)
- Ashis K Mondal
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Miodovnik M, Koren R, Ziv E, Ravid A. The inflammatory response of keratinocytes and its modulation by vitamin D: the role of MAPK signaling pathways. J Cell Physiol 2012; 227:2175-83. [PMID: 21792935 DOI: 10.1002/jcp.22951] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hormonal form of vitamin D, calcitriol, and its analogs are known for their beneficial effect in the treatment of inflammatory skin disorders. Keratinocytes play a role in epidermal inflammatory responses invoked by breeching of the epidermal barrier, by infectious agents and by infiltrating immune cells. We studied the role of calcitriol in the initiation of keratinocyte inflammatory response by the viral and injury mimic polyinosinic-polycytidylic acid (poly(I:C)) and in its maintenance by tumor-necrosis-factor α (TNFα) and investigated the role of the mitogen-activated protein kinase cascades in these processes and their regulation by calcitriol. The inflammatory response of human HaCaT keratinocytes to poly(I:C) or TNFα was assessed by measuring mRNA levels of 13 inflammation-related molecules by real-time PCR microarray and by in-depth investigation of the regulation of interleukin 8, intercellular-adhesion-molecule 1, and TNFα expression. We found that while calcitriol had only a minor effect on the keratinocyte response to poly(I:C) and a modest effect on the early response (2 h) to TNFα, it markedly attenuated the later response (16-24 h) to TNFα. The expression of CYP27B1, the enzyme responsible for calcitriol production, was marginally increased by poly(I:C) and markedly by TNFα treatment. This pattern suggests that while allowing the initial keratinocyte inflammatory response to proceed, calcitriol contributes to its timely resolution. Using pharmacological inhibitors we found that while the p38 MAPK and the extracellular signal-regulated kinase have only a minor role, c-Jun N-terminal kinase plays a pivotal role in the induction of the pro-inflammatory genes and its modulation by calcitriol.
Collapse
Affiliation(s)
- Mor Miodovnik
- Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
11
|
Sauer M, Haubner C, Mencke T, Nöldge-Schomburg G, Mitzner S, Altrichter J, Stange J. Impaired cell functions of hepatocytes incubated with plasma of septic patients. Inflamm Res 2012; 61:609-16. [PMID: 22370970 DOI: 10.1007/s00011-012-0451-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN The development of liver failure is a major problem in septic patients. In this prospective clinical experimental study the hepatotoxicity of plasma from septic and non-septic patients was tested. METHODS AND SUBJECTS The basic test components consist of human liver cells (HepG2/C3A) used in a standardized microtiter plate assay. After incubation with patient's plasma viability of cells (XTT-test), the cytochrome 1A2 activity and synthesis of micro albumin were measured. Subjects (28) enrolled comprise the septic shock group (SSG, n=10), the non-septic group (NSG, n=5) and the healthy volunteers group (HVG, n=13). RESULTS The 28-day mortality was 30% in the SSG. The APACHE II-, SOFA-, and SAPS-scores and the values of bilirubin and prothrombin time as INR were significantly higher in the SSG than in the NSG. The cytochrome 1A2 activity and the release of albumin were significantly reduced in HepG2/C3A cells incubated with plasma of the SSG (p<0.05). The cytochrome 1A2 activities were higher in survivors compared to non-survivors at the time point 0 and were increasing in survivors and decreasing in non-survivors within 54 h in the SSG. In the SSG there was a significant decrease in IL-10 and IL-8 between inclusion and 54 h. Values of IL-6, TNF alpha and IL-10 were significantly lower in the NSG compared with the values of the SSG at inclusion and after 54 h. CONCLUSION The plasma of patients with septic shock impaired cellular functions of HepG2/C3A cells.
Collapse
Affiliation(s)
- Martin Sauer
- Department of Anaesthesiology and Intensive Care Medicine, University of Rostock, Schillingallee 35, 18055, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tse WK, Lai K, Takei Y. Medaka osmotic stress transcription factor 1b (Ostf1b/TSC22D3-2) triggers hyperosmotic responses of different ion transporters in medaka gill and human embryonic kidney cells via the JNK signalling pathway. Int J Biochem Cell Biol 2011; 43:1764-75. [DOI: 10.1016/j.biocel.2011.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/08/2011] [Accepted: 08/25/2011] [Indexed: 01/04/2023]
|
13
|
Xu ZW, Wang FM, Gao MJ, Chen XY, Shan NN, Cheng SX, Mai X, Zala GH, Hu WL, Xu RC. Cardiotonic steroids attenuate ERK phosphorylation and generate cell cycle arrest to block human hepatoma cell growth. J Steroid Biochem Mol Biol 2011; 125:181-91. [PMID: 21215801 DOI: 10.1016/j.jsbmb.2010.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 11/20/2022]
Abstract
Recent studies revealed the potential of Na(+)/K(+)-ATPase as a target for anticancer therapy and showed additional modes of action of cardiotonic steroids (CSs), a diverse family of naturally derived compounds, as inhibitors of Na(+)/K(+)-ATPase. The results from epidemiological studies showed significantly lower mortality rates in cancer patients receiving CSs, which sparked interest in the anticancer properties of these drugs. The present study was designed to investigate the anticancer effect of CSs (ouabain or cinobufagin) and to elucidate the molecular mechanisms of CS activity in hepatoma cell lines (HepG2 and SMMC-7721). Ouabain and cinobufagin significantly inhibited cell proliferation by attenuating the phosphorylation of extracellular regulated kinase (ERK) and down-regulating the expression of C-myc. These CSs also induced cell apoptosis by increasing the concentration of intracellular free calcium ([Ca(2+)](i)) and induced S phase cell cycle arrest by down-regulating the expression of Cyclin A, cyclin dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) as well as up-regulating the expression of cyclin dependent kinase inhibitor 1A (p21(CIP1)). Overexpression of ERK reversed the antiproliferation effect of ouabain or cinobufagin in HepG2 and SMMC-7721 cells. Currently, the first generation of CS-based anticancer drugs (UNBS1450 and Anvirzel) are in Phase I clinical trials. These data clearly support their potential use as cancer therapies.
