1
|
Gupta H, Gupta A. Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer. Epigenetics Chromatin 2025; 18:18. [PMID: 40186325 PMCID: PMC11969907 DOI: 10.1186/s13072-025-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 04/07/2025] Open
Abstract
TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yang X, Weber AA, Mennillo E, Paszek M, Wong S, Le S, Teo JYA, Chang M, Benner CW, Tukey RH, Chen S. Oral arsenic administration to humanizedUDP-glucuronosyltransferase1 neonatal mice induces UGT1A1 through a dependence on Nrf2 and PXR. J Biol Chem 2023; 299:102955. [PMID: 36720308 PMCID: PMC9996368 DOI: 10.1016/j.jbc.2023.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Miles Paszek
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jia Ying Ashley Teo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christopher W Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
3
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
4
|
Chen S, Tukey RH. Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 2018; 46:1745-1755. [PMID: 30093417 PMCID: PMC6199628 DOI: 10.1124/dmd.118.083212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
Neonatal hyperbilirubinemia and the onset of bilirubin encephalopathy and kernicterus result in part from delayed expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) and the ability to metabolize bilirubin. It is generally believed that acute neonatal forms of hyperbilirubinemia develop due to an inability of hepatic UGT1A1 to metabolize efficiently bilirubin for clearance through the hepatobiliary tract. Newly developed mouse models designed to study bilirubin metabolism have led to new insight into the role of the intestinal tract in controlling neonatal hyperbilirubinemia. Humanization of mice with the UGT1 locus (hUGT1 mice) and the UGT1A1 gene provide a unique tool to study the onset of hyperbilirubinemia since the human UGT1A1 gene is developmentally regulated during the neonatal period in hUGT1 mice. A new mechanism outlying developmental expression of intestinal UGT1A1 is presented and its implications in the control of neonatal hyperbilirubinemia discussed. New findings linking breast milk protection against necrotizing enterocolitis and intestinal control of UGT1A1 may help explain the contribution of breast milk toward the development of neonatal hyperbilirubinemia. Our findings outline a new model that includes an active intestinal ROS /IκB kinase/nuclear receptor corepressor 1 loop that can be applied to an understanding of breast milk-induced jaundice.
Collapse
Affiliation(s)
- Shujuan Chen
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| | - Robert H Tukey
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress. Sci Rep 2017; 7:46489. [PMID: 28422158 PMCID: PMC5395973 DOI: 10.1038/srep46489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car−/− mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car−/− neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.
Collapse
|
7
|
Li X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer 2017; 17:252. [PMID: 28390392 PMCID: PMC5385072 DOI: 10.1186/s12885-017-3257-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/01/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cervical cancer is the second most common cause of cancer deaths in women worldwide. The aim of this study is to exploit novel pathogenic genes in cervical carcinogenesis. METHOD The somatic mutations from 194 patients with cervical cancer were obtained from the Cancer Genome Atlas (TCGA) publically accessible exome-sequencing database. We investigated mutated gene enrichment in the 12 cancer core pathways and predicted possible post-translational modifications. Additionally, we predicted the impact of mutations by scores quantifying the deleterious effects of the mutations. We also examined the immunogenicity of the mutations based on the mutant peptides' strong binding with major histocompatibility complex class I molecules (MHC-I). The Kaplan-Meier method was used for the survival analysis. RESULTS We observed that the chromatin modification pathway was significantly mutated across all clinical stages. Among the mutated genes involved in this pathway, we observed that the histone modification regulators were primarily mutated. Interestingly, of the 197 mutations in the 26 epigenetic regulators in this pathway, 25 missense mutations in 13 genes were predicted in or around the phosphorylation sites. Only mutations in the histone methyltransferase MLL2 exhibited poor survival. Compared to other mutations in MLL2 mutant patients, we noticed that the mutational scores prioritized mutations in MLL2, which indicates that it is more likely to have deleterious effects to the human genome. Around half of all of the mutations were found to bind strongly to MHC-I, suggesting that patients are likely to benefit from immunotherapy. CONCLUSIONS Our results highlight the emerging role of mutations in epigenetic regulators, particularly MLL2, in cervical carcinogenesis, which suggests a potential disruption of histone modifications. These data have implications for further investigation of the mechanism of epigenetic dysregulation and for treatment of cervical cancer.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| |
Collapse
|
8
|
Intestinal NCoR1, a regulator of epithelial cell maturation, controls neonatal hyperbilirubinemia. Proc Natl Acad Sci U S A 2017; 114:E1432-E1440. [PMID: 28167773 DOI: 10.1073/pnas.1700232114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe neonatal hyperbilirubinemia (SNH) and the onset of bilirubin encephalopathy and kernicterus result in part from delayed expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) and the inability to metabolize bilirubin. Although there is a good understanding of the early events after birth that lead to the rapid increase in serum bilirubin, the events that control delayed expression of UGT1A1 during development remain a mystery. Humanized UGT1 (hUGT1) mice develop SNH spontaneously, which is linked to repression of both liver and intestinal UGT1A1. In this study, we report that deletion of intestinal nuclear receptor corepressor 1 (NCoR1) completely diminishes hyperbilirubinemia in hUGT1 neonates because of intestinal UGT1A1 gene derepression. Transcriptomic studies and immunohistochemistry analysis demonstrate that NCoR1 plays a major role in repressing developmental maturation of the intestines. Derepression is marked by accelerated metabolic and oxidative phosphorylation, drug metabolism, fatty acid metabolism, and intestinal maturation, events that are controlled predominantly by H3K27 acetylation. The control of NCoR1 function and derepression is linked to IKKβ function, as validated in hUGT1 mice with targeted deletion of intestinal IKKβ. Physiological events during neonatal development that target activation of an IKKβ/NCoR1 loop in intestinal epithelial cells lead to derepression of genes involved in intestinal maturation and bilirubin detoxification. These findings provide a mechanism of NCoR1 in intestinal homeostasis during development and provide a key link to those events that control developmental repression of UGT1A1 and hyperbilirubinemia.
