1
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Bure IV, Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Molchanov AD, Kiseleva AE, Alekseeva EA, Gorokhovets NV, Rodionov IV, Nemtsova MV. Potential Regulation of ARID1A by miR-129-5p and miR-3613-3p and Their Prognostic Value in Gastric Cancer. Int J Mol Sci 2025; 26:305. [PMID: 39796161 PMCID: PMC11719569 DOI: 10.3390/ijms26010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Gastric cancer (GC) remains the most common malignant tumor of the gastrointestinal tract and one of the leading causes of cancer-related deaths worldwide. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are involved in the pathogenesis and progression of GC and, therefore, may be potential diagnostic and prognostic biomarkers. Our work was aimed at investigating the predicted regulation of ARID1A by miR-129-5p and miR-3613-3p and the clinical value of their aberrant expression in GC. The study included tumor and adjacent non-tumor tissues from 110 GC patients, 38 sectional normal gastric tissue samples, as well as 65 plasma samples of GC patients and 49 plasma samples of healthy donors. Expression levels of ARID1A and both miRNAs were quantified by reverse transcription-polymerase chain reaction (RT-PCR). We have identified significant associations of their expression with the clinical and pathological characteristics of GC patients both in tissues and plasma. To validate predicted target pairs miR-129-5p/ARID1A and miR-3613-3p/ARID1A, in vitro experiments on cancer cell lines were conducted. The obtained results suggest a complex role of ARID1A, miR-129-5p and miR-3613-3p in GC and potential regulation of ARID1A expression by both miRNAs.
Collapse
Affiliation(s)
- Irina V. Bure
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Ekaterina A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexey I. Kalinkin
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Ekaterina B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Artem D. Molchanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alevtina E. Kiseleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina A. Alekseeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Neonila V. Gorokhovets
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ivan V. Rodionov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Marina V. Nemtsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
3
|
Rad SG, Orang FN, Shadbad MA. MicroRNA networks in prolactinoma tumorigenesis: a scoping review. Cancer Cell Int 2024; 24:418. [PMID: 39702128 PMCID: PMC11660578 DOI: 10.1186/s12935-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Prolactinoma is the leading type of pituitary adenoma. Aside from the mass-like effect of prolactinoma, its hormonal effect is the main pathological cause of endocrine dysregulation and infertility. The dopamine agonist administration and surgical resection are the current mainstream anti-neoplastic treatments for affected patients; however, tumor fibrosis, tumor invasion, dopamine agonist resistance, and gain prolactinomas are clinical challenges for treating affected patients. Therefore, there is a need to develop novel treatments for these patients. Although growing evidence has highlighted the significance of dysregulated microRNA (miRNA) expression in various malignancies, no study has systematically investigated the significance of miRNA networks and their therapeutic potential in prolactinoma. For this aim, the current scoping review was performed according to the systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guideline. MAIN BODY The systematic study on PubMed, Web of Science, Scopus, and Embase databases has shown that miR-200c, miR-217, miR-93a, miR-93, miR-1299, and miR-9 are the oncogenic miRNAs and miR-137, miR-145-5p, miR-197-3p, miR-29a-3p, miR-489, miR-199a-5p, miR-124, miR-212, miR-129-5p, miR-130a-3p, miR-326, miR-432, miR-548c-3p, miR-570, miR-15, miR-16, miR-26a, miR-196a2, and let-7a are tumor-suppressive miRNAs in prolactinoma tumorigenesis. CONCLUSION In summary, inhibiting the oncogenic miRNAs and ectopic expression of tumor-suppressive miRNAs can decrease prolactin secretion, reduce tumor invasion and migration, enhance dopamine agonist efficacy, and inhibit prolactinoma development. These findings can serve as a blueprint for future translational studies investigating miR-based therapeutics for prolactinoma.
Collapse
Affiliation(s)
- Sevil Ghaffarzadeh Rad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Jin S, Wang Y, Hu S, Yan G. The prognostic value and immunological role of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer study. Medicine (Baltimore) 2024; 103:e40072. [PMID: 39465821 PMCID: PMC11479412 DOI: 10.1097/md.0000000000040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
A thorough assessment of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer studies is currently absent. We integrate multi-omics and clinical data to conduct a molecular landscape of CAMKK2. Gene variation results revealed abnormal high frequency mutations of CAMKK2 in uterine corpus endometrial carcinoma, while expression level analysis demonstrated relatively high expression of CAMKK2 in prostate adenocarcinoma. The aberrant expression of CAMKK2 was found to be predictive of survival outcomes in several cancer types. Additionally, we identified potential regulators of CAMKK2 expression, including miRNAs such as miR.129.1.3p, as well as small-molecule drugs such as EPZ004777, which significantly correlated with CAMKK2 expression. Single-cell transcriptome analysis of kidney renal clear cell carcinoma further revealed a significantly higher expression of CAMKK2 in and monocyte and macrophage M1. Furthermore, in the kidney renal clear cell carcinoma IMvigor210 cohort, patients ongoing immunotherapy with higher CAMKK2 expression experienced a significantly longer median overall survival, but it was observed that in bladder urothelial carcinoma GSE176307 and skin cutaneous melanoma GSE78220 cohorts, CAMKK2 might significantly prolong overall survival. Briefly, CAMKK2 emerges as a promising molecular biomarker that holds potential implications for prognostic evaluation and predicting the effectiveness of immunotherapy across cancers.
Collapse
Affiliation(s)
- Senjun Jin
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanyan Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng’an Hu
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangzhao Yan
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
6
|
Ai D, Du Y, Duan H, Qi J, Wang Y. Tumor Heterogeneity in Gastrointestinal Cancer Based on Multimodal Data Analysis. Genes (Basel) 2024; 15:1207. [PMID: 39336798 PMCID: PMC11430818 DOI: 10.3390/genes15091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gastrointestinal cancer cells display both morphology and physiology diversity, thus posing a significant challenge for precise representation by a single data model. We conducted an in-depth study of gastrointestinal cancer heterogeneity by integrating and analyzing data from multiple modalities. METHODS We used a modified Canny algorithm to identify edges from tumor images, capturing intricate nonlinear interactions between pixels. These edge features were then combined with differentially expressed mRNA, miRNA, and immune cell data. Before data integration, we used the K-medoids algorithm to pre-cluster individual data types. The results of pre-clustering were used to construct the kernel matrix. Finally, we applied spectral clustering to the fusion matrix to identify different tumor subtypes. Furthermore, we identified hub genes linked to these subtypes and their biological roles through the application of Weighted Gene Co-expression Network Analysis (WGCNA) and Gene Ontology (GO) enrichment analysis. RESULTS Our investigation categorized patients into three distinct tumor subtypes and pinpointed hub genes associated with each. Genes MAGI2-AS3, MALAT1, and SPARC were identified as having a differential impact on the metastatic and invasive capabilities of cancer cells. CONCLUSION By harnessing multimodal features, our study enhances the understanding of gastrointestinal tumor heterogeneity and identifies biomarkers for personalized medicine and targeted treatments.
Collapse
Affiliation(s)
- Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.D.); (J.Q.); (Y.W.)
| | - Yang Du
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.D.); (J.Q.); (Y.W.)
| | - Hongyu Duan
- Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China;
| | - Juan Qi
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.D.); (J.Q.); (Y.W.)
| | - Yuduo Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.D.); (J.Q.); (Y.W.)
| |
Collapse
|
7
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q, Yin M, You H, Xiao Z, Shen J. Current understanding of functional peptides encoded by lncRNA in cancer. Cancer Cell Int 2024; 24:252. [PMID: 39030557 PMCID: PMC11265036 DOI: 10.1186/s12935-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.
Collapse
Affiliation(s)
- Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zihan Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 646000
| | - Yanxi Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Huili You
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
8
|
Yuan H, Yu P, Wan ZA, Chen BC, Tu SL. LncRNA RPLP0P2 Promotes Colorectal Cancer Proliferation and Invasion via the miR-129-5p/Zinc Finger and BTB Domain-Containing 20 Axis. Biochem Genet 2024; 62:1556-1576. [PMID: 37651070 DOI: 10.1007/s10528-023-10478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
We previously reported that long non-coding RNA (lncRNA) RPLP0P2 is involved in the progression of colorectal cancer (CRC); however, its molecular mechanisms in CRC remain unclear. In this study, we observed that RPLP0P2 was upregulated in CRC tissues and cell lines. Cell viability was measured using the MTT and colony formation assays. Migration and invasion capabilities were monitored by wound healing, transwell, and immunofluorescence assays. The results showed that RPLP0P2 downregulation inhibited cell viability, migration, and invasion capabilities of CRC cells, accompanied by decreased PCNA, N-cadherin, and Vimentin, and increased E-cadherin expression. Using the DIANA online database, miR-129-5p was identified as a downstream target of RPLP0P2. In fact, RPLP0P2 colocalized with miR-129-5p, acting as a miR-129-5p sponge. MiR-129-5p-inhibition almost abrogated the anti-tumor effects induced by RPLP0P2 inhibition in CRC cells. Zinc finger and BTB domain-containing 20 (ZBTB20) was identified as a potential downstream target of miR-129-5p in CRC cells. ZBTB20 overexpression prevented miR-129-5p mimic-mediated anti-tumor effects in CRC cells. A tumor xenograft assay was performed to monitor the role of RPLP0P2 in tumor growth. Of note, in tumor-bearing mice, RPLP0P2-silencing inhibited tumor growth, followed by increased miR-129-5p and decreased ZBTB20 expression. Our results suggest that lncRNA RPLP0P2 functions as an oncogene that promotes CRC cell proliferation and invasion via regulating the miR-129-5p/ZBTB20 axis, thus, it may serve as a candidate target for CRC interventional therapies.
