1
|
Ning Y, Dou X, Wang Z, Shi K, Wang Z, Ding C, Sang X, Zhong X, Shao M, Han X, Cao G. SIRT3: A potential therapeutic target for liver fibrosis. Pharmacol Ther 2024; 257:108639. [PMID: 38561088 DOI: 10.1016/j.pharmthera.2024.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhichao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Zhong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiyu Shao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China; The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ren X, Xu K, Xu J, Mei Q. Melatonin attenuates monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats via activation of Sirtuin-3. J Biochem Mol Toxicol 2023; 37:e23422. [PMID: 37350538 DOI: 10.1002/jbt.23422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Melatonin possesses potent hepatoprotective properties, but it remains to be elucidated whether melatonin has a therapeutic effect on monocrotaline (MCT)-induced hepatic sinusoidal obstruction syndrome (HSOS). In this study, male Sprague Dawley rats were intraperitoneally injected with melatonin or the same volume of vehicle at 0 and 24 h after MCT intragastric administration. Next, hematoxylin-eosin staining and electron microscopy were performed to evaluate the hepatic sinusoidal injury of rats. Endothelial cell marker RECA-1 was observed by immunohistochemistry. Hepatic oxidative stress was analyzed by detecting malondialdehyde, glutathione S-transferase, and reactive oxygen species. Assessment of liver function was carried out by analysis of serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, and albumin levels. Real-time polymerase chain reaction and Western blot analysis were used to identify liver Sirtuin-3 (SIRT3) and active matrix metallopeptidase 9 (MMP-9) expression. Besides, liver sinusoidal endothelial cells (LSECs) were used for the in vitro functional verification experiment. Specifically, liver histology of the melatonin-treated groups showed that the pathological damages caused by MCT were significantly attenuated, total HSOS scores were decreased, and the elevation of serum hyaluronic acid observed in the model group was also reduced. Moreover, melatonin treatment also improved the survival of rats after partial hepatectomy. Administration of melatonin ameliorated MCT-induced LSECs injury, hepatic oxidative stress, and hepatic dysfunction. Furthermore, melatonin treatment increased SIRT3 expression while attenuating MMP-9 activity in liver tissues. Cell experiment also demonstrated that SIRT3 might mediate the protective effect of melatonin on LSECs. Collectively, our study provided the potential rationale for the application of melatonin for the prevention of MCT-induced HSOS.
Collapse
Affiliation(s)
- Xiaofei Ren
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kui Xu
- Department of Gastroenterology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, Anhui, China
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J, Mi Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 2022; 113:109379. [PMID: 36330913 DOI: 10.1016/j.intimp.2022.109379] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Doxorubicin (DOX) is an effective and widely used anticancer drug but has limited clinical applicability because of its cardiotoxicity. Ferroptosis plays a key role in DOX-induced cardiac damage and cardiomyocyte cell death. The inhibition of ferroptosis reverses DOX-induced cardiotoxicity (DIC). LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, protects against DIC. However, the mechanism of action of LCZ696, especially its effect on ferroptosis, is incompletely understood. This study investigates the cardioprotective effects of LCZ696 on DIC in vivo and in vitro.Cardiotoxicity was induced in Wistar rats by tail intravenous injection of 2.5 mg/kg DOX once a week for six weeks. Rats and H9c2 cells were treated with or without LCZ696 to determine the cardioprotective role and underlying mechanisms of LCZ696 against DIC. To assess the role of SIRT3 and correlated pathways in ferroptosis, SIRT3 knockout was performed using lentiviral vectors, and AKT was inhibited with LY294002. LCZ696 significantly attenuated DIC by decreasing the concentrations of lipid reactive oxygen species and malondialdehyde and increasing the levels of glutathione peroxidase-4 and reduced glutathione in cells and heart tissues. Moreover, LCZ696 remodeled myocardial structures and improved heart ventricular function in DOX-treated rats. LCZ696 treatment increased SIRT3 expression and deacetylated its target gene SOD2, and these changes were mediated by AKT activation. SIRT3 knockdown and AKT inhibition induced lipid peroxidation and reduced the protective effect of LCZ696 in H9c2 cells. Collectively,LCZ696 prevents DIC by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Thus, LZC696 is a potential therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Bin Wang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
