1
|
Qian Z, Ping L, Dongming X, Xuelin Z. Slow-velocity eccentric-only resistance training improves symptoms of type 2 diabetic mellitus patients by regulating plasma MMP-2 and -9. Medicine (Baltimore) 2024; 103:e38855. [PMID: 39029066 PMCID: PMC11398826 DOI: 10.1097/md.0000000000038855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE This study investigated the intervention effect of slow-velocity eccentric-only resistance training on type 2 diabetic mellitus (T2DM) patients based on the role of matrix metalloproteinase-2 and -9 (MMP-2 and -9) in regulating extracellular matrix homeostasis. METHODS 50 T2DM patients were randomly divided into the slow-velocity eccentric-only resistance training group (E) and control group (C). The E group performed eccentric-only resistance training 3 times a week, every other day for 10 weeks, while the C group did not. Blood samples were collected before and after training, and subjects were tested for changes in clinical parameters, insulin resistance indices [fasting insulin, homeostatic model assessment insulin resistance (HOMA-IR)], MMP-2 and -9, and hydroxyproline, and muscle strength (12-RM), respectively. RESULTS After 10 weeks of training, the E group showed significant decreases in fasting glucose (P < .05), insulin (P < .05), insulin resistance indices (P < .05), hemoglobin A1c (HbA1c) (P < .01), triglycerides (P = .06) and MMP-2 (P < .05), while total cholesterol (P < .05), MMP-9 (P < .05), hydroxyproline (P < .01), Creatine Kinase (CK) (P < .05), and muscle strength (P < .001) significantly increased. There were no significant changes in the count of neutrophil, lymphocyte and platelet, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c). Compared with the C group, the E group showed a trend of a significant decrease in triglyceride (P < .05), lymphocyte count (P < .05), fasting glucose (P = .07), and plasma MMP-2 (P < .05), while MMP-9 (P < .05), hydroxyproline (P < .001), and muscle strength (P < .01) significantly increased. However, no significant changes were observed in insulin and insulin resistance indices, HbA1c, total cholesterol, HDL-c, LDL-c, CK, and other inflammatory indicators. CONCLUSIONS Slow-velocity eccentric-only resistance training was beneficial for T2DM, but the potential role of MMP-2 and -9 in regulating extracellular matrix homeostasis is very different in T2DM patients.
Collapse
Affiliation(s)
- Zhao Qian
- College of Physical Education, Qufu Normal University, Qufu, China
| | - Liu Ping
- College of Physical Education, Qufu Normal University, Qufu, China
| | - Xu Dongming
- College of Physical Education, Qufu Normal University, Qufu, China
| | - Zhang Xuelin
- College of Physical Education, Qufu Normal University, Qufu, China
| |
Collapse
|
2
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Wu X, Zhou X, Chu M, Guo X, Pei J, Xiong L, Ma X, Bao P, Liang C, Yan P. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak. Meat Sci 2022; 194:108948. [PMID: 36058093 DOI: 10.1016/j.meatsci.2022.108948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Mammalian skeletal muscle is composed of various muscle fibers that exhibit different physiological and metabolic features. Muscle fiber type composition has significant influences on the meat quality of livestock. In this study, we comprehensively analyzed the whole transcriptome profiles of the oxidative muscle biceps femoris (BF) and the glycolytic muscle obliquus externus abdominis (OEA) of yak. A total of 1436 mRNAs, 1172 lncRNAs, and 218 circRNAs were differentially expressed in the oxidative muscles compared with the glycolytic muscles. KEGG annotation showed that differentially expressed mRNAs regulated by lncRNA and circRNA were mainly involved in PPAR signaling pathway, citrate cycle (TCA cycle), and PI3K-Akt signaling pathway, which reflect the different metabolic properties between oxidative and glycolytic muscles. In addition, regulatory networks associated with muscle fiber type conversion and mitochondria energy metabolism in muscles were constructed. Our study provides new evidence for a better understanding of the molecular mechanisms underlying skeletal muscle fiber determination and meat quality traits of yak.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xuelan Zhou
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
4
|
Comparison between Heat-Clearing Medicine and Antirheumatic Medicine in Treatment of Gastric Cancer Based on Network Pharmacology, Molecular Docking, and Tumor Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7490279. [PMID: 35069767 PMCID: PMC8767399 DOI: 10.1155/2022/7490279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Background Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. Methods First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. Results A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. Conclusions Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.