Collapse
Affiliation(s)
- Hang Yuan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Gongshu District Shangtang Road 158, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Peng Yu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Gongshu District Shangtang Road 158, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zi-Ang Wan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Gongshu District Shangtang Road 158, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Bing-Chen Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Gongshu District Shangtang Road 158, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Shi-Liang Tu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Gongshu District Shangtang Road 158, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
10
|
Xu H, Zhang H, Sun S, Zhang J, Huo J, Zhou C. Integrated Analysis of CD1A Immune Infiltration and Competing Endogenous RNA Networks in COAD. Int J Gen Med 2024; 17:2037-2053. [PMID: 38751492 PMCID: PMC11095400 DOI: 10.2147/ijgm.s455546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Background The CD1A gene, a key component of the human immune system and part of the CD1 family, plays a crucial role in presenting lipid antigens to T cells. Abnormal CD1A expression is associated with various immune-related diseases and tumors. However, the biological function of CD1A in COAD is unclear. Methods Multiple databases were systematically employed to conduct an analysis of CD1A expression in pan-cancer and COAD, along with its clinical-pathological features. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of CD1A were performed using the 'clusterProfiler' package. The Protein-protein interaction (PPI) analysis of CD1A was used the STRING database. Additionally, TIMER and ssGSEA tools were used to explore the relationship between CD1A expression in COAD and immune cell infiltration. The study also investigated the association between CD1A expression and N6-methyladenosine (m6A) modification genes in the TCGA COAD cohort and constructed a CD1A-centric competing endogenous RNA (ceRNA) regulatory network. Results CD1A displays varying expression levels in various tumors, including COAD, and is closely linked to clinical-pathological characteristics. GO analysis suggests that CD1A plays a role in important processes like antigen processing and presentation, leukocyte-mediated immunity, and lymphocyte-mediated immunity. KEGG analysis identifies CD1A's involvement in key pathways such as the Chemokine signaling pathway and Cytokine-cytokine receptor interaction. PPI analysis highlights CD1A's interactions with CD207, CD1C, CD1E, FOXP3, and ITGB2. ssGSEA analysis indicates a significant relationship between CD1A expression and the infiltration of various immune cells in COAD. Significant associations were found between CD1A and m6A modification genes in COAD. Furthermore, a CD1A-centered ceRNA regulatory network has been constructed. Conclusion CD1A emerges as a potential biomarker for the diagnosis and treatment of COAD, showing a strong association with tumor immune infiltration, m6A modification, and the ceRNA network.
Collapse
Affiliation(s)
- Houxi Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hongqun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Songxian Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jingyuan Zhang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chunxiang Zhou
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Usman M, Li A, Wu D, Qinyan Y, Yi LX, He G, Lu H. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res 2024; 9:165-177. [PMID: 38075201 PMCID: PMC10709095 DOI: 10.1016/j.ncrna.2023.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 04/26/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted significant scientific attention due to their central role in regulating gene expression and their profound impact on the intricate mechanisms of ovarian function. These versatile molecules exert their influence through various mechanisms, including the coordination of transcription processes, modulation of post-transcriptional events, and the shaping of epigenetic landscapes. Furthermore, lncRNAs function as competitive endogenous RNAs (ceRNAs), engaging in intricate interactions with microRNAs (miRNAs) to finely adjust the expression of target genes. The intricate lncRNA-miRNA-mRNA network serves as a crucial determinant in governing the multifaceted physiological functions of the ovaries. It holds substantial potential in unraveling the causes and progression of reproductive disorders and, importantly, in identifying new therapeutic targets and diagnostic markers for these conditions. A comprehensive comprehension of lncRNAs and their ceRNA activities within the domain of ovarian biology could potentially lead to groundbreaking advancements in clinical interventions and management strategies. This exploration of lncRNAs and their intricate involvement in the regulatory framework provides an extensive platform for deciphering the complex nature of ovarian physiology and pathology. The ongoing progress in this field, which encompasses in-depth investigations into the functional roles of specific lncRNAs, the elucidation of their complex interactions with miRNAs, and the comprehensive profiling of their expression patterns, holds the promise of making significant contributions to our understanding of ovarian biology and reproductive disorders. Ultimately, these breakthroughs will have wide-ranging translational implications, paving the way for the development of precision therapies and personalized medicine strategies to address the myriad challenges in the realm of reproductive health.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Plastic and Reconstructive Surgery, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Ai Li
- Department of Postdoctoral Research Workstation, The Seventh People's Hospital of Chongqing, Chongqing, PR China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yang Qinyan
- Department of Anesthesia, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Lin Xiao Yi
- Department of Radiology, The Chenjiaqiao Hospital of Shapingba District of Chongqing, PR China
| | - Guiqiong He
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| |
Collapse
|
13
|
Gao C, Jia K, Fang J, Zhu X, Hu J, Zhang Y, Jiang J, Yu X, Wang D, Gu H, Chen Z. CD95 promotes stemness of colorectal cancer cells by lncRNA MALAT1. Life Sci 2024; 338:122394. [PMID: 38159593 DOI: 10.1016/j.lfs.2023.122394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is the second most fatal cancer. Many studies have shown that cancer stemness contributes to resistance to conventional chemotherapy and poor prognosis. However, the mechanisms involved in maintaining cancer stemness in CRC are still obscure and few clinical drugs were used to target cancer stemness. Previous studies had reported CD95 increases the stemness of cancer cells with long-term stimulation of exogenous agonist CD95 ligand (CD95L). However, the expression of CD95L is relative low in certain human tumor tissues. In this study, we found that CD95 was highly expressed in CRC cells, and in vitro it promoted the tumorsphere formation, chemotherapy resistance and in vivo tumor growth without stimulation of exogenous CD95L. Mechanistically, the bulk and single-cell RNA-sequencing results suggested that CD95 promotes stemness of CRC cells through upregulation of long non-coding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). MALAT1 knockdown inhibited CD95-induced tumorsphere formation and chemotherapy resistance. In summary, our findings reveal that CD95 has the capability to modulate cancer stemness via the action of the lncRNA MALAT1. Targeting CD95 may be a promising strategy to inhibit cancer stemness in CRC.
Collapse
Affiliation(s)
- Chenyi Gao
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuyan Yu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haochen Gu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Quan ZH, Xu FP, Huang Z, Chen RH, Xu QW, Lin L. LncRNA MYLK antisense RNA 1 activates cell division cycle 42/Neutal Wiskott-Aldrich syndrome protein pathway via microRNA-101-5p to accelerate epithelial-to-mesenchymal transition of colon cancer cells. Kaohsiung J Med Sci 2024; 40:11-22. [PMID: 37950620 DOI: 10.1002/kjm2.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/13/2023] Open
Abstract
Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.
Collapse
Affiliation(s)
- Zhen-Hao Quan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fei-Peng Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhe Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ri-Hong Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing-Wen Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Lin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
15
|
Hu Y, He Y, Luo N, Li X, Guo L, Zhang K. A feedback loop between lncRNA MALAT1 and DNMT1 promotes triple-negative breast cancer stemness and tumorigenesis. Cancer Biol Ther 2023; 24:2235768. [PMID: 37548553 PMCID: PMC10408694 DOI: 10.1080/15384047.2023.2235768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The function of long non-coding RNA (lncRNA) MALAT1 in regulating triple-negative breast cancer (TNBC) stemness and tumorigenesis was investigated. METHODS Sphere formation and colony formation assays coupled with flow cytometry were employed to evaluate the percentage of CD44high/CD44low cells, and ALDH+ cells were performed to evaluate the stemness. Bisulfite sequencing PCR (BSP) was employed to detect the methylation level of MALAT1. Tumor xenograft experiment was performed to evaluate tumorigenesis in vivo. Finally, dual-luciferase reporter and RIP assays were employed to verify the binding relationship between MALAT1 and miR-137. RESULTS Our results revealed that MALAT1 and BCL11A were highly expressed in TNBC, while miR-137 and DNMT1 were lowly expressed. Our results proved that MALAT1 positively regulated BCL11A expression through targeting miR-137. Functional experiments revealed that MALAT1 inhibited DNMT1 expression through acting on the miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis. We also found that high MALAT1 expression in TNBC was related to the DNMT1-mediated hypomethylation of MALAT1. As expected, DNMT1 overexpression could remarkably inhibit TNBC stemness and tumorigenesis, which was eliminated by MALAT1 overexpression. CONCLUSION MALAT1 downregulated DNMT1 by miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis; meanwhile, DNMT1/MALAT1 formed a positive feedback loop to continuously promote TNBC malignant behaviors.
