1
|
Yamauchi M, Maekawa M, Sato T, Sato Y, Kumondai M, Tsuruoka M, Inoue J, Masamune A, Mano N. Liquid Chromatography/Tandem Mass Spectrometry-Based Simultaneous Analysis of 32 Bile Acids in Plasma and Conventional Biomarker-Integrated Diagnostic Screening Model Development for Hepatocellular Carcinoma. Metabolites 2024; 14:513. [PMID: 39330520 PMCID: PMC11433973 DOI: 10.3390/metabo14090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Imaging tests, tumor marker (TM) screening, and biochemical tests provide a definitive diagnosis of hepatocellular carcinoma (HCC). However, some patients with HCC may present TM-negative results, warranting a need for developing more sensitive and accurate screening biomarkers. Various diseases exhibit increased blood levels of bile acids, biosynthesized from cholesterol in the liver, and they have been associated with HCC. Herein, we analyzed plasma bile acids using liquid chromatography/tandem mass spectrometry and integrated them with conventional biomarkers to develop a diagnostic screening model for HCC. Plasma samples were obtained from patients diagnosed with chronic hepatitis, hepatic cirrhosis (HC), and HCC. A QTRAP 6500 mass spectrometer and a Nexera liquid chromatograph with a YMC-Triart C18 analytical column were used. The mobile phase A was a 20 mmol/L ammonium formate solution, and mobile phase B was a methanol/acetonitrile mixture (1:1, v/v) with 20 mmol/L ammonium formate. After determining the concentrations of 32 bile acids, statistical analysis and diagnostic screening model development were performed. Plasma concentrations of bile acids differed between sample groups, with significant differences observed between patients with HC and HCC. By integrating bile acid results with conventional biochemical tests, a potential diagnostic screening model for HCC was successfully developed. Future studies should increase the sample size and analyze the data in detail to verify the diagnostic efficacy of the model.
Collapse
Affiliation(s)
- Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
| | - Masamitsu Maekawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Mio Tsuruoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (J.I.); (A.M.)
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (J.I.); (A.M.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (J.I.); (A.M.)
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| |
Collapse
|
2
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Potential tactics with certain gut microbiota for the treatment of unresectable hepatocellular carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:556-568. [PMID: 37720344 PMCID: PMC10501893 DOI: 10.37349/etat.2023.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes an extremely malignant form of primary liver cancer. Intricate connections linking to the immune system might be associated with the pathogenesis of HCC. Meanwhile, immunotherapy with immune checkpoint inhibitors has been established to be a favorable therapeutic possibility for advanced HCC. Although curative opportunities for advanced HCC are restricted, the immune checkpoint immunotherapy has developed as the main choice for treating HCC. However, patients with metabolic-associated fatty liver disease (MAFLD)-linked HCC might be less likely to benefit from the immunotherapy alone. The limitation of the effect of the immunotherapy might be owing to the impaired T cell activation in MAFLD patients, which could be well explained by a dysfunctional gut-liver axis. Gut microbiota and their metabolites including several bile acids could contribute to modulating the responses of the immune checkpoint immunotherapy. Roles of gut microbiota in the development of cancers have expected great interest in the latest studies. Here, an interplay between the gut and liver has been presented, which might suggest to affect the efficacy of immune checkpoint immunotherapy against HCC.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Luo W, Guo S, Zhou Y, Zhu J, Zhao J, Wang M, Sang L, Wang B, Chang B. Hepatocellular carcinoma: Novel understandings and therapeutic strategies based on bile acids (Review). Int J Oncol 2022; 61:117. [PMID: 35929515 PMCID: PMC9450808 DOI: 10.3892/ijo.2022.5407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
Bile acids (BAs) are the major components of bile and products of cholesterol metabolism. Cholesterol is catalyzed by a variety of enzymes in the liver to form primary BAs, which are excreted into the intestine with bile, and secondary BAs are formed under the modification of the gut microbiota. Most of the BAs return to the liver via the portal vein, completing the process of enterohepatic circulation. BAs have an important role in the development of hepatocellular carcinoma (HCC), which may participate in the progression of HCC by recognizing receptors such as farnesoid X receptor (FXR) and mediating multiple downstream pathways. Certain BAs, such as ursodeoxycholic acid and obeticholic acid, were indicated to be able to delay liver injury and HCC progression. In the present review, the structure and function of BAs were introduced and the metabolism of BAs and the process of enterohepatic circulation were outlined. Furthermore, the mechanisms by which BAs participate in the development of HCC were summarized and possible strategies for targeting BAs and key sites of their metabolic processes to treat HCC were suggested.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shiqi Guo
- 104K class 87, The Second Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yang Zhou
- 104K class 87, The Second Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
5
|
