1
|
Chen Y, Pang J, Ye L, Zhang Z, Lin S, Lin N, Lee TH, Liu H. Disorders of the central nervous system: Insights from Notch and Nrf2 signaling. Biomed Pharmacother 2023; 166:115383. [PMID: 37643483 DOI: 10.1016/j.biopha.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. It arises from neural crest-derived cells that migrate by the exact route, leading to the formation of a complex network of neurons and glial cells. Recent studies have shown that novel crosstalk exists between the Notch1 and Nrf2 pathways and is associated with many neurological diseases. The Notch1-Nrf2 axis may act on nervous system development, and the molecular mechanism has recently been reported. In this review, we summarize the essential structure and function of the CNS. The significance of interactions between signaling pathways and between developmental processes like proliferation, apoptosis and migration in ensuring the correct development of the CNS is also presented. We primarily focus on research concerning possible mechanism of interaction between Notch1 and Nrf2 and the functions of Notch1-Nrf2 in neurons. There may be a direct interaction between Notch1 and NRF2, which is closely related to the crosstalk that occurs between them. The significance and potential applications of the Notch1-Nrf2 axis in abnormal development of the nervous system are been highlighten. We also discuss the molecular mechanisms by which the Notch1-Nrf2 axis controls the apoptosis, antioxidant pathway and differentiation of neurons to modulate the development of the nervous system. This information will lead to a better understanding of Notch1-Nrf2 axis signaling pathways in the nervous system and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiao Pang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lu Ye
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zhentao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Suijin Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Na Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
2
|
Frazel PW, Fricano-Kugler K, May-Zhang AA, O'Dea MR, Prakash P, Desmet NM, Lee H, Meltzer RH, Fontanez KM, Hettige P, Agam Y, Lithwick-Yanai G, Lipson D, Luikart BW, Dasen JD, Liddelow SA. Single-cell analysis of the nervous system at small and large scales with instant partitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549051. [PMID: 37503160 PMCID: PMC10370061 DOI: 10.1101/2023.07.14.549051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Single-cell RNA sequencing is a new frontier across all biology, particularly in neuroscience. While powerful for answering numerous neuroscience questions, limitations in sample input size, and initial capital outlay can exclude some researchers from its application. Here, we tested a recently introduced method for scRNAseq across diverse scales and neuroscience experiments. We benchmarked against a major current scRNAseq technology and found that PIPseq performed similarly, in line with earlier benchmarking data. Across dozens of samples, PIPseq recovered many brain cell types at small and large scales (1,000-100,000 cells/sample) and was able to detect differentially expressed genes in an inflammation paradigm. Similarly, PIPseq could detect expected and new differentially expressed genes in a brain single cell suspension from a knockout mouse model; it could also detect rare, virally-la-belled cells following lentiviral targeting and gene knockdown. Finally, we used PIPseq to investigate gene expression in a nontraditional model species, the little skate (Leucoraja erinacea). In total, PIPSeq was able to detect single-cell gene expression changes across models and species, with an added benefit of large scale capture and sequencing of each sample.