Collapse
Affiliation(s)
- Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Yuqiong He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| |
Collapse
|
16
|
Liu WJ, Zhang L, Zhang CY. Construction of a Programmable Feedback Network with Continuously Activatable Molecular Beacon Fluorescence for One-Step Quantification of Long Noncoding RNAs in Clinical Breast Tissues. Anal Chem 2023; 95:16343-16351. [PMID: 37874866 DOI: 10.1021/acs.analchem.3c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators in numerous pathological and physiological processes, and their aberrant expression is implicated in many diseases. Herein, we develop a programmable feedback network with continuously activatable molecular beacon (MB) fluorescence for one-step quantification of mammalian-metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) in clinical breast tissues. We introduce a functional MB with three domains, including a substrate for lncRNA MALAT1 recognition, a template for strand displacement amplification (SDA), and a reporter for signal output with FAM fluorescence being quenched by BHQ1. When MALAT1 is present, it recognizes and unfolds the MB, leading to the recovery of FAM fluorescence. Once the MB is opened, multiple rounds of SDA reaction are automatically initiated by recruiting primer, KF DNA polymerase, and Nt.BbvCI nicking enzyme, inducing the opening of more MBs and the dissociation of more FAM/BHQ1 pairs. Consequently, a feedback network is constructed through multicycle cascade SDA, achieving the exponential accumulation of fluorescence signals for accurate quantification of MALAT1. In this assay, only two oligonucleotides (i.e., MB and primer) are involved for the establishment of a feedback amplification network, greatly simplifying the design of the reaction system. Moreover, this assay requires only one step to realize the isothermal exponential amplification for real-time monitoring of MALAT1 with attomolar sensitivity. This assay displays single-base mismatch selectivity with high anti-interference capability, and it can further quantify endogenous MALAT1 at the single-cell level and differentiate MALAT1 expression between breast cancer patient tissues and healthy person tissues.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai 264200, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
Karger A, Mansouri S, Leisegang MS, Weigert A, Günther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, Klotz LV, Winter H, Mahavadi P, Fleming I, Ruppert C, Witte B, Alkoudmani I, Gattenlöhner S, Grimminger F, Seeger W, Pullamsetti SS, Savai R. ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J 2023; 42:e111620. [PMID: 37545364 PMCID: PMC10505917 DOI: 10.15252/embj.2022111620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Annika Karger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Medical FacultyGoethe University FrankfurtFrankfurtGermany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Ilka Wittig
- Functional Proteomics, Medical SchoolGoethe University FrankfurtFrankfurtGermany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Stephan Klatt
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Blerina Aliraj
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
| | - Laura V Klotz
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Hauke Winter
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Poornima Mahavadi
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Clemens Ruppert
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Biruta Witte
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | | | - Friedrich Grimminger
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| |
Collapse
|
18
|
Hosseini FA, Rejali L, Zabihi MR, Salehi Z, Daskar-Abkenar E, Taraz T, Fatemi N, Hashemi M, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E. Long non‑coding RNA LINC00460 contributes as a potential prognostic biomarker through its oncogenic role with ANXA2 in colorectal polyps. Mol Biol Rep 2023; 50:4505-4515. [PMID: 37024747 DOI: 10.1007/s11033-023-08393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Long intergenic non-coding RNA 460 (LINC00460) as a potential oncogene and Annexin A2 (ANXA2) as a promoter in different cancer progression processes was considered. A significant relationship between the LINC00460 and ANXA2 has been recently discovered in colorectal cancer (CRC). Therefore, defining molecular biomarkers accompanied by lesion histopathologic features can be a suggestive prognostic biomarker in precancerous polyps. This study aimed to investigate the elusive expression pattern of ANXA2 and LINC00460 in polyps. MATERIALS AND METHODS The construction of the co-expression and correlation network of LINC00460 and ANXA2 was plotted. LINC00460 and ANXA2 expression in 40 colon polyps was quantified by reverse transcription-real-time polymerase chain reaction. The receiver operating characteristic (ROC) curve was designed for distinguishing the high-risk precancerous lesion from the low-risk. Further, bioinformatics analysis was applied to find the shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, and the associated pathways. RESULTS ANXA2 has a high co-expression rank with LINC00460 in the lncHUB database. Overexpression of ANXA2 and LINC00460 was distinguished in advanced adenoma polyps compared to the adjacent normal samples. The estimated AUC for ANXA2 and LINC00460 was 0.88 - 0.85 with 93%-90% sensitivity and 81%-70% specificity. In addition, eight MITs were shared between ANXA2 and LINC00460. Enrichment analysis detected several GO terms and pathways, including HIF-1α associated with cancer development. CONCLUSION In conclusion, the expression of the ANXA2 and LINC00460 were significantly elevated in pre-cancerous polyps, especially in high-risk adenomas. Collectively, ANXA2 and LINC00460 may be administered as potential prognostic biomarkers in patients with a precancerous large intestine lesion as an alarming issue.
Collapse
Affiliation(s)
- Farzaneh Alsadat Hosseini
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Laboratory of Complex Biological Systems and Bio-informatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elahe Daskar-Abkenar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Taraz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, 19857-17413, Tehran, Iran.
| |
Collapse
|
19
|
Zhu X, Song J, Wang M, Wang X, Lv L. Dysregulated ceRNA network modulated by copy number variation-driven lncRNAs in breast cancer: A comprehensive analysis. J Gene Med 2023; 25:e3471. [PMID: 36525372 DOI: 10.1002/jgm.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a malignancy harmful to physical and mental health in women, with quite high mortality. Copy number variations (CNVs) are vital factors affecting the progression of breast cancer. Detecting CNVs in breast cancer to predict the prognosis of patients has become a promising approach to accurate treatment in recent years. The differential analysis was performed on CNVs of long noncoding RNAs (lncRNAs) as well as the expression of lncRNAs, microRNAs (miRNAs) and mRNAs in normal tissue and breast tumor tissue based on The Cancer Genome Atlas (TCGA) database. The CNV-driven lncRNAs were identified by the Kruskal-Wallis test. Meanwhile, a competitive endogenous RNA (ceRNA) network regulated by CNV-driven lncRNA was constructed. As the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed, the mRNAs in the dysregulated ceRNA network were mainly enriched in the biological functions and signaling pathways, including the Focal Adhesion-PI3K-Akt-mTOR-signaling pathway, the neuronal system, metapathway biotransformation Phase I and II and blood circulation, etc. The relationship between the CNVs of five lncRNAs and their gene expression in the ceRNA network was analyzed via a chi-square test, which confirmed that except for LINC00243, the expression of four lncRNAs was notably correlated with the CNVs. The survival analysis revealed that only the copy number gain of LINC00536 was evidently related to the poor prognosis of patients. The CIBERSORT algorithm showed that five lncRNAs were correlated with the abundance of immune cell infiltration and immune checkpoints. In a word, by analyzing CNV-driven lncRNAs and the ceRNA network regulated by these lncRNAs, this study explored the mechanism of breast cancer and provided novel insights into new biomarkers.
Collapse
Affiliation(s)
- Xiaotao Zhu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mingzheng Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaohui Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lin Lv
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
20
|
Li Y, Xiao W, Lin X. Long noncoding RNA MALAT1 inhibition attenuates sepsis-induced acute lung injury through modulating the miR-129-5p/PAX6/ZEB2 axis. Microbiol Immunol 2023; 67:142-153. [PMID: 36537561 DOI: 10.1111/1348-0421.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This research aimed to investigate the role of the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-129-5p (miR-129-5p)/paired box gene 6 (PAX6) axis in sepsis-induced acute lung injury (ALI). MLE-12 cells and C57BL/6 mice were induced by LPS to establish lung injury in in vitro and in vivo models. Cell viability and apoptosis were measured by cell counting kit-8 assay and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. Levels of inflammatory cytokines in cell supernatants and bronchoalveolar lavage fluid (BALF) were detected by ELISA. Lung injury was evaluated by lung wet weight-to-dry weight ratio and hematoxylin-eosin staining. MALAT1, PAX6, and zinc finger E-box-binding homeobox 2 (ZEB2) expression was elevated and miR-129-5p expression was reduced in the serum of patients with sepsis-induced ALI, LPS-induced MLE-12 cells, and lung tissues of ALI mice. MALAT1 interference delayed the LPS-induced cell proliferation decrease, apoptosis increase, and inflammatory factor increase. miR-129-5p inhibition could reverse the delaying effect of MALAT1 interference on LPS-induced lung cell injury. PAX6 overexpression (oe) reversed the inhibitory effect of miR-129-5p oe on LPS-induced lung cell injury. Downregulating MALAT1 reduced pulmonary edema, inflammatory cytokine levels, lung injury, and apoptosis in ALI mice. Moreover, miR-129-5p suppression or PAX6 oe reversed the delaying effect of MALAT1 interference on sepsis-induced ALI. MALAT1 aggravates sepsis-induced ALI via the miR-129-5p/PAX6/ZEB2 axis.