Collapse
|
5
|
Vieira Ramos G, de Sousa Neto IV, Toledo-Arruda AC, Marqueti RDC, Vieira RP, Martins MA, Salvini TF, Durigan JLQ. Moderate Treadmill Training Induces Limited Effects on Quadriceps Muscle Hypertrophy in Mice Exposed to Cigarette Smoke Involving Metalloproteinase 2. Int J Chron Obstruct Pulmon Dis 2022; 17:33-42. [PMID: 35027823 PMCID: PMC8752871 DOI: 10.2147/copd.s326894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Long-term cigarette smoke (CS) induces substantive extrapulmonary effects, including musculoskeletal system disorders. Exercise training seems to protect long-term smokers against fiber atrophy in the locomotor muscles. Nevertheless, the extracellular matrix (ECM) changes in response to aerobic training remain largely unknown. Thus, we investigated the effects of moderate treadmill training on aerobic performance, cross-sectional area (CSA), fiber distribution, and metalloproteinase 2 (MMP-2) activity on quadriceps muscle in mice exposed to chronic CS. METHODS Male mice were randomized into four groups: control or smoke (6 per group) and exercise or exercise+smoke (5 per group). Animals were exposed to 12 commercially filtered cigarettes per day (0.8 mg of nicotine, 10 mg of tar, and 10 mg of CO per cigarette). The CSA, fibers distribution, and MMP-2 activity by zymography were assessed after a period of treadmill training (50% of maximal exercise capacity for 60 min/day, 5 days/week) for 24 weeks. RESULTS The CS exposure did not change CSA compared to the control group (p>0.05), but minor fibers in the frequency distribution (<1000 µm2) were observed. Long-term CS exposure attenuated CSA increases in exercise conditions (smoke+exercise vs exercise) while did not impair aerobic performance. Quadriceps CSA increased in mice nonsmoker submitted to aerobic training (p = 0.001). There was higher pro-MMP-2 activity in the smoke+exercise group when compared to the smoke group (p = 0.01). Regarding active MMP-2, the exercise showed higher values when compared to the control group (p = 0.001). CONCLUSION Moderate treadmill training for 24 weeks in mice exposed to CS did not modify CSA, despite inducing higher pro-MMP-2 activity in the quadriceps muscle, suggesting limited effects on ECM remodeling. Our findings may contribute to new insights into molecular mechanisms for CS conditions.