Collapse
|
3
|
Ünal İ, Cansız D, Sürmen MG, Sürmen S, Sezer Z, Beler M, Üstündağ ÜV, Güzel E, Alturfan AA, Emekli-Alturfan E. Identification of molecular network of gut-brain axis associated with neuroprotective effects of PPARδ-ligand erucic acid in rotenone-induced Parkinson's disease model in zebrafish. Eur J Neurosci 2023; 57:585-606. [PMID: 36564343 DOI: 10.1111/ejn.15904] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Disruption of the gut-brain axis in Parkinson's disease (PD) may lead to motor symptoms and PD pathogenesis. Recently, the neuroprotective potential of different PPARδ-agonists has been shown. We aimed to reveal the effects of erucic acid, peroxisome proliferator-activated receptors (PPARs)-ligand in rotenone-induced PD model in zebrafish, focusing on the gut-brain axis. Adult zebrafish were exposed to rotenone and erucic acid for 30 days. Liquid chromatography-mass spectrometry and tandem mass spectrometry (LC-MS/MS) analysis was performed. Raw files were analysed by Proteome Discoverer 2.4 software; peptide lists were searched against Danio rerio proteins. STRING database was used for protein annotations or interactions. Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione S-transferase (GST), acetylcholinesterase and the expressions of PD-related genes were determined. Immunohistochemical tyrosine hydroxylase (TH) staining was performed. LC-MS/MS analyses allowed identification of over 2000 proteins in each sample. The 2502 and 2707 proteins overlapped for intestine and brain. The 196 and 243 significantly dysregulated proteins in the brain and intestines were found in rotenone groups. Erucic acid treatment corrected the changes in the expression of proteins associated with cytoskeletal organisation, transport and localisation and improved locomotor activity, expressions of TH, PD-related genes (lrrk2, park2, park7, pink1) and oxidant-damage in brain and intestines in the rotenone group as evidenced by decreased LPO, No and increased GST. Our results showed beneficial effects of erucic acid as a PPARδ-ligand in neurotoxin-induced PD model in zebrafish. We believe that our study will shed light on the mechanism of the effects of PPARδ agonists and ω9-fatty acids in the gut-brain axis of PD.
Collapse
Affiliation(s)
- İsmail Ünal
- Institute of Health Sciences, Department of Biochemistry, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Gani Sürmen
- Hamidiye Institute of Health Sciences, Department of Molecular Medicine, University of Health Sciences, Istanbul, Turkey
| | - Saime Sürmen
- Hamidiye Institute of Health Sciences, Department of Molecular Medicine, University of Health Sciences, Istanbul, Turkey
| | - Zehra Sezer
- Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department of Biochemistry, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Elif Güzel
- Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
4
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
5
|
Ge X, Yao T, Zhang C, Wang Q, Wang X, Xu LC. Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk Factor of Neurodegenerative Diseases. Curr Alzheimer Res 2022; 19:511-522. [PMID: 35929619 PMCID: PMC9906632 DOI: 10.2174/1567205019666220805120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease patients (AD), Huntington's disease (HD) and Parkinson's disease (PD), are common causes of morbidity, mortality, and cognitive impairment in older adults. OBJECTIVE We aimed to understand the transcriptome characteristics of the cortex of neurodegenerative diseases and to provide an insight into the target genes of differently expressed microRNAs in the occurrence and development of neurodegenerative diseases. METHODS The Limma package of R software was used to analyze GSE33000, GSE157239, GSE64977 and GSE72962 datasets to identify the differentially expressed genes (DEGs) and microRNAs in the cortex of neurodegenerative diseases. Bioinformatics methods, such as GO enrichment analysis, KEGG enrichment analysis and gene interaction network analysis, were used to explore the biological functions of DEGs. Weighted gene co-expression network analysis (WGCNA) was used to cluster DEGs into modules. RNA22, miRDB, miRNet 2.0 and TargetScan7 databases were performed to predict the target genes of microRNAs. RESULTS Among 310 Alzheimer's disease (AD) patients, 157 Huntington's disease (HD) patients and 157 non-demented control (Con) individuals, 214 co-DEGs were identified. Those co-DEGs were filtered into 2 different interaction network complexes, representing immune-related genes and synapserelated genes. The WGCNA results identified five modules: yellow, blue, green, turquoise, and brown. Most of the co-DEGs were clustered into the turquoise module and blue module, which respectively regulated synapse-related function and immune-related function. In addition, human microRNA-4433 (hsa-miR-4443), which targets 18 co-DEGs, was the only 1 co-up-regulated microRNA identified in the cortex of neurodegenerative diseases. CONCLUSION 214 DEGs and 5 modules regulate the immune-related and synapse-related function of the cortex in neurodegenerative diseases. Hsa-miR-4443 targets 18 co-DEGs and may be a potential molecular mechanism in neurodegenerative diseases' occurrence and development.