Collapse
Affiliation(s)
- Ying Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Wenbiao Xiao
- Department of Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Xiao Lin
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| |
Collapse
|
21
|
Ji J, Fu J. MiR-17-3p Facilitates Aggressive Cell Phenotypes in Colon Cancer by Targeting PLCD1 Through Affecting KIF14. Appl Biochem Biotechnol 2023; 195:1723-1735. [PMID: 36367621 DOI: 10.1007/s12010-022-04218-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.
Collapse
Affiliation(s)
- Jinxing Ji
- Department of Oncology, The First Clinical Medical College of China Three Gorges University, Yichang Central People's Hospital, Yichang, 443000, Hubei, China
| | - Jun Fu
- Department of Gastrointestinal and Anal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, China.
| |
Collapse
|
22
|
Wu M, Lu L, Dai T, Li A, Yu Y, Li Y, Xu Z, Chen Y. Construction of a lncRNA-mediated ceRNA network and a genomic-clinicopathologic nomogram to predict survival for breast cancer patients. Cancer Biomark 2023; 36:83-96. [PMID: 36591654 DOI: 10.3233/cbm-210545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is the most common cancer among women and a leading cause of cancer-related deaths worldwide. The diagnosis of early patients and the prognosis of advanced patients have not improved over the past several decades. The purpose of the present study was to identify the lncRNA-related genes based on ceRNA network and construct a credible model for prognosis in BC. Based on The Cancer Genome Atlas (TCGA) database, prognosis-related differently expressed genes (DEGs) and a lncRNA-associated ceRNA regulatory network were obtained in BC. The patients were randomly divided into a training group and a testing group. A ceRNA-related prognostic model as well as a nomogram was constructed for further study. A total of 844 DElncRNAs, 206 DEmiRNAs and 3295 DEmRNAs were extracted in BC, and 12 RNAs (HOTAIR, AC055854.1, ST8SIA6-AS1, AC105999.2, hsa-miR-1258, hsa-miR-7705, hsa-miR-3662, hsa-miR-4501, CCNB1, UHRF1, SPC24 and SHCBP1) among them were recognized for the construction of a prognostic risk model. Patients were then assigned to high-risk and low-risk groups according to the risk score. The Kaplan-Meier (K-M) analysis demonstrated that the high-risk group was closely associated with poor prognosis. The predictive nomogram combined with clinical features showed performance in clinical practice. In a nutshell, our ceRNA-related gene model and the nomogram graph are accurate and reliable tools for predicting prognostic outcomes of BC patients, and may make great contributions to modern precise medicine.
Collapse
|
23
|
Song Z, Gao Y, Zhao Y, Feng X, Zhao Z, Wang W. miR-129-5p Induces Cell Apoptosis and Inhibits Inflammation by Inflammatory Signaling to Alleviate Spinal Cord Injury (SCI). J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) is a spinal cord nerve dysfunction secondary to trauma. Until now, still no appropriate drug with unclear etiology. Therefore, it is to develop effective SCI treatment methods. Herein, we intended to detect the impact of miR-129-5p in SCI After establishment
of a mouse SCI model, the animals received intrathecal injection of agomir-miR-129-5p or normal saline. Then, the miR-129-5p’s effect was evaluated by assessing motor function, spinal cord tissue edema, apoptosis and inflammation of mice upon treatments and potential targeted pathways
of the miRNA were detected. Overexpressed miR-129-5p facilitated the wound healing with less spare tissue and water content. Additionally, overexpressed miR-129-5p suppressed the in vivo inflammation with decreased apoptotic rate of neurons. As SCI induced increased expression of HMGB1,
TLR4, and NF-κB in tissues, but the presence of miR-129-5p reversed the expressions. Collectively, this study elucidate miR-129-5p significantly improves inflammatory response and apoptosis, thereby improving the condition of SCI. These findings might provide a new theory for
the disorder, and promote the research progress on the disease.
Collapse
Affiliation(s)
- Zhengdong Song
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yuwei Gao
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yuhao Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaofei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Zhenrui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Wenji Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, 730030, China
| |
Collapse
|
24
|
lncRNA-disease association prediction based on the weight matrix and projection score. PLoS One 2023; 18:e0278817. [PMID: 36595551 PMCID: PMC9810171 DOI: 10.1371/journal.pone.0278817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
With the development of medical science, long noncoding RNA (lncRNA), originally considered as a noise gene, has been found to participate in a variety of biological activities. Several recent studies have shown the involvement of lncRNA in various human diseases, such as gastric cancer, prostate cancer, lung cancer, and so forth. However, obtaining lncRNA-disease relationship only through biological experiments not only costs manpower and material resources but also gains little. Therefore, developing effective computational models for predicting lncRNA-disease association relationship is extremely important. This study aimed to propose an lncRNA-disease association prediction model based on the weight matrix and projection score (LDAP-WMPS). The model used the relatively perfect lncRNA-miRNA relationship data and miRNA-disease relationship data to predict the lncRNA-disease relationship. The integrated lncRNA similarity matrix and the integrated disease similarity matrix were established by fusing various methods to calculate the similarity between lncRNA and disease. This study improved the existing weight algorithm, applied it to the lncRNA-miRNA-disease triple network, and thus proposed a new lncRNA-disease weight matrix calculation method. Combined with the improved projection algorithm, the lncRNA-miRNA relationship and miRNA-disease relationship were used to predict the lncRNA-disease relationship. The simulation results showed that under the Leave-One-Out-Cross-Validation framework, the area under the receiver operating characteristic curve of LDAP-WMPS could reach 0.8822, which was better than the latest result. Taking adenocarcinoma and colorectal cancer as examples, the LDAP-WMPS model was found to effectively infer the lncRNA-disease relationship. The simulation results showed good prediction performance of the LDAP-WMPS model, which was an important supplement to the research of lncRNA-disease association prediction without lncRNA-disease relationship data.
Collapse
|
25
|
Yuen JG, Fesler A, Hwang GR, Chen LB, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Mol Ther 2022; 30:3450-3461. [PMID: 35933584 PMCID: PMC9637772 DOI: 10.1016/j.ymthe.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- John G Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lan-Bo Chen
- Curamir Therapeutics Inc., Woburn, MA 01801, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Curamir Therapeutics Inc., Woburn, MA 01801, USA.
| |
Collapse
|
26
|
Guan F, Gao Q, Dai X, Li L, Bao R, Gu J. LncRNA RP11-59J16.2 aggravates apoptosis and increases tau phosphorylation by targeting MCM2 in AD. Front Genet 2022; 13:824495. [PMID: 36092938 PMCID: PMC9459667 DOI: 10.3389/fgene.2022.824495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of central nervous system with unclear pathogenesis, accounting for 60%–70% of dementia cases. Long noncoding RNAs (LncRNAs) play an important function in the development of AD. This study aims to explore the role of differentially expressed lncRNAs in AD patients’ serum in the pathogenesis of AD. Microarray analysis was performed in the serum of AD patients and healthy controls to establish lncRNAs and mRNAs expression profiles. GO analysis and KEGG pathway analysis revealed that G1/S transition of mitotic cell cycle might be involved in the development of AD. The result showed that RP11-59J16.2 was up-regulated and MCM2 was down-regulated in serum of AD patients. SH-SY5Y cells were treated with Aβ 1–42 to establish AD cell model. Dual luciferase reporter gene analysis verified that RP11-59J16.2 could directly interact with 3′UTR of MCM2 and further regulate the expression of MCM2. Inhibition of RP11-59J16.2 or overexpression of MCM2, CCK-8 assay and Annexin V FITC/PI apoptosis assay kit results showed that RP11-59J16.2 could reduce cell viability, aggravate apoptosis and increase Tau phosphorylation in AD cell model by inhibiting MCM2. In short, our study revealed a novel lncRNA RP11-59J16.2 that could promote neuronal apoptosis and increase Tau phosphorylation by regulating MCM2 in AD model, and indicated that lncRNA RP11-59J16.2 might be a potential target molecule for AD development.