Colosimo S, Tomlinson JW. Bile acids as drivers and biomarkers of hepatocellular carcinoma. World J Hepatol 2022; 14:1730-1738. [PMID: 36185719 PMCID: PMC9521453 DOI: 10.4254/wjh.v14.i9.1730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of hepatocellular carcinoma (HCC) is rapidly increasing, driven not least in part by the escalating prevalence of non-alcoholic fatty liver disease. Bile acid (BA) profiles are altered in patients with HCC and there is a developing body of evidence from in vitro human cellular models as well as rodent data suggesting that BA are able to modulate fundamental processes that impact on cellular phenotype predisposing to the development of HCC including senescence, proliferation and epithelial-mesenchymal transition. Changes in BA profiles associated with HCC have the potential to be exploited clinically. Whilst excellent diagnostic and imaging tools are available, their use to screen populations with advanced liver disease at risk of HCC is limited by high cost and low availability. The mainstay for HCC screening among subjects with cirrhosis remains frequent interval ultrasound scanning. Importantly, currently available serum biomarkers add little to diagnostic accuracy. Here, we review the current literature on the use of BA measurements as predictors of HCC incidence in addition to their use as a potential screening method for the early detection of HCC. Whilst these approaches do show early promise, there are limitations including the relatively small cohort sizes, the lack of a standardized approach to BA measurement, and the use of inappropriate control comparator samples.
Collapse
Affiliation(s)
- Santo Colosimo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- School of Nutrition Science, University of Milan, Milan 20133, Italy
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
6
|
Li B, Zhou M, Wang J, Xu H, Yang M. Suppressing ERK Pathway Impairs Glycochenodeoxycholate-Mediated Survival and Drug-Resistance in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:663944. [PMID: 34327135 PMCID: PMC8313996 DOI: 10.3389/fonc.2021.663944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Glycochenodeoxycholate (GCDA), a toxic component in bile salts, is involved in carcinogenesis of gastrointestinal tumors. The objective of this research was to study the function of ERK1/2 in the GCDA-mediated survival and drug-resistance in hepatocellular carcinoma cells (HCCs). Firstly, extracellular signal-regulated kinase 1/2 (ERK1/2) was detected extensively expressed in liver cancer cells, and silencing ERK1/2 by RNA interference could suppress GCDA-stimulated survival and promote apoptosis. Furthermore, phosphorylation of endogenous ERK1/2 could be potently stimulated by GCDA in combination with enhanced chemoresistance in QGY-7703 hepatocellular carcinoma cells. The GCDA-mediated proliferation and chemoresistance could be impaired by PD98059, which acted as an inhibitor to block the phosphorylation of ERK1/2. Mechanistically, PD98059 was able to potently suppress GCDA-stimulated nuclear aggregation of ERK1/2 and p-ERK1/2, upregulate pro-survival protein Mcl-1 and downregulate pro-apoptotic protein Bim. The results of this study indicated that disruption of ERK1/2 by blocking phosphorylation or nuclear translocation may put forward new methods for solving the problem of GCDA-related proliferation and drug-resistance in liver cancer treatment.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, National Center for Geriatrics Clinical Research, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jue Wang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongjuan Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Ma C, Guo Y, Klaassen CD. Effect of Gender and Various Diets on Bile Acid Profile and Related Genes in Mice. Drug Metab Dispos 2021; 49:62-71. [PMID: 33093018 PMCID: PMC7804885 DOI: 10.1124/dmd.120.000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is an important factor for many diseases. Previous studies have demonstrated that several diets had remarkable effects on bile acid (BA) homeostasis, but no comprehensive information for both genders has been reported. Therefore, the current study characterized the nine most used laboratory animal diets fed to both genders of mice for a comparable evaluation of the topic. The results revealed that marked gender difference of BA homeostasis is ubiquitous in mice fed the various diets, and of the nine diets fed to mice, the atherogenic and calorie-restricted diets had the most marked effects on BA homeostasis, followed by the laboratory chow and essential fatty acid-deficient diets. More specifically, females had higher concentrations of total BAs in serum when fed six of the nine diets compared with male mice, and 26 of the 35 BA-related genes had marked gender difference in mice fed at least one diet. Although mice fed the calorie-restricted and atherogenic diets had increased BA, which was more pronounced in serum than liver, the intestinal farnesoid X nuclear receptor-fibroblast growth factor 15 axis changed in the opposite direction and resulted in different hepatic expression patterns of Cyp7a1 Compared with AIN-93M purified diet, higher hepatic expression of multidrug resistance-associated protein 3 was the only alteration in mice fed the laboratory chow diet. The other diets had little or no effect on BA concentrations in the liver and plasma or in the expression of BA-related genes. This study indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis. SIGNIFICANCE STATEMENT: Previous evidence suggested that various diets have effect on bile acid (BA) homeostasis; however, it is not possible to directly compare these findings, as they are all from different studies. The current study was the first to systematically investigate the influence of the nine most used experimental mouse diets on BA homeostasis and potential mechanism in both genders of mice and indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis, which will aid future investigations.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
8
|
Yang PL, Liu LX, Li EM, Xu LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12092459. [PMID: 32872659 PMCID: PMC7564975 DOI: 10.3390/cancers12092459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.