5
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
6
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhang IW, López-Vicario C, Duran-Güell M, Clària J. Mitochondrial Dysfunction in Advanced Liver Disease: Emerging Concepts. Front Mol Biosci 2021; 8:772174. [PMID: 34888354 PMCID: PMC8650317 DOI: 10.3389/fmolb.2021.772174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are entrusted with the challenging task of providing energy through the generation of ATP, the universal cellular currency, thereby being highly flexible to different acute and chronic nutrient demands of the cell. The fact that mitochondrial diseases (genetic disorders caused by mutations in the nuclear or mitochondrial genome) manifest through a remarkable clinical variation of symptoms in affected individuals underlines the far-reaching implications of mitochondrial dysfunction. The study of mitochondrial function in genetic or non-genetic diseases therefore requires a multi-angled approach. Taking into account that the liver is among the organs richest in mitochondria, it stands to reason that in the process of unravelling the pathogenesis of liver-related diseases, researchers give special focus to characterizing mitochondrial function. However, mitochondrial dysfunction is not a uniformly defined term. It can refer to a decline in energy production, increase in reactive oxygen species and so forth. Therefore, any study on mitochondrial dysfunction first needs to define the dysfunction to be investigated. Here, we review the alterations of mitochondrial function in liver cirrhosis with emphasis on acutely decompensated liver cirrhosis and acute-on-chronic liver failure (ACLF), the latter being a form of acute decompensation characterized by a generalized state of systemic hyperinflammation/immunosuppression and high mortality rate. The studies that we discuss were either carried out in liver tissue itself of these patients, or in circulating leukocytes, whose mitochondrial alterations might reflect tissue and organ mitochondrial dysfunction. In addition, we present different methodological approaches that can be of utility to address the diverse aspects of hepatocyte and leukocyte mitochondrial function in liver disease. They include assays to measure metabolic fluxes using the comparatively novel Biolog’s MitoPlates in a 96-well format as well as assessment of mitochondrial respiration by high-resolution respirometry using Oroboros’ O2k-technology and Agilent Seahorse XF technology.
Collapse
Affiliation(s)
- Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Zhang L, Jiang YH, Fan C, Zhang Q, Jiang YH, Li Y, Xue YT. MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis. Biomed Pharmacother 2021; 143:112133. [PMID: 34474337 DOI: 10.1016/j.biopha.2021.112133] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
MCC950, an NLRP3 inflammasome inhibitor, displays multiple pharmacological properties. However, the protective potential and underlying mechanism of MCC950 against doxorubicin (DOX)-induced myocardial injury has not been well investigated yet. Herein, DOX-induced myocardial injury in mice and in H9c2 myocardial cells was investigated, and the protective effects and underlying mechanism of MCC950 were fully explored. The results showed that MCC950 co-treatment significantly improved myocardial function, inhibited inflammatory and myocardial fibrosis, and attenuated cardiomyocyte pyroptosis in DOX-treated mice. Mechanismly, MCC950 had the potential to inhibit DOX-induced the cleavage of NLRP3, ASC, Caspase-1, IL-18, IL-1β and GSDMD in vivo. Moreover, MCC950 co-treatment in vivo suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis through the same molecular mechanism. Taken together, our findings validated that MCC950, an NLRP3 inflammasome inhibitor, has the potential to attenuate doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Lei Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yue-Hua Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China; Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Cundong Fan
- Department of Neurology, Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yong-Hao Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yan Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China.
| | - Yi-Tao Xue
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China.