Collapse
Affiliation(s)
- Fulin Guan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichang Gao
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinghua Dai
- Haiyuan Hospital of Heilongjiang, Harbin, China
| | - Lei Li
- Integrated Chinese and Western Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Bao
- Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Jiaao Gu, ; Rui Bao,
| | - Jiaao Gu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiaao Gu, ; Rui Bao,
| |
Collapse
|
27
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
MALAT1 in colorectal cancer: Its implication as a diagnostic, prognostic, and predictive biomarker. Gene 2022; 843:146791. [PMID: 35961438 DOI: 10.1016/j.gene.2022.146791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), originally described as a prognostic biomarker remarkably linked with metastasis potential in lung cancer, has been identified as contributing to many diseases, including colorectal cancer (CRC). This long non-coding RNA (lncRNA) has come to the forefront of lncRNA research for its implications in cancer-related processes, such as cell proliferation and migration. In general, lncRNAs are recognized as enhancers, scaffolds, or decoys for a variety of oncogenes and tumor suppressors, although our understanding of lncRNA functions and mechanisms of action is still limited. Nowadays, cancer research is attracted to lncRNAs' ability to improve the early diagnosis of cancer, determine patients' prognosis, or predict therapy outcomes. In this review, we aimed to evaluate recent publications trying to uncover the cellular mechanisms of MALAT1-mediated regulation, and its potential exploitation in the management of CRC. The conclusions of this review provide robust support for the essential role of MALAT1 in CRC development and future personalized therapy.
Collapse
|
29
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
30
|
Ding J, Huang M, Huang B, Peng X, Wu G, Peng C, Zhang H, Mao C, Wu X. Identification of a dysregulated ceRNA network modulated by copy number variation-driven lncRNAs in lung squamous cell carcinoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:351-361. [PMID: 36161731 DOI: 10.1002/em.22509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lung cancer is primarily responsive for cancer death, and its progression is aggressively affected by copy number variation (CNV). Through bioinformatics approach, a ceRNA network of CNV-driven lncRNAs in lung squamous cell carcinoma (LUSC) patients was constructed. Data on normal and LUSC tumor tissue from The Cancer Genome Atlas (TCGA)-LUSC dataset were subjected to differential analysis, and differentially expressed lncRNAs (DElncRNAs), DEmiRNAs, and DEmRNAs were obtained. Based on TCGA-LUSC, CNVs of normal and tumor tissue samples were then compared using a Chi-square test, and lncRNAs were intersected based on their CNVs and expression alternation. In combination with the Kruskal-Wallis test, CNV-driven lncRNAs were acquired. Afterwards, miRNAs and mRNAs that interacted with CNV-driven lncRNAs were obtained based on databases (LncBase, starBase, miRDB, mirDIP and TargetScan), DElncRNAs, DEmiRNAs and DEmRNAs, and correlation analysis. The acquired lncRNAs, miRNAs and mRNAs were subjected to Cytoscape software to construct a CNV-driven ceRNA network, which involved 5 lncRNAs (MIR143HG, LINC00702, MIR22HG, RP11-180 N14.1, RP11-473 M20.9), 6 miRNAs (miR-3200-3p, miR-1301-3p, miR-93-3p, miR-96-5p, miR-96-5p, miR-130b-5p, miR-205-5p) and 80 mRNAs. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses indicated that downstream mRNAs were mainly correlated with blood vessel development and T cell-mediated immunity. In summary, we devoted to analyzing CNV-related lncRNAs, mRNAs, and miRNAs in LUSC, thus clarifying 5 lncRNAs that may influence the malignant progression of LUSC. The ceRNA network regulated by these lncRNAs may be the novel pathogenesis of LUSC.
Collapse
Affiliation(s)
- Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
31
|
Fang J, Yang J, Chen H, Sun W, Xiang L, Feng J. Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway. Hum Cell 2022; 35:1521-1534. [PMID: 35816228 DOI: 10.1007/s13577-022-00745-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022]
Abstract
Colon cancer is one of the most prevalent malignant tumors across the world. Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) take part in colon cancer development. Our study intends to explore the expression characteristics of LBX2-AS1, a novel lncRNA, in colon cancer and its underlying mechanisms. The results illustrated that LBX2-AS1 level was substantially increased in colon cancer tissues and was obviously correlated with the tumor volume and early distant metastasis of patients. Besides, overexpression of LBX2-AS1 remarkably boosted growth, proliferation, and metastasis and restrained apoptosis in colon cancer cells, whereas LBX2-AS1 knockdown produced the opposite effect. On the other hand, miR-627-5p, down-regulated in colon cancer tissues, was negatively associated with LBX2-AS1 expression. Functional experiments showed that miR-627-5p suppressed colon cancer growth. Mechanistically, LBX2-AS1, as an endogenous competitive RNA, targeted miR-627-5p and restrained its expression, while miR-627-5p targeted and negatively regulated the RAC1/PI3K/AKT axis. Collectively, this study has revealed that LBX2-AS1 is a poor prognostic factor of colon cancer and can regulate colon cancer progression by regulating the miR-627-5p/RAC1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jing Fang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Junyuan Yang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Hui Chen
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Wen Sun
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Lingyun Xiang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Jueping Feng
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China.
| |
Collapse
|
32
|
The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Dis 2022; 8:287. [PMID: 35697671 PMCID: PMC9192730 DOI: 10.1038/s41420-022-01061-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Non-coding RNAs (ncRNAs), which occupy the vast majority of human transcripts are known for their inability to encode proteins. NcRNAs consist of a diverse range of RNA species, including long non-coding RNAs (lncRNAs), which have significant meaning for epigenetic modification, post-transcriptional regulation of target genes, molecular interference, etc. The dysregulation of ncRNAs will mediate the pathogenesis of diverse human diseases, like cancer. Pancreatic cancer, as one of the most lethal malignancies in the digestive system that is hard to make a definite diagnosis at an early clinicopathological stage with a miserable prognosis. Therefore, the identification of potential and clinically applicable biomarker is momentous to improve the overall survival rate and positively ameliorate the prognosis of patients with pancreatic carcinoma. LncRNAs as one kind of ncRNAs exert multitudinous biological functions, and act as molecular sponges, relying on microRNA response elements (MREs) to competitively target microRNAs (miRNAs), thereby attenuating the degradation or inhibition of miRNAs to their own downstream protein-coding target genes, also thus regulating the initiation and progression of neoplasms. LncRNAs, which emerge aforementioned function are called competing endogenous RNAs (ceRNAs). Consequently, abundant research of lncRNAs as potential biomarkers is of critical significance for the molecular diagnosis, targeted therapy, as well as prognosis monitoring of pancreatic cancer.
Collapse
|
33
|
Guo F, Yuan Y, Chen Z, Gao F, Li X, Wang H, Wang X, Bai G. Downregulation of the long non-coding RNA MALAT1 in tenofovir-treated pregnant women with hepatitis B virus infection promotes immune recovery of natural killer cells via the has-miR-155-5p/HIF-1α axis. Int Immunopharmacol 2022; 107:108701. [DOI: 10.1016/j.intimp.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
|
34
|
Liang Y, Zhang ZQ, Liu NN, Wu YN, Gu CL, Wang YL. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. BMC Bioinformatics 2022; 23:189. [PMID: 35590258 PMCID: PMC9118755 DOI: 10.1186/s12859-022-04715-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysis and prevention. Establishing effective computational methods for lncRNA-disease association prediction is critical. RESULTS In this paper, we propose a novel model named MAGCNSE to predict underlying lncRNA-disease associations. We first obtain multiple feature matrices from the multi-view similarity graphs of lncRNAs and diseases utilizing graph convolutional network. Then, the weights are adaptively assigned to different feature matrices of lncRNAs and diseases using the attention mechanism. Next, the final representations of lncRNAs and diseases is acquired by further extracting features from the multi-channel feature matrices of lncRNAs and diseases using convolutional neural network. Finally, we employ a stacking ensemble classifier, consisting of multiple traditional machine learning classifiers, to make the final prediction. The results of ablation studies in both representation learning methods and classification methods demonstrate the validity of each module. Furthermore, we compare the overall performance of MAGCNSE with that of six other state-of-the-art models, the results show that it outperforms the other methods. Moreover, we verify the effectiveness of using multi-view data of lncRNAs and diseases. Case studies further reveal the outstanding ability of MAGCNSE in the identification of potential lncRNA-disease associations. CONCLUSIONS The experimental results indicate that MAGCNSE is a useful approach for predicting potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ze-Qun Zhang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Nian-Nian Liu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ya-Nan Wu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chang-Long Gu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Ying-Long Wang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
35
|
Comprehensive Analyses of Stromal-Immune Score-Related Competing Endogenous RNA Networks In Colon Adenocarcinoma. DISEASE MARKERS 2022; 2022:4235305. [PMID: 35607443 PMCID: PMC9124109 DOI: 10.1155/2022/4235305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Although recent clinical investigations emphasize the roles of myriad diversities of RNAs in stromal and immune components in the tumor microenvironment, especially in colon adenocarcinoma, however, analyses of “competing endogenous RNAs (ceRNA)” network in association with stromal and immune scores have yet to be determined. This study was conducted to explore the regulatory mechanisms of a stromal-immune score-based ceRNA network in colon adenocarcinoma. Stromal and immune scores of colon adenocarcinoma tumor samples were calculated by using the ESTIMATE algorithm. Differential expression analysis between samples with high/low stromal and immune scores was performed, followed by functional annotation for the overlapping DEmRNAs. The ceRNA network was constructed by differential expression analysis, prediction of RNA-RNA interaction, and correlation with clinicopathological parameters of the patients, which were further verified by external datasets and experiments. Colon adenocarcinoma patients having higher immune scores exhibited prolonged overall survival. RNA dataset analyses from TCGA revealed aberrant expressions of a total of 2052 mRNAs, 108 lncRNAs, and 70 miRNAs between high and low stromal/immune groups. Functional annotation mapped the differentially overexpressed mRNAs for immune-associated GO terms. To construct the ceRNA network, a total of 48 lncRNAs, 40 miRNAs, and 199 mRNAs were sorted out. A dysregulated ceRNA network consisting of 6 lncRNAs, 11 miRNAs, and 39 mRNAs was constructed by comparing RNA expressions between cancer as well as adjacent normal tissues. The ceRNA regulatory axis “MIAT/miR-532-3p/STC1” was regarded as a potential hit by the comprehensive analysis. The RT-qPCR assay showed upregulation of MIAT and STC1 while downregulation of hsa-miR-532-3p expression in cancer. Thus, our study highlights the potential role of a stromal-immune score-based ceRNA network in the colon adenocarcinoma microenvironment. The ceRNA axis MIAT/miR-532-3p/STC1 could serve as a promising therapeutic target for colon adenocarcinoma.