Collapse
Affiliation(s)
- Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lu-Xin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| |
Collapse
|
9
|
Chen JL, Wang L, Li R, Jiao YF, Yu WF. High expression of endothelial progenitor cell-induced angiogenic markers is associated with bile acid levels in HCC. Oncol Lett 2020; 20:2729-2738. [PMID: 32782589 PMCID: PMC7400775 DOI: 10.3892/ol.2020.11815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023] Open
Abstract
Endothelial progenitor cell (EPC)-induced angiogenesis activity is enhanced in hepatocellular carcinoma (HCC); however, the contributing factors remain unknown. The present study aimed to investigate the factors influencing the number of EPCs and circulating progenitor cells (CPCs), as well as the expression levels of vascular endothelial growth factor receptor 2 (VEGFR-2) and CD34, in patients with HCC. The expression levels of VEGFR-2 and CD34 were assessed in 72 HCC tumor and matched adjacent tissue microarrays by immunohistochemistry. The associations between VEGFR-2 or CD34 expression in tumors, clinicopathological characteristics and overall survival rates were analyzed. The number of EPCs and CPCs were analyzed in the peripheral blood of patients with HCC. In this study, high expression levels of VEGFR-2 and CD34 were detected in the tumor tissues of 41 (56.9%) and 44 (61.1%) patients, respectively. VEGFR-2 expression was significantly associated with tumor size (P<0.001), bile acid level (P=0.014) and α-fetoprotein level (P=0.011). However, CD34 expression was associated with tumor size (P=0.009), recrudescence (P<0.001) and bile acid (P=0.009). Next, the expression levels of VEGFR-2 and CD34 in tumor and adjacent tissues were compared according to the bile acid level. VEGFR-2 and CD34 expression levels were both higher in the high bile acid group, whereas expression levels of the markers were higher in adjacent tissues compared with tumor tissues. Kaplan-Meier curve analysis identified that patients with low CD34 expression had a longer overall survival compared with patients with high CD34 expression (P=0.029). Multivariate analysis also indicated that both VEGFR-2 (P=0.020) and CD34 (P=0.035) were independent prognostic risk factors. Moreover, flow cytometry demonstrated that the number of EPCs and CPCs was negatively related with the bile acid levels in patients with HCC. In conclusion, in patients with HCC, bile acid promotes EPC-induced angiogenesis. Furthermore, EPCs and CPCs may be activated by bile acid in tumors but are more so in adjacent tissues.
Collapse
Affiliation(s)
- Jiang-Long Chen
- Department of General Surgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Long Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wei-Feng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
10
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
11
|
Wang J, Zhou M, Jin X, Li B, Wang C, Zhang Q, Liao M, Hu X, Yang M. Glycochenodeoxycholate induces cell survival and chemoresistance via phosphorylation of STAT3 at Ser727 site in HCC. J Cell Physiol 2019; 235:2557-2568. [PMID: 31498440 DOI: 10.1002/jcp.29159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jue Wang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| | - Maojun Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| | - Xin Jin
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| | - Bingxin Li
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| | - Chengzhi Wang
- Blood Purification Center, Xiangya Hospital Central South University Changsha Hunan China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University Changsha Hunan China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| | - Xuan Hu
- Department of Endocrinology Eight Changsha Hospital Changsha Hunan China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital Central South University Changsha Hunan China
| |
Collapse
|