Collapse
Affiliation(s)
- Gracielle Vieira Ramos
- Physical Therapy Division, University of Brasilia, Brasília, DF, Brazil
- Department of Physical Therapy, University Paulista, Brasília, DF, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Alessandra Choqueta Toledo-Arruda
- Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodolfo P Vieira
- Universidade Brasil, Post-Graduation Program in Bioengineering, São Paulo, Brazil
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE) and Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
- Federal University of Sao Paulo, Post-Graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia F Salvini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
6
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
8
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Nederveen JP, Joanisse S, Thomas ACQ, Snijders T, Manta K, Bell KE, Phillips SM, Kumbhare D, Parise G. Age‐related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB J 2020; 34:8975-8989. [DOI: 10.1096/fj.201900787r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | - Sophie Joanisse
- Department of Kinesiology McMaster University Hamilton ON Canada
| | | | - Tim Snijders
- Department of Kinesiology McMaster University Hamilton ON Canada
- Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Medical Center+ Maastricht the Netherlands
| | - Katherine Manta
- Department of Kinesiology McMaster University Hamilton ON Canada
| | - Kirsten E. Bell
- Department of Kinesiology McMaster University Hamilton ON Canada
| | | | | | - Gianni Parise
- Department of Kinesiology McMaster University Hamilton ON Canada
| |
Collapse
|
10
|
Matchett EF, Wang S, Crawford BD. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J Dev Biol 2019; 7:jdb7040022. [PMID: 31816958 PMCID: PMC6955687 DOI: 10.3390/jdb7040022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) of the myotendinous junction (MTJ) undergoes dramatic physical and biochemical remodeling during the first 48 h of development in zebrafish, transforming from a rectangular fibronectin-dominated somite boundary to a chevron-shaped laminin-dominated MTJ. Matrix metalloproteinase 11 (Mmp11, a.k.a. Stromelysin-3) is both necessary and sufficient for the removal of fibronectin at the MTJ, but whether this protease acts directly on fibronectin and how its activity is regulated remain unknown. Using immunofluorescence, we show that both paralogues of Mmp11 accumulate at the MTJ during this time period, but with Mmp11a present early and later replaced by Mmp11b. Moreover, Mmp11a also accumulates intracellularly, associated with the Z-discs of sarcomeres within skeletal muscle cells. Using the epitope-mediated MMP activation (EMMA) assay, we show that despite having a weaker paired basic amino acid motif in its propeptide than Mmp11b, Mmp11a is activated by furin, but may also be activated by other mechanisms intracellularly. One or both paralogues of tissue inhibitors of metalloproteinase-4 (Timp4) are also present at the MTJ throughout this process, and yeast two-hybrid assays reveal distinct and specific interactions between various domains of these proteins. We propose a model in which Mmp11a activity is modulated (but not inhibited) by Timp4 during early MTJ remodeling, followed by a phase in which Mmp11b activity is both inhibited and spatially constrained by Timp4 in order to maintain the structural integrity of the mature MTJ.
Collapse
|
11
|
Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019; 7:biomedicines7040093. [PMID: 31795436 PMCID: PMC6966518 DOI: 10.3390/biomedicines7040093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Gelatinase A (Mmp2 in zebrafish) is a well-characterized effector of extracellular matrix remodeling, extracellular signaling, and along with other matrix metalloproteinases (MMPs) and extracellular proteases, it plays important roles in the establishment and maintenance of tissue architecture. Gelatinase A is also found moonlighting inside mammalian striated muscle cells, where it has been implicated in the pathology of ischemia-reperfusion injury. Gelatinase A has no known physiological function in muscle cells, and its localization within mammalian cells appears to be due to inefficient recognition of its N-terminal secretory signal. Here we show that Mmp2 is abundant within the skeletal muscle cells of zebrafish, where it localizes to the M-line of sarcomeres and degrades muscle myosin. The N-terminal secretory signal of zebrafish Mmp2 is also challenging to identify, and this is a conserved characteristic of gelatinase A orthologues, suggesting a selective pressure acting to prevent the efficient secretion of this protease. Furthermore, there are several strongly conserved phosphorylation sites within the catalytic domain of gelatinase A orthologues, some of which are phosphorylated in vivo, and which are known to regulate the activity of this protease. We conclude that gelatinase A likely participates in uncharacterized physiological functions within the striated muscle, possibly in the maintenance of sarcomere proteostasis, that are likely regulated by kinases and phosphatases present in the sarcomere.