Collapse
|
36
|
Song M, Li Y, Chen Z, Zhang J, Yang L, Zhang F, Song C, Miao M, Chang W, Shi H. The Long Non-Coding RNA FAM222A-AS1 Negatively Modulates MiR-Let-7f to Promote Colorectal Cancer Progression. Front Oncol 2022; 12:764621. [PMID: 35646686 PMCID: PMC9133450 DOI: 10.3389/fonc.2022.764621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that lncRNAs are potential biomarkers and key regulators of tumor development and progression. The present study aimed to screen abnormal expression lncRNAs and investigate the mechanisms underlying the function in the progression of colorectal cancer (CRC). Potential CRC prognosis-associated dysregulated lncRNAs were screened and identified using bioinformatics analysis. Loss/gain-of-function experiments were performed to detect the biological roles of FAM222A-AS1 in CRC cell phenotypes in vitro and in vivo. The potential microRNAs that interact with FAM222A-AS1 were identified using online tools and were verified using qRT-PCR and luciferase reporter assay. The expression of FAM222A-AS1 is significantly upregulated in CRC tumor samples and cell lines. CRC patients with elevated FAM222A-AS1 expression in the tumor samples had unfavorable overall survival and disease-free survival. Silencing FAM222A-AS1 expression significantly inhibited CRC cell proliferation, migration, and invasion both in vitro and in vivo. Furthermore, FAM222A-AS1 was mainly distributed in the cytoplasm. It may directly bound to miR-let-7f and inhibit its expression and upregulate MYH9. In summary, FAM222A-AS1, as a novel oncogene in CRC, may promote the CRC progression by inhibiting miR-let-7f/MYH9 axis. The FAM222A-AS1/miR-let-7f/MYH9 signaling pathway may be a novel valuable target for inhibiting CRC.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ye Li
- Department of Digestive Endoscopy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Fan Zhang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, Henan Key Laboratory of Tumor Epidemiology College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingyong Miao
- Department of Biochemistry, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Wenjun Chang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| |
Collapse
|
37
|
Molecular mechanism of miR-34b-5p and RNA binding protein HuR binding to lncRNA OIP5-AS1 in colon cancer cells. Cancer Gene Ther 2022; 29:612-624. [PMID: 34021273 DOI: 10.1038/s41417-021-00342-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/02/2023]
Abstract
Colon cancer (CC) is a leading cause of cancer-related death. Long non-coding RNA OIP5-AS1 (lncRNA OIP5-AS1) expression pattern has been studied in many cancers. We aimed to identify the mechanism of lncRNA OIP5-AS1 in CC development. OIP5-AS1 expression pattern in CC tissues and cells was detected and the relation between OIP5-AS1 level and CC prognosis was analyzed. The proliferation, migration and invasion of CC cells were detected after silencing or overexpression of OIP5-AS1. Tumor xenograft in nude mice was established to verify the effect of OIP5-AS1 in vivo. The interaction between HuR protein and OIP5-AS1 and the interaction of miR-34b-5p with HuR and OIP5-AS1 were measured. OIP5-AS1 was highly expressed in CC and associated with poor prognosis. Silencing OIP5-AS1 inhibited CC cell malignant behaviors and inhibited the growth rate and tumor weight. In the mechanism, HuR bound to OIP5-AS1 and stabilized OIP5-AS1 expression. Both miR-34-5p and HuR bind to OIP5 and oppositely affect its expression. miR-34b-5p inhibited the proliferation and invasion of CC cells by inhibiting OIP5-AS1 and PI3K/Akt pathway. miR-34b-5p inhibited CC growth by inhibiting OIP5-AS1. Collectively, miR-34b-5p targets HuR and miR-34b-5p binds to OIP5-AS1 with HuR, thus inhibiting OIP5-AS1 and PI3K/Akt pathway and CC progression.
Collapse
|
38
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
39
|
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L, Chu H, Wang X, Zhang W. Long non-coding RNA-PCGEM1 contributes to prostate cancer progression by sponging microRNA miR-129-5p to enhance chromatin licensing and DNA replication factor 1 expression. Bioengineered 2022; 13:9411-9424. [PMID: 35412947 PMCID: PMC9162030 DOI: 10.1080/21655979.2022.2059936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
PCGEM1 facilitates prostate cancer (PCa) progression. This study aimed to elucidate the mechanism of action of PCGEM1 in PCa. The expression of PCGEM1, microRNA miR-129-5p, chromatin licensing, and DNA replication factor 1 (CDT1) was detected by quantitative reverse transcription-PCR (qRT-PCR). A series of function experiments including cell counting kit-8 (CCK-8), caspase-3 activity, and cell cycle assays were performed to evaluate the influence of PCGEM1, miR-129-5p, and CDT1 on the biological processes of PCa cells. CyclinD1, cyclin dependent kinase 4 (CDK4), Bax, and Bcl-2 protein levels were measured by western blotting. Subcellular isolation revealed the distribution of PCa cells. The connections between PCGEM1, miR-129-5p, and CDT1 were evaluated by luciferase, RIP assay, and Pearson correlation analysis. Both PCGEM1 and CDT1 were upregulated in PCa, while miR-129-5p was downregulated and negatively correlated with PCGEM1 and CDT1. Downregulation of PCGEM1 or CDT1 inhibited the viability, promoted apoptosis and cycle arrest of PCa cells in vitro, and controlled tumor growth in vivo. PCGEM1 plays a crucial role in the progression of PCa by sponging miR-129-5p as a ceRNA of CDT1. PCGEM1 is a CDT1-dependent PCa promoter site that absorbs miR-129-5p.
Collapse
Affiliation(s)
- Qiao Fu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Fangfang Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Jun Yang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Sun
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Zhi Hu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Lv Xu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Hao Chu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Xiao Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Zhang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| |
Collapse
|
40
|
MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22:126. [PMID: 35305641 PMCID: PMC8933897 DOI: 10.1186/s12935-022-02540-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.
Collapse
|
41
|
Yang X, Tong Y, Ye W, Chen L. HOXB2 increases the proliferation and invasiveness of colon cancer cells through the upregulation of CCT6A. Mol Med Rep 2022; 25:174. [PMID: 35315492 PMCID: PMC8971898 DOI: 10.3892/mmr.2022.12690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Colon cancer has a high mortality rate, thus there is an urgent need to develop novel therapeutic options for clinical management of the disease. Studies have revealed that chaperonin containing TCP1 subunit 6A (CCT6A) promoted the development of multiple types of cancer, and dataset analysis revealed that homeobox B2 (HOXB2) has the potential to modulate the expression of CCT6A. However, whether HOXB2 affects the proliferation, migration and invasion of colon cancer cells remains to be determined. A CCT6A knockdown colon cancer cell line was established and colony formation, wound healing and Transwell invasion assays were performed to assess proliferation, migration and invasion of the altered colon cancer cells. Subsequently, luciferase reporter gene assays and chromatin immunoprecipitation assays were performed to detect the relationship between HOXB2 and CCT6A. A HOXB2 overexpression colon cancer cell line was established and the proliferation, migration and invasion of these cells was determined using the same methods. Knockdown of CCT6A reduced the proliferation, migration and invasion of colon cancer cells. HOXB2 enhanced the expression of CCT6A in colon cancer cells by binding to the promoter of CCT6A. Overexpression of HOXB2 abolished the inhibitory effect of CCT6A knockdown on the proliferation, migration and invasion of colon cancer cells. HOXB2 increased the proliferation and invasiveness of colon cancer cells by increasing the expression of CCT6A.
