1
|
Zhang C, Qin Y, Tang Y, Gu M, Li Z, Xu H. MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target. Pharmacogenet Genomics 2024; 34:209-216. [PMID: 38743429 DOI: 10.1097/fpc.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 PMCID: PMC11151680 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Shi S, Wang Q, Du X. Comprehensive bioinformatics analysis reveals the oncogenic role of FoxM1 and its impact on prognosis, immune microenvironment, and drug sensitivity in osteosarcoma. J Appl Genet 2023; 64:779-796. [PMID: 37782449 DOI: 10.1007/s13353-023-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Osteosarcoma, a highly malignant bone tumor primarily affecting adolescents, presents a significant challenge in cancer therapy due to its resistance to chemotherapy. This study explores the multifaceted impact of the transcription factor FoxM1 on osteosarcoma, shedding light on its pivotal role in tumor progression, immune microenvironment modulation, and drug response. Utilizing publicly available datasets from the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research To Generate Effective Treatments (TARGET) databases, we conducted an in-depth bioinformatics analysis. Our findings illuminate the far-reaching implications of FoxM1 in osteosarcoma, emphasizing its significance as a potential therapeutic target. Differential expression analysis and Gene Set Enrichment Analysis (GSEA) revealed FoxM1's influence on critical pathways related to apoptosis, cell cycle regulation, and DNA repair. Notably, FoxM1 expression correlated with poor clinical outcomes in osteosarcoma patients, highlighting its prognostic relevance. Additionally, FoxM1 was found to modulate the immune microenvironment within tumor tissues, impacting immune cell infiltration, immunomodulators, immune checkpoints, and chemokines. Furthermore, a prognostic model based on FoxM1-coexpressed genes demonstrated its effectiveness in predicting patient survival. Drug sensitivity analysis indicated FoxM1's association with drug response, potentially guiding personalized treatment approaches. Hub gene screening identified RAB23 as a key target regulated by FoxM1, with RAB23 shown to influence osteosarcoma cell growth. This study also confirmed FoxM1's overexpression in osteosarcoma tissues compared to normal tissues, and its association with clinicopathological characteristics, including clinical stage, pathological type, and lung metastasis. In conclusion, FoxM1 emerges as a central player in the pathogenesis of osteosarcoma, impacting gene expression, immune responses, and therapeutic outcomes. This comprehensive analysis deepens our understanding of FoxM1's role in osteosarcoma and offers potential avenues for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Shaoyan Shi
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qian Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaolong Du
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
5
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
6
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
7
|
Manni E, Jeffery N, Chambers D, Slade L, Etheridge T, Harries LW. An evaluation of the role of miR-361-5p in senescence and systemic ageing. Exp Gerontol 2023; 174:112127. [PMID: 36804517 DOI: 10.1016/j.exger.2023.112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.
Collapse
Affiliation(s)
- Emad Manni
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - Nicola Jeffery
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Luke Slade
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
8
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
9
|
Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer. Cancers (Basel) 2022; 14:cancers14246032. [PMID: 36551518 PMCID: PMC9775699 DOI: 10.3390/cancers14246032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| |
Collapse
|
10
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
11
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
12
|
Bai J, Zhang X, Jiang F, Shan H, Gao X, Bo L, Zhang Y. A Feedback Loop of LINC00665 and the Wnt Signaling Pathway Expedites Osteosarcoma Cell Proliferation, Invasion, and Epithelial-Mesenchymal Transition. Orthop Surg 2022; 15:286-300. [PMID: 36387061 PMCID: PMC9837296 DOI: 10.1111/os.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Osteosarcoma (OS) is a malignant tumor with frequent occurrence among teenagers. Long non-coding RNAs (lncRNAs) play pro-cancer roles in many tumors. The purpose of this study was to figure out the functional role of a novel lncRNA long intergenic non-protein coding RNA 665 (LINC00665) in OS by observing the OS cell behaviors. METHODS Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze LINC00665 expression in OS cells. Cell function assays assessed the impacts of LINC00665 on OS cell phenotype. Immunofluorescence and western blot analyzed the function of LINC00665 on epithelial-mesenchymal transition (EMT) in OS. Moreover, mechanistic assays analyzed the downstream mechanism of LINC00665 in OS cells. RESULTS LINC00665 was significantly up-regulated in OS cells. LINC00665 silence facilitated OS cell proliferation, migration, invasion, and EMT while inhibiting cell apoptosis. Mechanically, LINC00665 acted as a competing endogenous RNA (ceRNA) to sponge miR-1249-5p and thereby modulated Wnt family member 2B (WNT2B) to activate Wnt pathway. Wnt pathway activated LINC00665 expression transcriptionally. CONCLUSIONS Our study uncovered the cancer-promoting role of LINC00665 in OS, and the feedback loop of LINC00665/miR-1249-5p/WNT2B/Wnt might be a potential target for OS treatment.