Collapse
|
12
|
Tang X, Wang J, Zhou S, Zhou J, Jia G, Wang H, Xin C, Fu G, Zhang J. miR‑760 regulates skeletal muscle proliferation in rheumatoid arthritis by targeting Myo18b. Mol Med Rep 2019; 20:4843-4854. [PMID: 31661144 PMCID: PMC6854551 DOI: 10.3892/mmr.2019.10775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs serve an important role in the development of several diseases. Numerous genes regulate the skeletal muscle differentiation of C2C12 myoblasts. The role of miR-760 in rheumatoid arthritis (RA) has not been reported, to the best of our knowledge. Therefore, the aim of the present study was to examine the role of miR-760 in regulating skeletal muscle proliferation in RA. Potential genes functionally involved in the tarsal joint of a collagen-induced RA model were identified using Gene Expression Omnibus. Reverse transcription-quantitative PCR and western blot analyses were performed to determine the mRNA and protein expression levels. The proliferation, cell cycle progression and migration of C2C12 myoblasts were detected using Cell Counting Kit-8, flow cytometry and wound-healing assays, respectively. TargetScan was used to predict the potential target genes of miR-760, and this was verified using a dual-luciferase reporter assay. In the present study, myosin-18b (Myo18b) expression was determined to be downregulated in the RA model. Silencing Myo18b decreased the proliferation, abrogated the cell cycle progression, and reduced the migration and differentiation of C2C12 myoblasts. Expression levels of cyclin-dependent kinase 2, cyclin D1, matrix metalloproteinase (MMP)-2, MMP-9, myogenin and myosin heavy chain 6 were all decreased when Myo18b was silenced. Furthermore, overexpression of Myo18b induced opposing effects on C2C12 myoblasts. It was shown that Myo18b was a target gene of miRNA-760. Overexpression of miR-760 decreased proliferation, cell cycle progression, migration and differentiation in C2C12 myoblasts, and decreased the expression of Myo18b. The opposite results were observed when miR-760 was downregulated. In conclusion, miR-760 inhibited proliferation and differentiation by targeting Myo18b in C2C12 myoblasts. The results of the present study may contribute to understanding the mechanisms underlying RA skeletal muscle proliferation, and miR-760/Myo18b may serve as potential targets for treating patients with RA.
Collapse
Affiliation(s)
- Xujun Tang
- Department of Osteoarthritis, Jining No. 2 People's Hospital, Jining, Shandong 272049, P.R. China
| | - Jiuxia Wang
- Department of Bone Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, P.R. China
| | - Shuhong Zhou
- Department of Rheumatology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jing Zhou
- Department of Rheumatology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guyou Jia
- Department of Osteoarthritis, Jining No. 2 People's Hospital, Jining, Shandong 272049, P.R. China
| | - Han Wang
- Department of Osteoarthritis, Jining No. 2 People's Hospital, Jining, Shandong 272049, P.R. China
| | - Chunlei Xin
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guoning Fu
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jiahong Zhang
- Department of Rheumatology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
13
|
Young CNJ, Chira N, Róg J, Al-Khalidi R, Benard M, Galas L, Chan P, Vaudry D, Zablocki K, Górecki DC. Sustained activation of P2X7 induces MMP-2-evoked cleavage and functional purinoceptor inhibition. J Mol Cell Biol 2019; 10:229-242. [PMID: 28992079 DOI: 10.1093/jmcb/mjx030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage. This mechanism operates in cells as diverse as macrophages, dystrophic myoblasts, P2X7-transfected HEK293, and human tumour cells. Given that serum-born MMP-2 activity also blocked receptor functions, P2X7 responses in vivo may decrease in organs with permeable capillaries. Therefore, this mechanism represents an important fine-tuning of P2X7 functions, reliant on both cell-autonomous and extraneous factors. Indeed, it allowed evasion from the ATP-induced cytotoxicity in macrophages and human cancer cells with high P2X7 expression levels. Finally, we demonstrate that P2X7 ablation eliminated gelatinase activity in inflamed dystrophic muscles in vivo. Thus, P2X7 antagonists could be used as an alternative to highly toxic MMP inhibitors in treatments of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Christopher N J Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Natalia Chira
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Justyna Róg
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Pasteur Str., Warsaw, Poland
| | - Rasha Al-Khalidi
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Magalie Benard
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Ludovic Galas
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Philippe Chan
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Krzysztof Zablocki
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Pasteur Str., Warsaw, Poland
| | - Dariusz C Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
14
|
Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, Schulz R. Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:42. [PMID: 31506724 DOI: 10.1007/s00395-019-0749-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/02/2019] [Indexed: 11/30/2022]
Abstract