Collapse
Affiliation(s)
- Xuelian Yang
- Department of Radiation Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Yuanhe Tong
- Department of Radiation Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Wenxia Ye
- Department of Dermatology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Lifen Chen
- Department of Clinical Laboratory, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
42
|
Liu FJ, Gu TJ, Wei DY. Emodin alleviates sepsis-mediated lung injury via inhibition and reduction of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J Med Sci 2022; 38:253-260. [PMID: 34806822 DOI: 10.1002/kjm2.12476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Inflammation plays an important role during sepsis, and excessive inflammation can result in organ damage, chronic inflammation, fibrosis, and scarring. The study aimed to investigate the specific mechanism of emodin by constructing in vivo and in vitro septic lung injury models via inhibition and reduction of NF-kB and high mobility group box 1 (HMGB1) pathways. A cecal ligation and puncture (CLP) model was built for adult male Sprague-Dawley rats. Concentrations of TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid were determined using commercially available ELISA kits. Hematoxylin and eosin staining was used for the right lung inferior lobes. Myeloperoxidase (MPO) activity of the lung tissue was detected by using the MPO kit. Murine alveolar epithelial cell line (MLE-12) cells were used for flow cytometry and Western blot to analyze the apoptosis rate and protein expression. Emodin significantly decreased CLP-induced cell apoptosis, upregulated expression of sirtuin 1 (SIRT1), and inhibited p-p65/p65 and HMGB1. In lipopolysaccharide (LPS) treated cell model, emodin treatment markedly decreased LPS-induced release of IL-1, IL-6, and tumor necrosis factor (TNF)-α, inhibited LPS-induced cell apoptosis and suppressed protein levels of P-P65/P65 and HMGB1. However, science of SIRT1 reversed the above effects by treatment of emodin. In summarize, this study found that emodin can alleviate sepsis-induced lung injury in vivo and in vitro through regulation of SIRT1.
Collapse
Affiliation(s)
- Fu-Jing Liu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ti-Jun Gu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong-Yue Wei
- Department of Pediatric, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
43
|
Xu H, Yu X, Yang Z, Song Q, Cheng S, He Z, Dai L. PAX5-activated lncRNA ARRDC1-AS1 accelerates the autophagy and progression of DLBCL through sponging miR-2355-5p to regulate ATG5. Life Sci 2021; 286:119932. [PMID: 34499929 DOI: 10.1016/j.lfs.2021.119932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/07/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) has high cancer-related mortality. Studies have supported that lncRNAs can regulate cancer progression by affecting autophagy of cells. ARRDC1 antisense RNA 1 (ARRDC1-AS1) was found to be upregulated in DLBCL tissues in GEPIA, but it has never been detected in DLBCL. AIM In this study, we aimed to explore the regulatory mechanism of ARRDC1-AS1 in DLBCL cells. MAIN METHODS RT-qPCR was taken to measure the expression of ARRDC1-AS1, microRNA-2355-5p (miR-2355-5p) and autophagy-related gene 5 (ATG5) in DLBCL cells. Western blot was conducted to detect protein levels. The malignant behaviors of DLBCL cells were estimated through functional assays. The molecular interactions were detected by Chromatin immunoprecipitation (ChIP), RNA pull-down, RNA immunoprecipitation (RIP) and luciferase reporter assays. RESULTS We found that ARRDC1-AS1 was upregulated in DLBCL tissues and cell lines. ARRDC1-AS1 was activated by transcription factor PAX5. Knockdown of ARRDC1-AS1 suppressed DLBCL autophagy to aggravate proliferation, repress apoptosis, and facilitate invasion and migration. Furthermore, ARRDC1-AS1 sponged miR-2355-5p to upregulate ATG5. CONCLUSION Present study first showed that PAX5-activated ARRDC1-AS1 accelerates the autophagy and progression of DLBCL via sponging miR-2355-5p to regulate ATG5, revealing a novel molecular mechanism of ARRDC1-AS1 in DLBCL and suggested ARRDC1-AS1 as a potential target in DLBCL.
Collapse
Affiliation(s)
- Huazhen Xu
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Xiaojing Yu
- Department of E.N.T. Department, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Zhuangzhi Yang
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Qingjie Song
- Department of Neurology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Shijuan Cheng
- Operating Room of Anesthesia and Perioperative, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Zhenzhen He
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Lixia Dai
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China.
| |
Collapse
|
44
|
Wang J, Mo J, Xie Y, Wang C. Ultrasound microbubbles-mediated miR-216b affects MALAT1-miRNA axis in non-small cell lung cancer cells. Tissue Cell 2021; 74:101703. [PMID: 34896788 DOI: 10.1016/j.tice.2021.101703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
MiR-216b is ectopically expressed in various cancers. Ultrasound microbubbles (UTMBs) are an effective method for miRNA delivery. This article mainly explored the involvement of lncRNA in the effects of UTMBs-mediated miR-216b on non-small cell lung cancer (NSCLC) progression. Expressions and relationship of miR-216b and MALAT1 were examined using quantitative real-time polymerase chain reaction (qRT-PCR), Pearson, TargetScan, and dual-luciferase reporter assay. After the transfection with liposome- or UTMBs-mediated miR-216b mimic (M) or MALAT1 overexpression plasmid alone or together, levels of miR-216b and MALAT1, cell biological behaviors, as well as expressions of apoptosis- and epithelial mesenchymal transition (EMT)-related markers were examined using qRT-PCR, cell functional experiments, and western blot. Besides, we used qRT-PCR to quantify the expressions of multiple downstream miRNAs of MALAT1. MiR-216b expression was weakened yet MALAT1 expression was enhanced in NSCLC tissues, and miR-216b was negatively bound to MALAT1. TargetScan analysis manifested that miR-216b, targeted by MALAT1, was down-regulated in NSCLC cells. UTMBs-mediated miR-216b M further intensified miR-216b level yet weakened cell biological behaviors. The inhibitory effect of UTMBs-mediated miR-216b M on cell biological behaviors and MALAT1 expression was greatly better relative to that of miR-216b M. Moreover, miR-216b restrained the cell biological behaviors by repressing MALAT1 expression. We further manifested that miR-216b facilitated the expressions of apoptosis-related markers, but restrained those of EMT-related markers by repressing MALAT1 expression. Moreover, UTMBs-mediated miR-216b M enhanced the expressions of downstream multiple miRNAs of MALAT1, but this tendency was reversed by co-transfection of overexpressed MALAT1 and miR-216b M. Collectively, UTMBs-mediated miR-216b M restrained NSCLC cell growth by modulating the MALAT1-miRNA axis.
Collapse
Affiliation(s)
- Jian Wang
- Thoracic Surgery Department, Shenzhen People's Hospital, China
| | - Jianming Mo
- Pulmonary and Critical Care Medicine Department, Peking University Shenzhen Hospital, China
| | - Yuancai Xie
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, China.
| | - Chunguang Wang
- Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
45
|
Ji Y, Ji J, Yin H, Chen X, Zhao P, Lu H, Wang T. Exosomes derived from microRNA-129-5p-modified tumor cells selectively enhanced suppressive effect in malignant behaviors of homologous colon cancer cells. Bioengineered 2021; 12:12148-12156. [PMID: 34775889 PMCID: PMC8809989 DOI: 10.1080/21655979.2021.2004981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Exosome-encapsulated microRNAs (miRNAs) are novel diagnostic and predictive markers in colon cancer. Hence, the study of serum exosomal miRNAs in patients with colon cancer may help its diagnosis and treatment. PKH26-labeled exosomal uptake analysis identified whether exosomes transfer miRNA-129-5p to target cells. Transmission electron microscopy and dynamic light scattering analysis were applied to determine exosome morphology and size distribution. The Cell Counting Kit-8, wound healing assay and Transwell assays were used to detect cell proliferation, migration, and invasion after treatment with engineered exosomes. Moreover, the Western blotting was used to quantify the expression of proteins involved in cell apoptosis. In our study, hepatocellular liver carcinoma, cervical cancer and colon cancer cells were selected as the target cells of miRNA-129-5p exosomes. Exosomes containing miRNA-129-5p were found to be significantly more easily absorbed by colon cancer cells, presenting a stronger inhibitory effect on colon cancer cell proliferation. MiRNA-129-5p exosomes induced apoptosis in colon cancer cells while inhibiting their proliferation, migration, and invasion. In conclusion, exosomes derived from miRNA-129-5p-modified tumor cells selectively inhibited colon cancer progression, shedding new insights to therapeutic efficacy of this cancer.