Collapse
Affiliation(s)
- Jinyu Bai
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao Zhang
- Department of Traditional Chinese Medicine Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengxian Jiang
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Huajian Shan
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiang Gao
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lin Bo
- Department of Rheumatologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yingzi Zhang
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Zhang S, Chen R. LINC01140 regulates osteosarcoma proliferation and invasion by targeting the miR-139-5p/HOXA9 axis. Biochem Biophys Rep 2022; 31:101301. [PMID: 35800618 PMCID: PMC9253409 DOI: 10.1016/j.bbrep.2022.101301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Osteosarcoma is one of the commonest metastatic tumor in children and teenagers, and has a hopeless, prognosis. Long non-coding RNA (lncRNA) acts momentous roles as a regulator on the proliferation and migration of cancer. Here, we performed GEO database analysis and qPCR to identify differentially expressed lncRNAs in osteosarcoma cells. Knockdown of lncRNA LINC01140 was used to detect the effect of LINC01140 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Bioinformatics analysis and qPCR identified the LINC01140/miR-139-5p/Homeobox A9 (HOXA9) regulatory axis. RNA immunoprecipitation assay, Dual-luciferase assay, and rescue experiments confirmed the interaction of LINC01140/miR-139-5p/HOXA9 in osteosarcoma. LINC01140 was overexpressed in osteosarcoma and knocking down LINC01140 restrained the proliferation and invasion of osteosarcoma cells and EMT. In Saos2 and MG63 cells, LINC01140 sponged miR-139-5p, and a miR-139-5p inhibitor overturned the suppression of LINC01140 knockdown on the proliferation and migration of osteosarcoma cells. Moreover, miR-139-5p depressed the invasion, proliferation, and EMT of osteosarcoma cells via targeting HOXA9. Our results indicate that LINC01140 downregulation inhibits the invasion, proliferation, and EMT in osteosarcoma cells through targeting the miR-139-5p/HOXA9 axis. Therefore, LINC01140 is a potential therapeutic target for osteosarcoma. LINC01140 is a newly discovered lncRNA associated with osteosarcoma growth and metastasis in this study. GEO and dbDEMC databases were used to analyze LINC01140 as a ceRNA to regulate the growth and metastasis of osteosarcoma. LINC01140/miR-139-5p/HOXA9 axis was confirmed to be related to the proliferation, migration and invasion of osteosarcoma.
Collapse
Affiliation(s)
| | - Rongchun Chen
- Corresponding author. The Spinal Surgery Department, People's Hospital of Ganzhou City, NO.17 Hongqi Avenue, Zhanggong Distric, GanZhou City, Jiangxi, 341000, PR China.
| |
Collapse
|
14
|
Yao W, Hou J, Liu G, Wu F, Yan Q, Guo L, Wang C. LncRNA CBR3-AS1 promotes osteosarcoma progression through the network of miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway. Mol Ther Oncolytics 2022; 25:189-200. [PMID: 35592388 PMCID: PMC9092395 DOI: 10.1016/j.omto.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) CBR3-AS1 (termed as CBR3-AS1) has been reported to be upregulated in several cancers including osteosarcoma. Its positive impact on the proliferation, migration, and invasion of osteosarcoma cells has been unveiled; nevertheless, whether it also affects the stemness and epithelial-mesenchymal transition (EMT) of osteosarcoma cells is unclear. The purpose for this study was to explore the effects of CBR3-AS1 on the stemness and EMT of osteosarcoma cells as well as its underlying mechanism. qRT-PCR and western blot were applied to detect target gene expression. Function assays were conducted to evaluate the effect of genes on the stemness and EMT of osteosarcoma cells. Mechanism assays were done to verify the association among different genes. In vivo assays were also performed. The obtained data showed that CBR3-AS1 demonstrated a high expression in osteosarcoma cells. CBR3-AS1 could promote stemness and EMT of osteosarcoma cells as well as osteosarcoma tumor growth. Mechanically, CBR3-AS1 sponged miR-140-5p and recruited DDX54 to upregulate NUCKS1, thus activating the mTOR signaling pathway. Furthermore, NUCKS1 could facilitate stemness and EMT of osteosarcoma cells. In summary, this study reveals that CBR3-AS1 exerts an oncogenic role in osteosarcoma through modulating the network of the miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway.
