1
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Kurnit KC, Draisey A, Kazen RC, Chung C, Phan LH, Harvey JB, Feng J, Xie S, Broaddus RR, Bowser JL. Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett 2021; 505:75-86. [PMID: 33609609 PMCID: PMC9812391 DOI: 10.1016/j.canlet.2021.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-β and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-β-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-β1 from tumor suppressor to promoter in EC. TGF-β1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-β1-mediated epithelial integrity was abrogated. EC cells developed TGF-β1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-β1 activity, CD73 loss increased TGF-β1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-β-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-β-mediated invasion. These data identify CD73 loss as essential for shifting TGF-β activity in EC.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ashley Draisey
- University of Northern Iowa, Cedar Falls, IA, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca C Kazen
- University of Colorado at Boulder, Boulder, CO, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Chung
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luan H Phan
- University of Texas McGovern Medical School, Houston, TX, USA
| | | | - Jiping Feng
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - SuSu Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Penchev VR, Chang YT, Begum A, Ewachiw T, Gocke C, Li J, McMillan RH, Wang Q, Anders R, Marchionni L, Maitra A, Uren A, Rasheed Z, Matsui W. Ezrin Promotes Stem Cell Properties in Pancreatic Ductal Adenocarcinoma. Mol Cancer Res 2019; 17:929-936. [PMID: 30655325 DOI: 10.1158/1541-7786.mcr-18-0367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
Abstract
Self-renewal maintains the long-term clonogenic growth that is required for cancer relapse and progression, but the cellular processes regulating this property are not fully understood. In many diseases, self-renewal is enhanced in cancer stem cells (CSC), and in pancreatic ductal adenocarcinoma (PDAC), CSCs are characterized by the surface expression of CD44. In addition to cell adhesion, CD44 impacts cell shape and morphology by modulating the actin cytoskeleton via Ezrin, a member of the Ezrin/Radixin/Moesin (ERM) family of linker proteins. We examined the expression of Ezrin in PDAC cells and found higher levels of both total and activated Ezrin in CSCs compared with bulk tumor cells. We also found that the knockdown of Ezrin in PDAC cells decreased clonogenic growth, self-renewal, cell migration, and CSC frequency in vitro as well as tumor initiation in vivo. These effects were associated with cytoskeletal changes that are similar to those occurring during the differentiation of normal stem cells, and the inhibition of actin remodeling reversed the impact of Ezrin loss. Finally, targeting Ezrin using a small-molecule inhibitor limited the self-renewal of clinically derived low-passage PDAC xenografts. Our findings demonstrate that Ezrin modulates CSCs properties and may represent a novel target for the treatment of PDAC. IMPLICATIONS: Our findings demonstrate that Ezrin modulates CSCs' properties and may represent a novel target for the treatment of PDAC.
Collapse
Affiliation(s)
- Vesselin R Penchev
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu-Tai Chang
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore Ewachiw
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christian Gocke
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joey Li
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ross H McMillan
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiuju Wang
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Aykut Uren
- Department of Oncology, Lombardy Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Zeshaan Rasheed
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Matsui
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Yin X, Kang JH, Andrianifahanana M, Wang Y, Jung MY, Hernandez DM, Leof EB. Basolateral delivery of the type I transforming growth factor beta receptor is mediated by a dominant-acting cytoplasmic motif. Mol Biol Cell 2017; 28:2701-2711. [PMID: 28768825 PMCID: PMC5620377 DOI: 10.1091/mbc.e17-05-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/25/2022] Open
Abstract
A novel motif within the cytoplasmic tail of the type I TGF-β receptor (TβRI) controls basolateral delivery. While this element functions independent of TβRI recycling and heteromeric TGF-β receptor trafficking, it can dominantly direct an apically expressed receptor to the basolateral membrane in polarized epithelial cells. Delivery of biomolecules to the correct subcellular locales is critical for proper physiological function. To that end, we have previously determined that type I and II transforming growth factor beta (TGF-β) receptors (TβRI and TβRII, respectively) localize to the basolateral domain in polarized epithelia. While TβRII targeting was shown to be regulated by sequences between amino acids 529 and 538, the analogous region(s) within TβRI is unknown. To address that question, sequential cytoplasmic TβRI truncations and point mutations identified a targeting motif between residues 158 and 163 (VxxEED) required for basolateral TβRI expression. Further studies documented that receptor internalization, down-regulation, direct recycling, or Smad signaling were unaffected by motif mutations that caused TβRI mislocalization. However, inclusion of amino acids 148–217 containing the targeting motif was able to direct basolateral expression of the apically sorted nerve growth factor receptor (NGFR, p75; extracellular and transmembrane regions) in a dominant manner. Finally, coexpression of apically targeted type I and type II TGF-β receptors mediated Smad3 signaling from the apical membrane of polarized epithelial cells. These findings demonstrate that the absence of apical TGF-β signaling in normal epithelia is primarily a reflection of domain-specific receptor expression and not an inability to couple with the signaling machinery.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, GA 30904