Collapse
Affiliation(s)
- Xing Ge
- Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Tingting Yao
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Chaoran Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu 221000, China
| | - Xuxu Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; ,Address correspondence to this author at the School of Public Health, Xuzhou Medical University, Xuzhou, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China; Tel: +86-516-83262650; Fax: +86-516-83262650; E-mail:
| |
Collapse
|
6
|
Jiang M, Feng J, Fu R, Pan Y, Liu X, Dai J, Jiang C, Hao Y, Ren M. Transfection of STAT3 overexpression plasmid mediated through recombinant lentivirus promotes differentiation of bone marrow mesenchymal stem cells into neural cells in fetal rats with spina bifida aperta. Aging (Albany NY) 2021; 13:21778-21790. [PMID: 34520395 PMCID: PMC8457560 DOI: 10.18632/aging.203524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
We investigated the influence of signal transducer and activator of transcription-3 (STAT3) on the spinal cord tissue grafts of rat fetuses with spina bifida aperta. In particular, we hoped to identify whether transfection of the STAT3 overexpression plasmid increases the survival of spinal cord transplantation in order to improve therapeutic efficacy. The fetal rat model of spina bifida aperta was established using retinoic acid and treated with a microsurgical injection of bone marrow mesenchymal stem cells (BMSCs). The animals were divided into either the blank control group, negative control group or the experimental group. The optical density (OD) value of BMSCs viability was determined using the Cell Counting Kit-8 (CCK-8). The expression of STAT3, phosphorylated STAT3 (pSTAT3), neural markers and apoptosis-related factors were evaluated using real-time PCR and Western blot. The OD value in the experimental group was highest at eight hours after transplantation using CCK-8. The expression of pSTAT3, glial fibrillary acidic protein, neuron-specific enolase, neurofilament and nestin in the experimental group was significantly higher compared to the blank control group and negative control group (P<0.05). However, STAT3 expression in the experimental group was statistically significantly decreased (P<0.05). The relative expression of caspase-8 and bcl-2 in the experimental group were significantly lower compared to the blank control group and negative control group (P<0.05). Transfection of the recombinant lentivirus-mediated STAT3 overexpression plasmid with BMSCs can help improve the efficiency of transforming into neural cells and provide new seed cells for the treatment of congenital spina bifida aperta.
Collapse
Affiliation(s)
- Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jiale Feng
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Rong Fu
- Department of Ultrasound Medicine, The Fifth Hospital of Harbin, Harbin 150040, P.R. China
| | - Yanbo Pan
- Department of Neurosurgery, Tieling Central Hospital, Tieling 112000, P.R. China
| | - Xu Liu
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jicheng Dai
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Chunming Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Yunpeng Hao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Mingyong Ren
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
7
|
Chen M, Gao YT, Li WX, Wang JC, He YP, Li ZW, Gan GS, Yuan B. FBW7 protects against spinal cord injury by mitigating inflammation-associated neuronal apoptosis in mice. Biochem Biophys Res Commun 2020; 532:576-583. [PMID: 32900488 DOI: 10.1016/j.bbrc.2020.08.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) leads to severe and long-lasting neurological disability. Presently, the lack of effective therapies for SCI is largely attributable to an incomplete understanding of its pathogenesis. F-box and WD repeat domain-containing protein 7 (FBW7, also known as FBXW7) is a type of E3 ubiquitin ligase complex, and plays essential roles in regulating different pathological and physiological processes. In this study, we attempted to explore the effects of FBW7 on SCI progression by the in vivo and in vitro experiments. SCI mice showed significantly reduced expression of FBW7 in spinal cord tissues. Promoting FBW7 expression via intrathecal injection of AAV9/FBW7 effectively improved locomotor function in SCI mice. Neuronal death in spinal cords of SCI mice was obviously ameliorated by FBW7 over-expression, along with greatly decreased expression of cleaved Caspase-3. In addition, microglial activation in spinal cord specimens was detected in SCI mice through increasing Iba-1 expression levels, which was, however, attenuated in SCI mice injected with AAV9/FBW7. Additionally, FBW7 over-expression dramatically restrained inflammatory response in spinal cord tissues of SCI mice, as evidenced by the down-regulated expression of tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) through blocking the activation of nuclear factor-κB (NF-κB) signaling. These anti-inflammatory effects of FBW7 were confirmed in LPS-stimulated mouse microglial BV2 cells. Finally, our in vitro studies showed that conditional medium (CM) collected from LPS-incubated BV2 cells markedly induced apoptosis in the isolated primary spinal neurons; However, this effect was overtly ameliorated by CM from LPS-exposed BV2 cells over-expressing FBW7. Thus, FBW7-regulated inflammation in microglial cells was involved in the amelioration of neuronal apoptosis during SCI development. Collectively, these findings illustrated that FBW7 expression was down-regulated in spinal cords of SCI mice, and promoting its expression could effectively mitigate SCI progression by repressing microglial inflammation and neuronal death.