Collapse
Affiliation(s)
- Weitao Yao
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Jingyu Hou
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Guoqing Liu
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Fangxing Wu
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Qiang Yan
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Liangyu Guo
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Chuchu Wang
- School of Life Science, Zhengzhou University, 100 Science Avenue, Zhengzhou City, Henan Province, 450001, China
| |
Collapse
|
15
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
16
|
Jiang Y, Zhao H, Chen Y, Li K, Li T, Chen J, Zhang B, Guo C, Qing L, Shen J, Liu X, Gu P. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis 2021; 12:1129. [PMID: 34864822 PMCID: PMC8643358 DOI: 10.1038/s41419-021-04421-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
Development of distant metastasis is the main cause of deaths in prostate cancer (PCa) patients. Understanding the mechanism of PCa metastasis is of utmost importance to improve its prognosis. The role of exosomal long noncoding RNA (lncRNA) has been reported not yet fully understood in the metastasis of PCa. Here, we discovered an exosomal lncRNA HOXD-AS1 is upregulated in castration resistant prostate cancer (CRPC) cell line derived exosomes and serum exosomes from metastatic PCa patients, which correlated with its tissue expression. Further investigation confirmed exosomal HOXD-AS1 promotes prostate cancer cell metastasis in vitro and in vivo by inducing metastasis associated phenotype. Mechanistically exosomal HOXD-AS1 was internalized directly by PCa cells, acting as competing endogenous RNA (ceRNA) to modulate the miR-361-5p/FOXM1 axis, therefore promoting PCa metastasis. In addition, we found that serum exosomal HOXD-AS1 was upregulated in metastatic PCa patients, especially those with high volume disease. And it is correlated closely with Gleason Score, distant and nodal metastasis, Prostatic specific antigen (PSA) recurrence free survival, and progression free survival (PFS). This sheds a new insight into the regulation of PCa distant metastasis by exosomal HOXD-AS1 mediated miR-361-5p/FOXM1 axis, and provided a promising liquid biopsy biomarker to guide the detection and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Yongming Jiang
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,grid.415444.40000 0004 1800 0367Department of Urology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101 China
| | - Hui Zhao
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Yuxiao Chen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Kangjian Li
- Department of Urology, The Second People’s Hospital of Qujing City, Qujing City, Yunnan Province 655000 China
| | - Tianjie Li
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Jianheng Chen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Baiyu Zhang
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Caifen Guo
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Liangliang Qing
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Jihong Shen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Xiaodong Liu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. .,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032, China.
| | - Peng Gu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. .,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032, China.
| |
Collapse
|
17
|
Huang X, Zhang W, Pu F, Zhang Z. LncRNA MEG3 promotes chemosensitivity of osteosarcoma by regulating antitumor immunity via miR-21-5p/p53 pathway and autophagy. Genes Dis 2021; 10:531-541. [DOI: 10.1016/j.gendis.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 12/01/2022] Open
|
18
|
Huang J, Lin F, Xu C, Xu Y. LINC00662 facilitates osteosarcoma progression via sponging miR-103a-3p and regulating SIK2 expression. J Tissue Eng Regen Med 2021; 15:1082-1091. [PMID: 34559955 DOI: 10.1002/term.3242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Long non-coding RNA (lncRNA) involvement in regulating assorted cancers has been determined. Long intergenic non-protein coding RNA 662 (LINC00662) has been studied in gastric cancer. However, its function was not elucidated in osteosarcoma (OS). Thus, we aimed to discover LINC00662 function and the corresponding mechanism in OS. In this study, we found that LINC00662 displayed high expression in OS cells. LINC00662 down-regulation negatively affected OS cell malignant behaviors and tumor growth. Subsequently, miR-103a-3p was proven to bind with LINC00662 and overexpression of miR-103a-3p inhibited OS cell proliferation, migration and invasion. Then, SIK2, the downstream of miR-103a-3p, was up-regulated in OS cells and positively regulated by LINC00662. In addition, knockdown of SIK2 exerted inhibitory effects on proliferative, migratory and invaded capacities of OS cells. More interestingly, miR-103a-3p depletion or SIK2 overexpression restored the impacts of down-regulated LINC00662 on OS cells. In conclusion, LINC00662 could facilitate OS progression via miR-103a-3p/SIK2 axis.