Collapse
|
9
|
Lopez SM, Agoulnik AI, Zhang M, Peterson LE, Suarez E, Gandarillas GA, Frolov A, Li R, Rajapakshe K, Coarfa C, Ittmann MM, Weigel NL, Agoulnik IU. Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clin Cancer Res 2016; 22:3937-49. [PMID: 26968201 DOI: 10.1158/1078-0432.ccr-15-1983] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens. EXPERIMENTAL DESIGN NCOR1 protein levels were compared between matched normal prostate and prostate cancer in 409 patient samples. NCOR1 knockdown was used to investigate its effect on bicalutamide response in androgen-dependent prostate cancer cell lines and transcriptional changes associated with the loss of NCOR1. NCOR1 transcriptional signature was also examined in prostate cancer gene expression datasets. RESULTS NCOR1 protein was detected in cytoplasm and nuclei of secretory epithelial cells in normal prostate. Both cytoplasmic and nuclear NCOR1 protein levels were lower in prostate cancer than in normal prostate. Prostate cancer metastases show significant decrease in NCOR1 transcriptional output. Inhibition of LNCaP cellular proliferation by bicalutamide requires NCOR1. NCOR1-regulated genes suppress cellular proliferation and mediate bicalutamide resistance. In the mouse, NCOR1 is required for bicalutamide-dependent regulation of a subset of the AR target genes. CONCLUSIONS In summary, we demonstrated that NCOR1 function declines with prostate cancer progression. Reduction in NCOR1 levels causes bicalutamide resistance in LNCaP cells and compromises response to bicalutamide in mouse prostate in vivo Clin Cancer Res; 22(15); 3937-49. ©2016 AACR.
Collapse
Affiliation(s)
- Sandra M Lopez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Manqi Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas
| | - Egla Suarez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Gregory A Gandarillas
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Anna Frolov
- Dan L. Duncan Cancer Center-Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Rile Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Christian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas. Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Irina U Agoulnik
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Biomolecular Sciences Institute, School of Integrated Science and Humanity, Florida international University, Miami, Florida.
| |
Collapse
|
10
|
Therapy escape mechanisms in the malignant prostate. Semin Cancer Biol 2015; 35:133-44. [PMID: 26299608 DOI: 10.1016/j.semcancer.2015.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) is the main target for prostate cancer therapy. Clinical approaches for AR inactivation include chemical castration, inhibition of androgen synthesis and AR antagonists (anti-androgens). However, treatment resistance occurs for which an important number of therapy escape mechanisms have been identified. Herein, we summarise the current knowledge of molecular mechanisms underlying therapy resistance in prostate cancer. Moreover, the tumour escape mechanisms are arranged into the concepts of target modification, bypass signalling, histologic transformation, cancer stem cells and miscellaneous mechanisms. This may help researchers to compare and understand same or similar concepts of therapy resistance in prostate cancer and other cancer types.
Collapse
|
11
|
Huang J, Cardamone MD, Johnson HE, Neault M, Chan M, Floyd ZE, Mallette FA, Perissi V. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. J Biol Chem 2015; 290:19044-54. [PMID: 26070566 DOI: 10.1074/jbc.m115.637660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/18/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment.
Collapse
Affiliation(s)
- Jiawen Huang
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - M Dafne Cardamone
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Holly E Johnson
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mathieu Neault
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada
| | - Michelle Chan
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Z Elizabeth Floyd
- the Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, and
| | - Frédérick A Mallette
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada, the Département de Médecine, Université de Montréal, Montréal, Quebec H1T 2M4, Canada
| | - Valentina Perissi
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
12
|
Felgueiras J, Fardilha M. Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer. World J Pharmacol 2014; 3:120-139. [DOI: 10.5497/wjp.v3.i4.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major public health concern worldwide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specificity of prostate-specific antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modification critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phosphatase, whose specificity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identified as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
Collapse
|