1
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Ahmad A, Riaz Z, Sattar MA, Khan SA, John EJ, Rashid S, Shah STA, Rafiq MA, Azam M, Qamar R. Effect of gasotransmitters treatment on expression of hypertension, vascular and cardiac remodeling and hypertensive nephropathy genes in left ventricular hypertrophy. Gene 2020; 737:144479. [PMID: 32068124 DOI: 10.1016/j.gene.2020.144479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cardiac and renal dysfunction are often co-morbid pathologies leading to worsening prognosis resulting in difficulty in therapy of left ventricular hypertrophy (LVH). The aim of the current study was to determine the changes in expression of human ortholog genes of hypertension, vascular and cardiac remodeling and hypertensive nephropathy phenotypes under normal, disease and upon treatment with gasotransmitter including H2S (hydrogen sulphide), NO (nitric oxide) and combined (H2S + NO). METHODS A total of 72 Wistar Kyoto rats (with equivalent male and female animals) were recruited in the present study where LVH rat models were treated with H2S and NO individually as well as with both combined. Cardiac and renal physical indices were recorded and relative gene expression were quantified. RESULTS Both cardiac and renal physical indices were significantly modified with individual as well as combined H2S + NO treatment in control and LVH rats. Expression analysis revealed, hypertension, vascular remodeling genes ACE, TNFα and IGF1, mRNAs to be significantly higher (P ≤ 0.05) in the myocardia and renal tissues of LVH rats, while individual and combined H2S + NO treatment resulted in lowering the gene expression to normal/near to normal levels. The cardiac remodeling genes MYH7, TGFβ, SMAD4 and BRG1 expression were significantly up-regulated (P ≤ 0.05) in the myocardia of LVH where the combined H2S + NO treatment resulted in normal/near to normal expression more effectively as compared to individual treatments. In addition individual as well as combined H2S and NO treatment significantly decreased PKD1 expression in renal tissue, which was up-regulated in LVH rats (P ≤ 0.05). CONCLUSIONS The reduction in hemodynamic parameters and cardiac indices as well as alteration in gene expression on treatment of LVH rat model indicates important therapeutic potential of combined treatment with H2S + NO gasotransmitters in hypertension and cardiac hypertrophy when present as co-morbidity with renal complications.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zainab Riaz
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Safia Akhtar Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Sumbal Rashid
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Arshad Rafiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Raheel Qamar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
3
|
Becirovic-Agic M, Jönsson S, Tveitarås MK, Skogstrand T, Karlsen TV, Lidén Å, Leh S, Ericsson M, Nilsson SK, Reed RK, Hultström M. Time course of decompensation after angiotensin II and high-salt diet in Balb/CJ mice suggests pulmonary hypertension-induced cardiorenal syndrome. Am J Physiol Regul Integr Comp Physiol 2019; 316:R563-R570. [PMID: 30840486 DOI: 10.1152/ajpregu.00373.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die. Clinical symptoms of heart failure in Balb/CJ mice gave the hypothesis that ANG II + Salt impairs cardiac function and induces cardiac remodeling in male Balb/CJ but not in male C57BL/6J mice. To test this hypothesis, we measured cardiac function using echocardiography before treatment and every day for 7 days during treatment with ANG II + Salt. Interestingly, pulsed wave Doppler of pulmonary artery flow indicated increased pulmonary vascular resistance and right ventricle systolic pressure in Balb/CJ mice, already 24 h after ANG II + Salt treatment was started. In addition, Balb/CJ mice showed abnormal diastolic filling indicated by reduced early and late filling and increased isovolumic relaxation time. Furthermore, Balb/CJ exhibited lower cardiac output compared with C57BL/6J even though they retained more sodium and water, as assessed using metabolic cages. Left posterior wall thickness increased during ANG II + Salt treatment but did not differ between the strains. In conclusion, ANG II + Salt treatment causes early restriction of pulmonary flow and reduced left ventricular filling and cardiac output in Balb/CJ, which results in fluid retention and peripheral edema. This makes Balb/CJ a potential model to study the adaptive capacity of the heart for identifying new disease mechanisms and drug targets.