Collapse
Affiliation(s)
- Jianghu Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyue Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuncai Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Bi F, Chen C, Fu J, Yu L, Geng J. Inhibiting proliferation and metastasis of osteosarcoma cells by downregulation of long non-coding RNA colon cancer-associated transcript 2 targeting microRNA-143. Oncol Lett 2021; 21:265. [PMID: 33664828 PMCID: PMC7882883 DOI: 10.3892/ol.2021.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor, which has a high incidence in children and adolescents. However, the pathogenesis of osteosarcoma remains unclear. Long noncoding RNA (lncRNA) is a new potential therapeutic target and diagnostic biomarker for osteosarcoma. Hence, the present study aimed to explore the effect of lncRNA colon cancer-associated transcript (CCAT2) on osteosarcoma and its potential underlying mechanisms. For this purpose, the proliferation of osteosarcoma cells was measured using the CCK-8 assay. The scratch-wound and cell invasion assays were used to determine the migration and invasion of osteosarcoma cells, respectively. LncRNA CCAT2 and microRNA (miR)-143 binding sites were identified by the dual-luciferase reporter assay. RNA and protein expression levels were detected by reverse-transcription quantitative PCR and western blotting, respectively. Downregulation of lncRNA CCAT2 inhibited the proliferation, migration, and invasion of osteosarcoma cells. The findings also revealed that miR-143 bound directly to lncRNA CCAT2. The expression of miR-143 was upregulated by the knockdown of lncRNA CCAT2. Downregulation of the FOS-like antigen 2 was also observed after knockdown of lncRNA CCAT2. The function of lncRNA CCAT2 in osteosarcoma cells was attenuated by co-transfection with anti-miR-143 oligodeoxyribonucleotide. In conclusion, downregulation of lncRNA CCAT2 inhibited the proliferation and metastasis of osteosarcoma cells by targeting miR-143. lncRNA CCAT2 was identified as a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Fengjiang Bi
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Can Chen
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jing Fu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Lei Yu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jia Geng
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China,Correspondence to: Dr Jia Geng, Department of Orthopedics, The First Hospital of Qiqihaer, 30 Park Road, Qiqihaer, Heilongjiang 161005, P.R. China, E-mail:
| |
Collapse
|
20
|
Zhang W, Ren X, Qi L, Zhang C, Tu C, Li Z. The value of lncRNAs as prognostic biomarkers on clinical outcomes in osteosarcoma: a meta-analysis. BMC Cancer 2021; 21:202. [PMID: 33639865 PMCID: PMC7912917 DOI: 10.1186/s12885-021-07882-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background In recent years, emerging studies have demonstrated critical functions and potential clinical applications of long non-coding RNA (lncRNA) in osteosarcoma. To further validate the prognostic value of multiple lncRNAs, we have conducted this updated meta-analysis. Methods Literature retrieval was conducted by searching PubMed, Web of Science and the Cochrane Library (last update by October 2, 2019). A meta-analysis was performed to explore association between lncRNAs expression and overall survival (OS) of osteosarcoma patients. Relationships between lncRNAs expression and other clinicopathological features were also analyzed respectively. Results Overall, 4351 patients from 62 studies were included in this meta-analysis and 25 lncRNAs were identified. Pooled analyses showed that high expression of 14 lncRNAs connoted worse OS, while two lncRNAs were associated with positive outcome. Further, analysis toward osteosarcoma clinicopathologic features demonstrated that overexpression of TUG1 and XIST indicated poor clinical parameters of patients. Conclusions This meta-analysis has elucidated the prognostic potential of 16 lncRNAs in human osteosarcoma. Evidently, desperate expression and functional targets of these lncRNAs offer new approaches for prognosis and therapy of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07882-w.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
21
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
22
|