Junctophilin-2 is a structural membrane protein that tethers T-tubules to the sarcoplasmic reticulum to allow for coordinated calcium-induced calcium release in cardiomyocytes. Defective excitation-contraction coupling in myocardial ischemia-reperfusion (IR) injury is associated with junctophilin-2 proteolysis. However, it remains unclear whether preventing junctophilin-2 proteolysis improves the recovery of cardiac contractile dysfunction in IR injury. Matrix metalloproteinase-2 (MMP-2) is a zinc and calcium-dependent protease that is activated by oxidative stress in myocardial IR injury and cleaves both intracellular and extracellular substrates. To determine whether junctophilin-2 is targeted by MMP-2, isolated rat hearts were perfused in working mode aerobically or subjected to IR injury with the selective MMP inhibitor ARP-100. IR injury impaired the recovery of cardiac contractile function which was associated with increased degradation of junctophilin-2 and damaged cardiac dyads. In IR hearts, ARP-100 improved the recovery of cardiac contractile function, attenuated junctophilin-2 proteolysis, and prevented ultrastructural damage to the dyad. MMP-2 was co-localized with junctophilin-2 in aerobic and IR hearts by immunoprecipitation and immunohistochemistry. In situ zymography showed that MMP activity was localized to the Z-disc and sarcomere in aerobic hearts and accumulated at sites where the striated JPH-2 staining was disrupted in IR hearts. In vitro proteolysis assays determined that junctophilin-2 is susceptible to proteolysis by MMP-2 and in silico analysis predicted multiple MMP-2 cleavage sites between the membrane occupation and recognition nexus repeats and within the divergent region of junctophilin-2. Degradation of junctophilin-2 by MMP-2 is an early consequence of myocardial IR injury which may initiate a cascade of sequelae leading to impaired contractile function.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Woo Jung Cho
- Faculty of Medicine and Dentistry Cell Imaging Centre, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Tim Y T Lee
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
15
|
Ren X, Lamb GD, Murphy RM. Distribution and activation of matrix metalloproteinase-2 in skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C613-C625. [PMID: 31241984 DOI: 10.1152/ajpcell.00113.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
17
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
18
|
de Sousa Neto IV, Durigan JLQ, Guzzoni V, Tibana RA, Prestes J, de Araujo HSS, Marqueti RDC. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging. Front Physiol 2018; 9:190. [PMID: 29593554 PMCID: PMC5857587 DOI: 10.3389/fphys.2018.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
Abstract
Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM). The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT) on metalloproteinase 2 (MMP-2) activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group): young sedentary (YS); young trained (YT), old sedentary (OS), and old trained (OT). The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001). Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001). The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001). With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001) when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling.
Collapse
Affiliation(s)
- Ivo V de Sousa Neto
- Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília, Brazil
| | - João L Q Durigan
- Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília, Brazil
| | - Vinicius Guzzoni
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Ramires A Tibana
- Graduate Program of Physical Education, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Catholic University of Brasilia, Brasília, Brazil
| | | | - Rita de Cássia Marqueti
- Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília, Brazil
| |
Collapse
|
19
|
Veiseth-Kent E, Pedersen ME, Rønning SB, Rødbotten R. Can postmortem proteolysis explain tenderness differences in various bovine muscles? Meat Sci 2018; 137:114-122. [DOI: 10.1016/j.meatsci.2017.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022]
|
20
|
Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C, Tsang HG, Wu C, Afrasiabi C, Watson M, Whitelaw CB, Freeman TC, Summers KM, Archibald AL, Hume DA. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 2017; 13:e1006997. [PMID: 28915238 PMCID: PMC5626511 DOI: 10.1371/journal.pgen.1006997] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Collapse
Affiliation(s)
- Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Iseabail L. Farquhar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hiu G. Tsang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Cyrus Afrasiabi
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
21
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Bildyug N. Matrix metalloproteinases: an emerging role in regulation of actin microfilament system. Biomol Concepts 2017; 7:321-329. [PMID: 27763882 DOI: 10.1515/bmc-2016-0022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are implicated in many physiological and pathological processes, including contraction, migration, differentiation, and proliferation. These processes all involve cell phenotype changes, known to be accompanied by reorganization of actin cytoskeleton. Growing evidence indicates a correlation between MMP activity and the dynamics of actin system, suggesting their mutual regulation. Here, data on the influence of MMPs on the actin microfilament system, on the one hand, and the dependence of MMP expression and activation on the organization of actin structures, on the other hand, are reviewed. The different mechanisms of putative actin-MMP regulation are discussed.