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Danielle M Hernandez
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
5
|
Nallet-Staub F, Yin X, Gilbert C, Marsaud V, Ben Mimoun S, Javelaud D, Leof EB, Mauviel A. Cell density sensing alters TGF-β signaling in a cell-type-specific manner, independent from Hippo pathway activation. Dev Cell 2015; 32:640-51. [PMID: 25758862 DOI: 10.1016/j.devcel.2015.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/09/2014] [Accepted: 01/14/2015] [Indexed: 10/23/2022]
Abstract
Cell-cell contacts inhibit cell growth and proliferation in part by activating the Hippo pathway that drives the phosphorylation and nuclear exclusion of the transcriptional coactivators YAP and TAZ. Cell density and Hippo signaling have also been reported to block transforming growth factor β (TGF-β) responses, based on the ability of phospho-YAP/TAZ to sequester TGF-β-activated SMAD complexes in the cytoplasm. Herein, we provide evidence that epithelial cell polarization interferes with TGF-β signaling well upstream and independent of cytoplasmic YAP/TAZ. Rather, polarized basolateral presentation of TGF-β receptors I and II deprives apically delivered TGF-β of access to its receptors. Basolateral ligand delivery nonetheless remains entirely effective to induce TGF-β responses. These data demonstrate that cell-type-specific inhibition of TGF-β signaling by cell density is restricted to polarized epithelial cells and reflects the polarized distribution of TGF-β receptors, which thus affects SMAD activation irrespective of Hippo pathway activation.
Collapse
Affiliation(s)
- Flore Nallet-Staub
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Xueqian Yin
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Cristèle Gilbert
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Véronique Marsaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Saber Ben Mimoun
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Delphine Javelaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Edward B Leof
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| | - Alain Mauviel
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France.
| |
Collapse
|
6
|
Imperlini E, Colavita I, Caterino M, Mirabelli P, Pagnozzi D, Vecchio LD, Noto RD, Ruoppolo M, Orrù S. The secretome signature of colon cancer cell lines. J Cell Biochem 2013; 114:2577-87. [PMID: 23744648 DOI: 10.1002/jcb.24600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023]
|
7
|
Grenier E, Mailhot G, Dion D, Ravid Z, Spahis S, Bendayan M, Levy E. Role of the apical and basolateral domains of the enterocyte in the regulation of cholesterol transport by a high glucose concentration. Biochem Cell Biol 2013; 91:476-86. [PMID: 24219290 DOI: 10.1139/bcb-2013-0053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have recently shown that a high glucose (HG) concentration raised intestinal cholesterol (CHOL) transport and metabolism in intestinal epithelial cells. The objective of the present work is to determine whether the stimulus for increased CHOL absorption by glucose originates from the apical site (corresponding to the intestinal lumen) or from the basolateral site (related to blood circulation). We tackled this issue by using differentiated Caco-2/15 cells. Only basolateral medium, supplemented with 25 mmol/L glucose, stimulated [(14)C]-CHOL uptake via the up-regulation of the critical CHOL transporter NPC1L1 protein, as confirmed by its specific ezetimibe inhibitor that abolished the rise in glucose-mediated CHOL capture. No significant changes were noted in SR-BI and CD36. Elevated CHOL uptake was associated with an increase in the transcription factors SREBP-2, LXR-β, and ChREBP, along with a fall in RXR-α. Interestingly, although the HG concentration in the apical medium caused modest changes in CHOL processing, its impact was synergetic with that of the basolateral medium. Our results suggest that HG concentration influences positively intestinal CHOL uptake when present in the basolateral medium. In addition, excessive consumption of diets containing high levels of carbohydrates may strengthen intestinal CHOL uptake in metabolic syndrome, thereby contributing to elevated levels of circulating CHOL and, consequently, the risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Emilie Grenier
- a Research Centre, CHU Ste-Justine, 3175 Ste-Catherine Road, Montreal, QC H3T 1C5, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Saitoh M, Shirakihara T, Fukasawa A, Horiguchi K, Sakamoto K, Sugiya H, Beppu H, Fujita Y, Morita I, Miyazono K, Miyazawa K. Basolateral BMP signaling in polarized epithelial cells. PLoS One 2013; 8:e62659. [PMID: 23675417 PMCID: PMC3652834 DOI: 10.1371/journal.pone.0062659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER), counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.