Collapse
Affiliation(s)
- Yong Ji
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Jianxiang Ji
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Hongming Yin
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Xu Chen
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Pengcheng Zhao
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Huahu Lu
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| | - Taowu Wang
- Department of surgery, Funing County Hospital, No.111 Fucheng Street, Yancheng 224400, Jiangsu, China
| |
Collapse
|
46
|
Xu J, Ling T, Dai S, Han S, Ding K. Constructing the ceRNA Regulatory Network and Combining Immune Cells to Evaluate Prognosis of Colon Cancer Patients. Front Cell Dev Biol 2021; 9:686844. [PMID: 34692670 PMCID: PMC8528953 DOI: 10.3389/fcell.2021.686844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study was conducted in order to construct a competitive endogenous RNA (ceRNA) network to screen RNA that plays an important role in colon cancer and to construct a model to predict the prognosis of patients. Methods: The gene expression data of colon cancer were downloaded from the TCGA database. The difference was analyzed by the R software and the ceRNA network was constructed. The survival-related RNA was screened out by combining with clinical information, and the prognosis model was established by lasso regression. CIBERSORT was used to analyze the infiltration of immune cells in colon cancer, and the differential expression of immune cells related to survival was screened out by combining clinical information. The correlation between RNA and immune cells was analyzed by lasso regression. PCR was used to verify the expression of seven RNAs in colon cancer patients with different prognoses. Results: Two hundred and fifteen lncRNAs, 357 miRNAs, and 2,955 mRNAs were differentially expressed in colon cancer. The constructed ceRNA network contains 18 lncRNAs, 42 miRNAs, and 168 mRNAs, of which 18 RNAs are significantly related to survival. Through lasso analysis, we selected seven optimal RNA construction models. The AUC value of the model was greater than 0.7, and there was a significant difference in the survival rate between the high- and low-risk groups. Two kinds of immune cells related to the prognosis of patients were screened out. The results showed that the expression of seven RNA markers in colon cancer patients with different prognoses was basically consistent with the model analysis. Conclusion: We have established the regulatory network of ceRNA in colon cancer, screened out seven core RNAs and two kinds of immune cells, and constructed a comprehensive prognosis model of colon cancer patients.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Tianyi Ling
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Siqi Dai
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shuwen Han
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Yang L, Xie F, Xu W, Xu T, Ni Y, Tao X, Zang Y, Jin J. Long non-coding RNA XIST accelerates hepatic carcinoma progression by targeting the microRNA-320a/PIK3CA axis. Oncol Lett 2021; 22:801. [PMID: 34630708 PMCID: PMC8477073 DOI: 10.3892/ol.2021.13062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to reveal the new molecular mechanism of long non-coding (lnc)RNA XIST in the development of hepatic carcinoma. A total of 69 patients with hepatic carcinoma were included. Hepatoma cell lines (SUN449), hepatoblastoma cell line (HepG2, Huh-6), liver cancer cell line (HepG2) and transformed human liver epithelial-2 cells (THLE-2) were used in the present study. A total 3 short hairpin RNA (sh)-lncRNA XIST sequences, overexpression vector (oe)-lncRNA XIST, microRNA (miR)-320a mimic, miR-320a inhibitor, PIK3CA inhibitor, and their corresponding controls were transfected in hepatic carcinoma cells. Reverse transcription-quantitative polymerase chain reaction was conducted to detect lncRNA-XIST, miR-320a and PIK3CA expression. Cell Counting Kit-8 assay and flow cytometry were undertaken to measure proliferation and apoptosis. Cell invasion and migration were detected by Transwell assays. Moreover, the binding of lncRNA XIST, PIK3CA and miR-320a were verified by luciferase reporter experiment and pull-down assay. Finally, a rescue assay was processed to confirm the effect of lncRNA-XIST, miR-320a and PIK3CA in the aforementioned processes. lncRNA XIST was highly expressed in hepatic carcinoma tissues and cells. The survival rate was significantly lower in the highly expressed lncRNA XIST group. shlncRNA XIST attenuated cell proliferation, invasion and migration, while increasing the apoptosis of hepatic carcinoma cells. The lncRNA XIST negatively targeted miR-320a, and miR-320a negatively regulated the expression of PIK3CA. The miR-320a mimic and PIK3CA inhibitor could recover the effect of oe-lncRNA in terms of the proliferation, invasion, migration and apoptosis of hepatic carcinoma cells. lncRNA XIST accelerates hepatic carcinoma progression by targeting the miR-320a/PIK3CA axis, which might provide the theoretical basis for the potential targeted therapy of hepatic carcinomas.
Collapse
Affiliation(s)
- Lina Yang
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Fangliang Xie
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Weidong Xu
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Tonglei Xu
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Yuan Ni
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Xiao Tao
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Yu Zang
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Juan Jin
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
48
|
Ye J, Liu J, Tang T, Xin L, Bao X, Yan Y. miR‑4306 inhibits the malignant behaviors of colorectal cancer by regulating lncRNA FoxD2‑AS1. Mol Med Rep 2021; 24:723. [PMID: 34396433 PMCID: PMC8383050 DOI: 10.3892/mmr.2021.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miR)‑4306 and FoxD2‑adjacent opposite strand RNA 1 (FOXD2‑AS1) are cancer‑related genes involved in tumor progression. However, the potential functional roles of miR‑4306 and FoxD2‑AS1 in colorectal cancer (CRC) development remain unknown. The present study aimed to investigate the biological functions and the molecular mechanisms of miR‑4306 and FoxD2‑AS1 in CRC. Reverse transcription‑quantitative PCR analysis was performed to determine the expression levels of FoxD2‑AS1 and miR‑4306 in CRC tissues and cell lines. Functional experiments, including Cell Counting Kit‑8, colony formation, cell cycle assays and western blotting, were conducted to examine the effects of FoxD2‑AS1 and miR‑4306 on the malignant behaviors of CRC cells. In addition, the relationship between FoxD2‑AS1 and miR‑4306 was assessed using a dual‑luciferase reporter assay and Pearson's correlation analysis. Compared with normal samples and cells, FoxD2‑AS1 expression was increased and miR‑4306 expression was decreased in CRC tissues and cells. Functional experiments demonstrated that silencing FoxD2‑AS1 inhibited proliferation and induced cell arrest at G0/G1 phase in CRC cells, while the overexpression of FoxD2‑AS1 showed opposite results. Ki‑67 and proliferating cell nuclear antigen expression levels were decreased after transfection with small interfering RNA FoxD2‑AS1, but were increased after transfection with FoxD2‑AS1 overexpression plasmid. Furthermore, investigations into the underling mechanism revealed that FoxD2‑AS1 functioned as a molecular sponge of miR‑4306. The inhibitory effects of FoxD2‑AS1 silencing on CRC progression were reversed by miR‑4306 knockdown. Collectively, the present study demonstrated that FoxD2‑AS1 functioned as an oncogene in CRC progression, and that miR‑4306 could inhibit the malignant behaviors of CRC by regulating FoxD2‑AS1. Thus, the current study provided a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Jidong Liu
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Tao Tang
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Le Xin
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Xing Bao
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Yukuang Yan
- Department of General Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
49
|
Xu S, Li W, Wu J, Lu Y, Xie M, Li Y, Zou J, Zeng T, Ling H. The role of miR-129-5p in cancer: a novel therapeutic target. Curr Mol Pharmacol 2021; 15:647-657. [PMID: 34521336 DOI: 10.2174/1874467214666210914122010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
MiRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. MiRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. MiRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA-129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanlan Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001. China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
50
|
Ma H, Li M, Jia Z, Chen X, Bu N. miR-876-3p suppresses the progression of colon cancer and correlates the prognosis of patients. Exp Mol Pathol 2021; 122:104682. [PMID: 34509500 DOI: 10.1016/j.yexmp.2021.104682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND miR-876-3p has been identified to be downregulated in colon cancer, implying the potential biological function in the progression and prognosis of colon cancer. The clinical significance and the biological function of miR-876-3p were investigated in this study to assess the potential of miR-876-3p in acting as a novel biomarker of the progression of colon cancer. METHODS The expression of miR-876-3p in colon cancer was evaluated by RT-qPCR. The clinical significance of miR-876-3p was assessed by associated its expression level with the clinical features and prognosis of patients. The biological function of miR-876-3p was estimated by the CCK8 and Transwell assay in vitro. RESULTS The significant downregulation of miR-876-3p was observed in colon cancer tissues and cells, which was closely associated with the lymph node metastasis status, TNM stage, and the perineural invasion of patients. miR-876-3p served as an independent indicator that was negatively associated with the prognosis of patients. In colon cancer cells, miR-876-3p showed significant inhibitory effects on cell proliferation, migration, and invasion, indicating its tumor suppressor role in the progression of colon cancer. CONCLUSION miR-876-3p might be involved in colon cancer development, which provides a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Huili Ma
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China.
| | - Mintao Li
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Zhuting Jia
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Xi Chen
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Naitong Bu
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| |
Collapse
|