Collapse
Affiliation(s)
- Zhong-Wei Xu
- Department of Cell Biology, Medical College of the Chinese People's Armed Police Forces, Tianjin City 300162, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, Hühmer AF, Biringer RG. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache 2010; 50:459-78. [PMID: 19845787 PMCID: PMC8020446 DOI: 10.1111/j.1526-4610.2009.01551.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.
Collapse
Affiliation(s)
- Michael G Harrington
- Huntington Medical Research Institutes - Molecular Neurology, Pasadena, CA 91101, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kassardjian A, Dakroub Z, Zein OE, Kreydiyyeh SI. Signaling pathway underlying the up-regulatory effect of TNF-alpha on the Na(+)/K(+) ATPase in HepG2 cells. Cytokine 2009; 49:312-8. [PMID: 20036143 DOI: 10.1016/j.cyto.2009.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 11/08/2009] [Accepted: 11/22/2009] [Indexed: 12/18/2022]
Abstract
The activity of the Na(+)/K(+) ATPase was shown to be reduced during apoptosis and enhanced during cell proliferation. This work investigated whether TNF-alpha exerts also opposite effects on the Na(+)/K(+) ATPase in HepG2 cells and whether these effects are time-dependent. A time response study demonstrated that the activity and protein expression of the ATPase are decreased at 1h and increased at 4, 6 and 8h. This work focused on the up-regulatory 4h-response. TNF-alpha was shown to exert a stimulatory effect on cJNK and NF-kappaB and an inhibitory effect on caspases which, in the basal state, down-regulate the ATPase. The cytokine was found to target the caspases by activating JNK which in turn activates NF-kappaB. The activated transcription factor inhibits the caspases and frees the ATPase from their inhibitory action leading thus to its up-regulation.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biology, American University of Beirut, Lebanon
| | | | | | | |
Collapse
|
16
|
Mokhtari D, Barbu A, Mehmeti I, Vercamer C, Welsh N. Overexpression of the nuclear factor-κB subunit c-Rel protects against human islet cell death in vitro. Am J Physiol Endocrinol Metab 2009; 297:E1067-77. [PMID: 19706790 DOI: 10.1152/ajpendo.00212.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transcription factor nuclear factor (NF)-κB is known to modulate rates of apoptosis and may therefore play a role in the increased β-cell death that occurs in type 1 and type 2 diabetes. The aim of the present investigation was to study the expression of NF-κB subunits in human islet cells and whether overexpression of the NF-κB subunit c-Rel affects islet cell survival. We detected expression of p65, Rel-B, p50, p105, p52, and the ribosomal protein S3 (rpS3) in human islet cells. Among these, only p65 and rpS3 were translocated from the cytosolic to the nuclear fraction in response to cytokines. Interestingly, rpS3 participated in p65 binding to the κB-element in gel shift analysis experiments. We observed cytoplasmic c-Rel expression in vivo in 6J mice, and signs of nuclear translocation in β-cells of infiltrated nonobese diabetic islets. Human islet cells were also dispersed by trypsin treatment and transduced with a c-Rel adenoviral vector. This resulted in increased expression of c-Rel and inhibitory factor κB, increased κB-binding activity, and augmented protein levels of Bcl-X(L,) c-IAP2, and heat shock protein 72. c-Rel expression in human islet cells protected against cytokine-induced caspase 3 activation and cell death. c-Rel protected also against streptozotocin- and H(2)O(2)-induced cell death, in both intact rat islets and human islet cells. We conclude that rpS3 participates in NF-κB signaling and that a genetic increase in the activity of the NF-κB subunit c-Rel results in protection against cell death in human islets.
Collapse
Affiliation(s)
- Dariush Mokhtari
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedicum, P.O. Box 571, S-751 23, Uppsala, Sweden
| | | | | | | | | |
Collapse
|