Zhang M, Liu Y, Kong D. Identifying biomolecules and constructing a prognostic risk prediction model for recurrence in osteosarcoma. J Bone Oncol 2021; 26:100331. [PMID: 33376666 PMCID: PMC7758551 DOI: 10.1016/j.jbo.2020.100331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Osteosarcoma is a high-morbidity bone cancer with an unsatisfactory prognosis. The aim of this study is to develop novel potential prognostic biomarkers and construct a prognostic risk prediction model for recurrence in osteosarcoma. METHODS By analyzing microarray data, univariate and multivariate Cox regression analyses were performed to screen prognostic RNA signatures and to build a prognostic model. The RNA signatures were validated using Kaplan-Meier curves. Then, we developed and validated a nomogram combining age, recurrence, metastatic, and Prognostic score (PS) models to predict the individual's overall survival at the 3- and 5-year points. Pathway enrichment of RNA was conducted based on the significant co-expressed RNAs. RESULTS A total of 319 mRNAs and 14 lncRNAs were identified in the microarray data. One lncRNA (LINC00957) and six mRNAs (METL1, CA9, B3GALT4, ALDH1A1, LAMB3, and ITGB4) were identified as RNA signatures and showed good performances in survival prediction for both the training and validation cohorts. Cox regression analysis showed that the seven RNA signatures could independently predict overall survival. Furthermore, age, recurrence, metastatic, and PS models were identified as independent prognostic factors via univariate and multivariate Cox analyses (P < 0.05) and included in the prognostic nomogram. The C-index values for the 3- and 5-year overall survival predictions of the nomogram were 0.809 and 0.740, respectively. CONCLUSIONS The current study provides the novel potential of seven RNA candidates as prognostic biomarkers. Nomograms were constructed to provide accurate and individualized survival prediction for recurrence in osteosarcoma patients.
Collapse
Affiliation(s)
- Minglei Zhang
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| | - Yang Liu
- Department of Radiological, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, Jilin 130000, China
| | - Daliang Kong
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| |
Collapse
|
23
|
Comprehensive Analysis of a ceRNA Network Identifies lncR-C3orf35 Associated with Poor Prognosis in Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3178037. [PMID: 33015161 PMCID: PMC7525295 DOI: 10.1155/2020/3178037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is a highly malignant bone cancer which primarily occurs in children and young adults. Increasing evidence indicates that long noncoding RNAs (lncRNAs), which function as competing endogenous RNAs (ceRNAs) that sponge microRNAs (miRNAs) and messenger RNAs (mRNAs), play a pivotal role in the pathogenesis and progression of cancers. The regulatory mechanisms of lncRNA-mediated ceRNAs in osteosarcoma have not been fully elucidated. In this study, we identified differentially expressed lncRNAs, miRNAs, and mRNAs in osteosarcoma based on RNA microarray profiles in the Gene Expression Omnibus (GEO) database. A ceRNA network was constructed utilizing bioinformatic tools. Kaplan-Meier survival analysis showed that lncR-C3orf35 and HMGB1 were associated with poor prognosis of osteosarcoma patients. Furthermore, results of Gene Set Enrichment Analysis (GSEA) suggested that lncR-C3orf35 may be involved in cellular invasion, the Toll-like receptor signaling pathway, and immune cell infiltration in the tumor microenvironment. Further analysis showed that patients with osteosarcoma metastasis expressed higher levels of lncR-C3orf35 and HMGB1 compared to metastasis-free patients. Moreover, the metastasis-free survival rate of the high lncR-C3orf35/HMGB1 expression group was significantly lower than that of the low expression group. The ESTIMATE algorithm was used to calculate the immune score and stromal scores for each sample. High lncR-C3orf35 and HMGB1 levels were correlated with low immune scores. ImmuCellAI analysis revealed that a low proportion of macrophage infiltration was associated with high lncR-C3orf35 and HMGB1 expression. The differential expression of lncR-C3orf35, miR-142-3p, and HMGB1 was further verified by quantitative real-time PCR. This study indicates that lncR-C3orf35 could be considered as a novel potential biomarker and therapeutic target of osteosarcoma, which may contribute to a better understanding of ceRNA regulatory mechanisms.