Collapse
|
23
|
Garg K, Boppart MD. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. J Appl Physiol (1985) 2016; 121:1053-1058. [PMID: 27539500 DOI: 10.1152/japplphysiol.00594.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span.
Collapse
Affiliation(s)
- Koyal Garg
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
24
|
Christensen S, Purslow PP. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review. Meat Sci 2016; 119:138-46. [PMID: 27180222 DOI: 10.1016/j.meatsci.2016.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted.
Collapse
Affiliation(s)
- Sara Christensen
- Departamento de Tecnología y Calidad de los Alimentos, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Peter P Purslow
- Departamento de Tecnología y Calidad de los Alimentos, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
| |
Collapse
|
25
|
Joshi SK, Lee L, Lovett DH, Kang H, Kim HT, Delgado C, Liu X. Novel intracellular N-terminal truncated matrix metalloproteinase-2 isoform in skeletal muscle ischemia-reperfusion injury. J Orthop Res 2016. [PMID: 26213293 DOI: 10.1002/jor.22992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ischemia-reperfusion injury (IRI) occurs when blood returns to tissues following a period of ischemia. Reintroduction of blood flow results in the production of free radicals and reactive oxygen species that damage cells. Skeletal muscle IRI is commonly seen in orthopedic trauma patients. Experimental studies in other organ systems have elucidated the importance of extracellular and intracellular matrix metalloproteinase-2 (MMP-2) isoforms in regulating tissue damage in the setting of oxidant stress resulting from IRI. Although the extracellular full-length isoform of MMP-2 (FL-MMP-2) has been previously studied in the setting of skeletal muscle IRI, studies investigating the role of the N-terminal truncated isoform (NTT-MMP-2) in this setting are lacking. In this study, we first demonstrated significant increases in FL- and NTT-MMP-2 gene expression in C2C12 myoblast cells responding to re-oxygenation following hypoxia in vitro. We then evaluated the expression of FL- and NTT-MMP-2 in modulating skeletal muscle IRI using a previously validated murine model. NTT-MMP-2, but not FL-MMP-2 expression was significantly increased in skeletal muscle following IRI. Moreover, the expression of toll-like receptors (TLRs) -2 and -4, IL-6, OAS-1A, and CXCL1 was also significantly up-regulated following IRI. Treatment with the potent anti-oxidant pyrrolidine dithiocarbamate (PDTC) significantly suppressed NTT-MMP-2, but not FL-MMP-2 expression and improved muscle viability following IRI. This data suggests that NTT-MMP-2, but not FL-MMP-2, is the major isoform of MMP-2 involved in skeletal muscle IRI.
Collapse
Affiliation(s)
- Sunil K Joshi
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| | - Lawrence Lee
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - David H Lovett
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| | - Heejae Kang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Hubert T Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California.,Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Cynthia Delgado
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California.,Department of Orthopaedic Surgery, University of California, San Francisco, California
| |
Collapse
|
26
|
Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation? Mediators Inflamm 2015; 2015:257471. [PMID: 26424967 PMCID: PMC4573893 DOI: 10.1155/2015/257471] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023] Open
Abstract
The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury.
Collapse
|