Collapse
Affiliation(s)
- Min Chen
- Department of Anesthesiology, Shenzhen Samii Medical Center, Shenzhen City, 518118, China
| | - Yu-Ting Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Wei-Xin Li
- Department of Neurosugery, Shenzhen Samii Medical Center, Shenzhen City, 518118, China
| | - Jian-Chun Wang
- Experimental Center, Shenzhen Samii Medical Center, Shenzhen City, 518118, China
| | - Yun-Peng He
- Department of Anesthesiology, Shenzhen Samii Medical Center, Shenzhen City, 518118, China
| | - Zhi-Wen Li
- Shenzhen Samii Medical Center, Shenzhen City, 518118, China
| | - Guo-Sheng Gan
- Department of Anesthesiology, General Hospital of Central Cheater Command of People's Liberation Army of China, Wuhan, 430070, China.
| | - Bo Yuan
- Department of Neurology, Shenzhen Samii Medical Center, Shenzhen City, 518118, China.
| |
Collapse
|
8
|
de Abreu MS, Genario R, Giacomini AC, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020; 445:3-11. [DOI: 10.1016/j.neuroscience.2019.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
9
|
Demy DL, Campanari ML, Munoz-Ruiz R, Durham HD, Gentil BJ, Kabashi E. Functional Characterization of Neurofilament Light Splicing and Misbalance in Zebrafish. Cells 2020; 9:E1238. [PMID: 32429483 PMCID: PMC7291018 DOI: 10.3390/cells9051238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs), a major cytoskeletal component of motor neurons, play a key role in the differentiation, establishment and maintenance of their morphology and mechanical strength. The de novo assembly of these neuronal intermediate filaments requires the presence of the neurofilament light subunit (NEFL), whose expression is reduced in motor neurons in amyotrophic lateral sclerosis (ALS). This study used zebrafish as a model to characterize the NEFL homologue neflb, which encodes two different isoforms via a splicing of the primary transcript (neflbE4 and neflbE3). In vivo imaging showed that neflb is crucial for proper neuronal development, and that disrupting the balance between its two isoforms specifically affects the NF assembly and motor axon growth, with resultant motor deficits. This equilibrium is also disrupted upon the partial depletion of TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the gene TARDBP that is mislocalized into cytoplasmic inclusions in ALS. The study supports the interaction of the NEFL expression and splicing with TDP-43 in a common pathway, both biologically and pathogenetically.
Collapse
Affiliation(s)
- Doris Lou Demy
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Maria Letizia Campanari
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Raphael Munoz-Ruiz
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Heather D. Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
| | - Benoit J. Gentil
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
- Department of Kinesiology and Physical Education McGill University, Montreal, QC H3A 2B4, Canada
| | - Edor Kabashi
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| |
Collapse
|