Collapse
Affiliation(s)
- Mediha Becirovic-Agic
- Integrative physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | | | - Trude Skogstrand
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Åsa Lidén
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital , Bergen , Norway.,Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | | | - Stefan K Nilsson
- Department of Medical Biosciences, Umeå University , Umeå , Sweden
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen , Bergen , Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen , Bergen , Norway
| | - Michael Hultström
- Integrative physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Department of Biomedicine, University of Bergen , Bergen , Norway.,Anesthesia and intensive care, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| |
Collapse
|
4
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Partial inhibition of activin receptor-like kinase 4 attenuates pressure overload-induced cardiac fibrosis and improves cardiac function. J Hypertens 2016; 34:1766-77. [DOI: 10.1097/hjh.0000000000001020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Heger J, Schulz R, Euler G. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol 2015; 173:3-14. [PMID: 26431212 DOI: 10.1111/bph.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/23/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is a mechanism to compensate for increased cardiac work load, that is, after myocardial infarction or upon pressure overload. However, in the long run cardiac hypertrophy is a prevailing risk factor for the development of heart failure. During pathological remodelling processes leading to heart failure, decompensated hypertrophy, death of cardiomyocytes by apoptosis or necroptosis and fibrosis as well as a progressive dysfunction of cardiomyocytes are apparent. Interestingly, the induction of hypertrophy, cell death or fibrosis is mediated by similar signalling pathways. Therefore, tiny changes in the signalling cascade are able to switch physiological cardiac remodelling to the development of heart failure. In the present review, we will describe examples of these molecular switches that change compensated hypertrophy to the development of heart failure and will focus on the importance of the signalling cascades of the TGFβ superfamily in this process. In this context, potential therapeutic targets for pharmacological interventions that could attenuate the progression of heart failure will be discussed.
Collapse
Affiliation(s)
- J Heger
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - R Schulz
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - G Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
7
|
Liu L, Ding WY, Zhao J, Wang ZH, Zhong M, Zhang W, Chen YG, Zhang Y, Li L, Tang MX. Activin receptor-like kinase 7 mediates high glucose-induced H9c2 cardiomyoblast apoptosis through activation of Smad2/3. Int J Biochem Cell Biol 2013; 45:2027-35. [PMID: 23830891 DOI: 10.1016/j.biocel.2013.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022]
Abstract
Cardiomyocyte apoptosis is an important pathological change of diabetic cardiomyopathy. How the elevated glucose levels cause cell apoptosis remains unknown. The aim of our study was to investigate whether activin receptor-like kinase 7 (ALK7)-Smad2/3 signaling pathway plays an important role in high glucose-induced cardiomyocyte apoptosis. H9c2 cardiomyoblasts and neonatal rat cardiomyocytes were treated with 33mmol/l glucose. The expression of ALK7, Smad2 and Smad3 were inhibited by small interfering RNA respectively. The level of ALK7, total Smad2/3, phosphorylated Smad2/3, B-cell lymphoma-2 (Bcl-2) and cleaved Caspase3 were evaluated using western blot. The apoptosis rate was detected by flow cytometer. High glucose treatment caused the apoptosis of H9c2 cardiomyocyte and the inhibition of Smad2 or Smad3 attenuated this apoptosis. ALK7 existed in both H9c2 cardiomyoblasts and neonatal rat cardiomyocytes and high ambient glucose upregulated its expression. The increased expression level of cleaved Caspase3 and apoptosis rate and decreased expression of Bcl-2 were reversed after ALK7 was inhibited. The expression of phosphorylated Smad2/3 also decreased after the knockdown of ALK7. Our findings suggest that ALK7 mediates high ambient glucose-induced H9c2 cardiomyoblasts apoptosis through the activation of Smad2/3.