Collapse
Affiliation(s)
- Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferruzza S, Rossi C, Scarino ML, Sambuy Y. A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol In Vitro 2012; 26:1252-5. [DOI: 10.1016/j.tiv.2012.01.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/13/2011] [Accepted: 01/06/2012] [Indexed: 11/30/2022]
|
10
|
Zuehlke J, Ebenau A, Krueger B, Goppelt-Struebe M. Vectorial secretion of CTGF as a cell-type specific response to LPA and TGF-β in human tubular epithelial cells. Cell Commun Signal 2012; 10:25. [PMID: 22938209 PMCID: PMC3503564 DOI: 10.1186/1478-811x-10-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED BACKGROUND Increased expression of the pro-fibrotic protein connective tissue growth factor (CTGF) has been detected in injured kidneys and elevated urinary levels of CTGF are discussed as prognostic marker of chronic kidney disease. There is evidence that epithelial cells lining the renal tubular system contribute to uptake and secretion of CTGF. However, the role of different types of tubular epithelial cells in these processes so far has not been addressed in primary cultures of human cells. RESULTS Tubular epithelial cells of proximal and distal origin were isolated from human kidneys and cultured as polarized cells in insert wells. The pro-fibrotic stimuli lysophosphatidic acid (LPA) and transforming growth factor β (TGF-β) were used to induce CTGF secretion.LPA activated CTGF secretion in proximal tubular cells when applied from either the apical or the basolateral side as shown by immunocytochemistry. CTGF was secreted exclusively to the apical side. Signaling pathways activated by LPA included MAP kinase and Rho kinase signaling. TGF-β applied from either side also stimulated CTGF secretion primarily to the apical side with little basolateral release.Interestingly, TGF-β activation induced different signaling pathways depending on the side of TGF-β application. Smad signaling was almost exclusively activated from the basolateral side most prominently in cells of distal origin. Only part of these cells also synthesized CTGF indicating that Smad activation alone was not sufficient for CTGF induction. MAP kinases were involved in apical TGF-β-mediated activation of CTGF synthesis in proximal cells and a subset of epithelial cells of distal origin. This subpopulation of distal tubular cells was also able to internalize recombinant apical CTGF, in addition to proximal cells which were the main cells to take up exogenous CTGF. CONCLUSIONS Analysis of polarized human primary renal epithelial cells in a transwell system shows that vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-β and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.
Collapse
Affiliation(s)
- Jonathan Zuehlke
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Astrid Ebenau
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Bettina Krueger
- Department of Cellular and Molecular Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 6, Erlangen, 91054, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| |
Collapse
|
11
|
Grenier E, Garofalo C, Delvin E, Levy E. Modulatory role of PYY in transport and metabolism of cholesterol in intestinal epithelial cells. PLoS One 2012; 7:e40992. [PMID: 22844422 PMCID: PMC3402548 DOI: 10.1371/journal.pone.0040992] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
Background Gastrointestinal peptides are involved in modulating appetite. Other biological functions attributed to them include the regulation of lipid homeostasis. However, data concerning PYY remain fragmentary. The objectives of the study were: (i) To determine the effect of PYY on intestinal transport and synthesis of cholesterol, the biogenesis of apolipoproteins (apos) and assembly of lipoproteins and (ii) To analyze whether the effects of PYY are similar according to whether cells are exposed to PYY on apical or basolateral surface. Methodology/Principal Findings Caco-2/15 cells were incubated with PYY (1–36) administered either to the apical or basolateral medium, at concentrations of 50 or 200 nM for 24 hours. De novo synthesis of cholesterol, cholesterol uptake, and assembly of lipoproteins were evaluated through the incorporation of [14C]-acetate, [14C]-cholesterol, and [14C]-oleate, respectively. Biogenesis of apos (A-I, A-IV, E, B-48 and B-100) was examined by the incorporation of [35S]-methionine. The influence of PYY on protein and mRNA levels of many key mediators of lipid metabolism was analyzed by Western blot and PCR, respectively. Our results show that PYY influenced cholesterol metabolism in Caco-2/15 cells depending on the site of PYY delivery. Apical addition of PYY significantly lowered the incorporation of [14C]-cholesterol likely via the reduction of NPC1L1, stimulated intracellular cholesterol synthesis probably through an increase in SREBP-2 expression, whereas it concomitantly increased apo A-I synthesis and decreased LDL secretion. In contrast, basolateral PYY reduced the production of chylomicrons (CM) as well as the biogenesis of apos B-48 and B-100, while lowering the expression of the transcription factors RXRα and PPAR(α,β). Conclusions/Significance PYY is capable of influencing cholesterol homeostasis in intestinal Caco-2/15 cells depending on the site delivery. Apical PYY was able to decrease cholesterol uptake via NPC1L1 downregulation, whereas basolateral PYY diminished CM output through the biogenesis decline of apos B-48 and B-100.
Collapse
Affiliation(s)
- Emilie Grenier
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Carole Garofalo
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16:127-46. [PMID: 21448580 PMCID: PMC3723114 DOI: 10.1007/s10911-011-9207-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jenny G Parvani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|