Collapse
|
24
|
Ning Y, Bai Z. DSCAM-AS1 accelerates cell proliferation and migration in osteosarcoma through miR-186-5p/GPRC5A signaling. Cancer Biomark 2020; 30:29-39. [PMID: 32865178 DOI: 10.3233/cbm-190703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteosarcoma (OS) is one of the most primary bone malignancies, often occurring in adolescents or children. Numerous scientific findings have introduced that long noncoding RNAs (lncRNAs) can be involved in tumor occurrence and development. Although DSCAM-AS1 has been studied in several cancers, its role and mechanism in OS are poorly understood. In this work, high level of DSCAM-AS1 was validated in OS cell lines. Depleting DSCAM-AS1 inhibited cell proliferation, migration and EMT process in OS. Subsequently, we disclosed that DSCAM-AS1 was mainly observed in the cytoplasm of OS cells and could bind with miR-186-5p in OS. Moreover, inhibiting miR-186-5p rescued the impact of silenced DSCAM-AS1 on OS progression. Additionally, GPRC5A was verified as the target downstream of miR-186-5p, and it was negatively modulated by miR-186-5p but positively regulated by DSCAM-AS1. More importantly, DSCAM-AS1 enhanced GPRC5A level in OS by sequestering miR-186-5p. Finally, up-regulating GPRC5A reversed the influences of DSCAM-AS1 repression on the oncogenic behaviors of OS cells. Knockdown of DSCAM-AS1 suppressed NPC tumor growth in vivo. All findings uncovered that DSCAM-AS1 aggravated OS progression through sponging miR-186-5p to up-regulate GPRC5A expression. Thus, we proposed DSCAM-AS1 as a probable target for OS treatment.
Collapse
Affiliation(s)
- Yuwen Ning
- Department of Health Administration and Medical Education in School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengfa Bai
- Department of Orthopedics, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020; 54:684-707. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2025]
|
26
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
27
|
Xu S, Gong Y, Yin Y, Xing H, Zhang N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother 2020; 127:110141. [PMID: 32334375 DOI: 10.1016/j.biopha.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a bone tumor prevalent in children and young adults. LncRNAs are a family of non-protein-coding transcripts longer than 200 nucleotides. The tumor-related pathological functions of lncRNAs include proliferation, migration, and chemotherapy resistance, all of which have been widely acknowledged in research on osteosarcoma. In addition, compelling evidence suggests that lncRNAs could serve as diagnostic indicators, prognostic biomarkers, and targets for disease treatment. In this review, we systematically summarize how lncRNAs regulate tumorigenesis, invasion and therapeutic resistance. By deepening our knowledge of the relationship between lncRNAs and osteosarcoma, we hope to translate research findings into clinical applications as soon as possible.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Yin
- Department of Gastroenterology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
28
|
Zhou FC, Zhang YH, Liu HT, Song J, Shao J. LncRNA LINC00588 Suppresses the Progression of Osteosarcoma by Acting as a ceRNA for miRNA-1972. Front Pharmacol 2020; 11:255. [PMID: 32265694 PMCID: PMC7107012 DOI: 10.3389/fphar.2020.00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are being found to play an increasingly important role in the development of tumors. However, their biological functions and the underlying mechanisms remain unclear. Using information from GEO Datasets, we found that the lncRNA LINC00588 was downregulated in osteosarcoma (OS) in bone but was upregulated in the metastatic tumor present in the lung. We assessed the function of LINC00588 using both overexpression and knock-out studies. We performed colony formation assay, CCK-8 assay, flow cytometry, wound healing assay, transwell assay, and RT-qPCR assay and used a xenograft model to investigate the influence of LINC00588 on cell proliferation, viability, cell apoptosis and cycle, migration, invasion, endothelial cell function, EMT (epithelial to mesenchymal transition), and tumor growth, respectively. Overexpression of LINC00588 appeared to inhibit cell proliferation, viability, migration, invasion, endothelial cell function, EMT, and tumor growth but not apoptosis, while we got the opposite result when we knocked down LINC00588. Next, we predicted that LINC00588 bound to miRNA-1972 and significantly downregulated its expression, which we then verified through a luciferase reporter assay. Subsequently, we knocked down miR1972 and performed CCK-8 and transwell assays to demonstrate that downregulation of miRNA-1972 could substantially inhibit the viability and invasion of osteosarcoma cells. The expression of TP53 was downregulated at the protein level but not at the mRNA level after the overexpression of miRNA-1972. Taken together, our findings indicate that LINC00588 plays a role in OS development by downregulating the expression of miRNA-1972, which can, in turn, inhibit the expression of TP53. Hence, we believe that the LINC00588/miRNA-1072/TP53 axis could potentially serve as a therapeutic target or diagnostic biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Fu-Chao Zhou