Collapse
Affiliation(s)
- Lin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hill C, Würfel A, Heger J, Meyering B, Schlüter KD, Weber M, Ferdinandy P, Aronheim A, Schulz R, Euler G. Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovasc Res 2013; 99:121-8. [PMID: 23612584 DOI: 10.1093/cvr/cvt094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Expression and activity of the transcription factor AP-1 are enhanced during cardiac remodelling and heart failure progression. In order to test if AP-1 inhibition may limit processes contributing to cardiac remodelling, ventricular cardiomyocytes of mice with cardiac overexpression of the AP-1 inhibitor JDP2 were analysed under stimulation of hypertrophy, apoptosis, or contractile function. METHODS AND RESULTS Three models of JDP2 overexpressing mice were analysed: JDP2 was overexpressed either life-long, for 7 weeks, or 1 week. Then cardiomyocytes were isolated and stimulated with β-adrenoceptor agonist isoprenaline (ISO, 50 nM). This enhanced cross-sectional area and the rate of protein synthesis in WT but not in JDP2 overexpressing cardiomyocytes. To induce apoptosis, cardiomyocytes were stimulated with 3 ng/mL TGFβ1. Again, JDP2 overexpression prevented apoptosis induction compared with WT cells. Determination of contractile function under electrical stimulation at 2 Hz revealed enhancement of cell shortening, and contraction and relaxation velocities under increasing ISO concentrations (0.3-30 nM) in WT cells. This inotropic effect was abrogated in JDP2 overexpression cells. Responsiveness to increased extracellular calcium concentrations was also impaired in JDP2 overexpressing cardiomyocytes. Simultaneously, a reduction of SERCA expression was found in JDP2 mice. CONCLUSION A central role of AP-1 in the induction of hypertrophy and apoptosis in cardiomyocytes is demonstrated. Besides these protective effects of AP-1 inhibition on factors of cardiac remodelling, AP-1-inhibition impairs contractile function. Therefore, AP-1 acts as a double-edged sword that mediates mal-adaptive cardiac remodelling, but is required for maintaining a proper contractile function of cardiomyocytes.
Collapse
Affiliation(s)
- Christian Hill
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Aulweg 129, 35392 Gießen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stauffer BL, Russell G, Nunley K, Miyamoto SD, Sucharov CC. miRNA expression in pediatric failing human heart. J Mol Cell Cardiol 2013; 57:43-6. [PMID: 23333438 PMCID: PMC3694420 DOI: 10.1016/j.yjmcc.2013.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 12/16/2022]
Abstract
miRNAs are short regulatory RNAs that can regulate gene expression through interacting with the 3'UTR of target mRNAs. Although the role of miRNAs has been extensively studied in adult human and animal models of heart disease, nothing is known about their expression in pediatric heart failure patients. Different than adults with heart failure, pediatric patients respond well to phosphodiesterase inhibitor (PDEi) treatment, which is safe in the outpatient setting, results in fewer heart failure emergency department visits, fewer cardiac hospital admissions and improved NYHA classification. We have recently shown that pediatric heart failure patients display a unique molecular profile that is different from adults with heart failure. In this study we show for the first time that pediatric heart failure patients display a unique miRNA profile, and that expression of some miRNAs correlate with response to PDEi treatment. Moreover, we show that expression of Smad4, a potential target for PDEi-regulated miRNAs, is normalized in PDEi-treated patients. Since miRNAs may be used as therapy for human heart failure, our results underscore the importance of defining the molecular characteristics of pediatric heart failure patients, so age-appropriate therapy can be designed for this population.
Collapse
Affiliation(s)
- Brian L. Stauffer
- University of Colorado, Denver Department of Medicine/Division of Cardiology
- Division of Cardiology, Denver Health and Hospital Authority, Denver, Colorado
| | - Gloria Russell
- Pontificia Universidad Católica Madre y Maestra, Departamento de Medicina, Santiago, República Dominicana
| | - Karin Nunley
- University of Colorado, Denver Department of Medicine/Division of Cardiology
| | - Shelley D. Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Carmen C. Sucharov
- University of Colorado, Denver Department of Medicine/Division of Cardiology
| |
Collapse
|
10
|
Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 2011; 51:288-98. [PMID: 21723873 DOI: 10.1016/j.yjmcc.2011.06.012] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
Since techniques for cardiomyocyte isolation were first developed 35 years ago, experiments on single myocytes have yielded great insight into their cellular and sub-cellular physiology. These studies have employed a broad range of techniques including electrophysiology, calcium imaging, cell mechanics, immunohistochemistry and protein biochemistry. More recently, techniques for cardiomyocyte culture have gained additional importance with the advent of gene transfer technology. While such studies require a high quality cardiomyocyte population, successful cell isolation and maintenance during culture remain challenging. In this review, we describe methods for the isolation of adult and neonatal ventricular myocytes from rat and mouse heart. This discussion outlines general principles for the beginner, but also provides detailed specific protocols and advice for common caveats. We additionally review methods for short-term myocyte culture, with particular attention given to the importance of substrate and media selection, and describe time-dependent alterations in myocyte physiology that should be anticipated. Gene transfer techniques for neonatal and adult cardiomyocytes are also reviewed, including methods for transfection (liposome, electroporation) and viral-based gene delivery.
Collapse
|
11
|
Shimano M, Ouchi N, Nakamura K, Oshima Y, Higuchi A, Pimentel DR, Panse KD, Lara-Pezzi E, Lee SJ, Sam F, Walsh K. Cardiac myocyte-specific ablation of follistatin-like 3 attenuates stress-induced myocardial hypertrophy. J Biol Chem 2011; 286:9840-8. [PMID: 21245136 DOI: 10.1074/jbc.m110.197079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor-β family cytokines have diverse actions in the maintenance of cardiac homeostasis. Follistatin-like 3 (Fstl3) is an extracellular regulator of certain TGF-β family members, including activin A. The aim of this study was to examine the role of Fstl3 in cardiac hypertrophy. Cardiac myocyte-specific Fstl3 knock-out (KO) mice and control mice were subjected to pressure overload induced by transverse aortic constriction (TAC). Cardiac hypertrophy was assessed by echocardiography and histological and biochemical methods. KO mice showed reduced cardiac hypertrophy, pulmonary congestion, concentric LV wall thickness, LV dilatation, and LV systolic dysfunction after TAC compared with control mice. KO mice displayed attenuated increases in cardiomyocyte cell surface area and interstitial fibrosis following pressure overload. Although activin A was similarly up-regulated in KO and control mice after TAC, a significant increase in Smad2 phosphorylation only occurred in KO mice. Knockdown of Fstl3 in cultured cardiomyocytes inhibited PE-induced cardiac hypertrophy. Conversely, adenovirus-mediated Fstl3 overexpression blocked the inhibitory action of activin A on hypertrophy and Smad2 activation. Transduction with Smad7, a negative regulator of Smad2 signaling, blocked the antihypertrophic actions of activin A stimulation or Fstl3 ablation. These findings identify Fstl3 as a stress-induced regulator of hypertrophy that controls myocyte size via regulation of Smad signaling.
Collapse
Affiliation(s)
- Masayuki Shimano
- Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yuan SM, Jing H. Cardiac pathologies in relation to Smad-dependent pathways. Interact Cardiovasc Thorac Surg 2010; 11:455-60. [DOI: 10.1510/icvts.2010.234773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, Jeong D, Yang DK, Hajjar RJ, Park WJ. The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 2010; 49:294-303. [PMID: 20430035 DOI: 10.1016/j.yjmcc.2010.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 12/18/2022]
Abstract
CCN family members are matricellular proteins with diverse roles in cell function. The differential expression of CCN2 and CCN5 during cardiac remodeling suggests that these two members of the CCN family play opposing roles during the development of cardiac hypertrophy and fibrosis. We aimed to evaluate the role of CCN2 and CCN5 in the development of cardiac hypertrophy and fibrosis. In isolated cardiomyocytes, overexpression of CCN2 induced hypertrophic growth, whereas the overexpression of CCN5 inhibited both phenylephrine (PE)- and CCN2-induced hypertrophic responses. Deletion of the C-terminal (CT) domain of CCN2 transformed CCN2 into a CCN5-like dominant negative molecule. Fusion of the CT domain to the Carboxy-terminus of CCN5 transformed CCN5 into a CCN2-like pro-hypertrophic molecule. CCN2 transgenic (TG) mice did not develop cardiac hypertrophy at baseline but showed significantly increased fibrosis in response to pressure overload. In contrast, hypertrophy and fibrosis were both significantly inhibited in CCN5 TG mice. CCN2 TG mice showed an accelerated deterioration of cardiac function in response to pressure overload, whereas CCN5 TG mice showed conserved cardiac function. TGF-beta-SMAD signaling was elevated in CCN2 TG mice, but was inhibited in CCN5 TG mice. CCN2 is pro-hypertrophic and -fibrotic, whereas CCN5 is anti-hypertrophic and -fibrotic. CCN5 lacking the CT domain acts as a dominant negative molecule. CCN5 may provide a novel therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Pyoung Oh Yoon
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|