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hui Zhang
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Tao Liu
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Song
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Shao
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Jiang Y, Luo Y. LINC01354 Promotes Osteosarcoma Cell Invasion by Up-regulating Integrin β1. Arch Med Res 2020; 51:115-123. [PMID: 32111497 DOI: 10.1016/j.arcmed.2019.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs have been proved to play a key role in the development and progression of various tumors, including osteosarcoma (OS). However, the role and molecular mechanism of lncRNA in osteosarcoma metastasis remains unknown. Our purpose is to explore the clinical significance and biological function of LINC01354 in osteosarcoma. METHODS Expression of LINC01354 in OS tissues, serum and cell lines was measured and the association between LINC01354 expression and clinicopathological factors was analyzed. The functional effects of LINC01354 were examined in vitro by using transwell assays, western blot, immunohistochemistry (IHC) and in vivo in a xenograft tumor mouse model. RESULTS LINC01354 was overexpressed in OS tissues, serum and cells. LINC01354 overexpression promoted OS cells invasion, EMT and integrin β1 expression, while knockdown of LINC01354 inhibited OS cell invasion, epithelial-mesenchymal transition (EMT) and integrin β1 expression. In addition, integrin-β1 blockage with MAB13 antibody abrogated the effects of LINC01354 overexpression on promoting OS cells invasion and EMT. In addition, LINC01354 promoted OS cell metastasis in vivo. CONCLUSION LINC01354 promote OS cell EMT and invasion through up-regulating integrin β1. Our study suggested that LINC01354 may be regarded as a potential target for the clinical treatment of OS.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Bone Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China.
| | - Yuju Luo
- Department of Ultrasound, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| |
Collapse
|
30
|
Li K, Wang X, Huang Z, Xu H, Zheng S, Qiu Y. Retracted Article: Long non-coding RNA MEG3 inhibits cell proliferation, migration, invasion and enhances apoptosis in non-small cell lung cancer cells by regulating the miR-31-5p/TIMP3 axis. RSC Adv 2019; 9:38200-38208. [PMID: 35541776 PMCID: PMC9075888 DOI: 10.1039/c9ra07880k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 06/05/2020] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant lung cancer and accounts for 80% of lung cancer-related deaths. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a tumor suppressor in multiple cancers. However, the regulatory mechanism of MEG3 in NSCLC development is still largely unknown. The expression levels of MEG3, microRNA-31-5p (miR-31-5p) and tissue inhibitor of metalloproteinase 3 (TIMP3) in NSCLC tumors and cells were measured by quantitative real time polymerase chain reaction (qRT-PCR). Cell viability, apoptosis, migration and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, western blotting and transwell assays, respectively. Xenograft mouse models were established by subcutaneously injecting NSCLC cells stably transfected with Lenti-pcDNA or Lenti-MEG3. The interaction between miR-31-5p and MEG3 or TIMP3 was validated by luciferase reporter and RNA immunoprecipitation (RIP) assays. MEG3 and TIMP3 levels were up-regulated, whereas miR-31-5p expression was down-regulated in NSCLC tumors and cells compared with normal tissues and cells. Overexpression of MEG3 repressed cell proliferation, migration and invasion, but induced apoptosis in NSCLC cells. More importantly, MEG3 effectively hindered tumor growth in vivo. Next, luciferase reporter and RIP assays confirmed the interaction between miR-31-5p and MEG3 or TIMP3. Pearson's correlation coefficient revealed that miR-31-5p was inversely correlated with MEG3 or TIMP3. Rescue experiments indicated that MEG3 regulated TIMP3 expression by sponging miR-31-5p in NSCLC cells. Thus, MEG3 inhibited cell proliferation, migration and invasion, but enhanced apoptosis in NSCLC cells through up-regulating TIMP3 expression by regulating miR-31-5p, indicating novel biomarkers for the therapy of NSCLC. Non-small cell lung cancer (NSCLC) is a malignant lung cancer and accounts for 80% of lung cancer-related deaths.![]()
Collapse
Affiliation(s)
- Kui Li
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749.,Technical Service Department, Guangzhou Huayin Medical Institute. Ltd Guangzhou Guangdong China
| | - Xiaodan Wang
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Zhen Huang
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Hui Xu
- Technical Service Department, Guangzhou Huayin Medical Institute. Ltd Guangzhou Guangdong China
| | - Songbai Zheng
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Yurong Qiu
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| |
Collapse
|