| |
Collapse
|
9
|
Liu L, Cao Q, Gao W, Li B, Xia Z, Zhao B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging (Albany NY) 2021; 13:16105-16123. [PMID: 34118791 PMCID: PMC8266371 DOI: 10.18632/aging.203137] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts. Melatonin can exert neuroprotective effects against CIR injury in nondiabetic animal models. However, its effects on diabetic CIR injury and the underlying mechanisms remain unclarified. Herein, we found that melatonin administration improved neurological deficit, cerebral infarct volume, brain edema, and cell viability, reduced mitochondrial swelling, reactive oxygen species generation, and cytoplasmic cytochrome C release, and increased mitochondrial antioxidant enzymes activities, adenosine triphosphate production, and mitochondrial membrane potential in both streptozotocin-induced diabetic mice and high glucose-treated HT22 cells. Importantly, melatonin also activated protein kinase B (Akt) and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling and upregulated mitochondrial biogenesis-related transcription factors. However, these effects were largely attenuated by LY294002 (a specific Akt signaling blocker) administration. Additionally, 3-TYP (a selective SIRT3 inhibitor) and SIRT3 siRNA inhibited the above protective effects of melatonin as well as the upregulation of SIRT3 and the decrease of SOD2 acetylation but did not affect the p-Akt/Akt ratio. Overall, we demonstrate that melatonin can alleviate CIR injury in diabetic mice by activating Akt-SIRT3-SOD2 signaling and subsequently improving mitochondrial damage.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
10
|
Potential Effects of Melatonin and Micronutrients on Mitochondrial Dysfunction during a Cytokine Storm Typical of Oxidative/Inflammatory Diseases. Diseases 2021; 9:diseases9020030. [PMID: 33919780 PMCID: PMC8167770 DOI: 10.3390/diseases9020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Exaggerated oxidative stress and hyper-inflammation are essential features of oxidative/inflammatory diseases. Simultaneously, both processes may be the cause or consequence of mitochondrial dysfunction, thus establishing a vicious cycle among these three factors. However, several natural substances, including melatonin and micronutrients, may prevent or attenuate mitochondrial damage and may preserve an optimal state of health by managing the general oxidative and inflammatory status. This review aims to describe the crucial role of mitochondria in the development and progression of multiple diseases as well as the close relationship among mitochondrial dysfunction, oxidative stress, and cytokine storm. Likewise, it attempts to summarize the main findings related to the powerful effects of melatonin and some micronutrients (vitamins and minerals), which may be useful (alone or in combination) as therapeutic agents in the treatment of several examples of oxidative/inflammatory pathologies, including sepsis, as well as cardiovascular, renal, neurodegenerative, and metabolic disorders.
Collapse
|
11
|
Cheng Y, Zeng X, Mai Q, Bai X, Jiang Y, Li J, Fan S, Ding H. Insulin injections inhibits PTZ-induced mitochondrial dysfunction, oxidative stress and neurological deficits via the SIRT1/PGC-1α/SIRT3 pathway. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166124. [PMID: 33727197 DOI: 10.1016/j.bbadis.2021.166124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
With an associated 20% death risk, epilepsy mainly involves seizures of an unpredictable and recurrent nature. This study was designed to evaluate the neuroprotective effects and underlying mechanisms of insulin on mitochondrial disruption, oxidative stress, cell apoptosis and neurological deficits after epilepsy seizures. Mice were exposed to repetitive injections of pentylenetetrazol at a dose of 37 mg per kg. The influence of insulin was assessed by many biochemical assays, histopathological studies and neurobehavioral experiments. The administration of insulin was proven to increase the latency of seizures while also decreasing their intensity. It also caused a reversal of mitochondrial dysfunction and ameliorated oxidative stress. Additionally, insulin pretreatment upregulated Bcl-2, downregulated Bax, and then played a neuroprotective role against hippocampal neuron apoptosis. Furthermore, when insulin was administered, SIRT1/PGC-1α/SIRT3 signals were activated, possibly due to the fact that insulin's neuroprotective and anti-mitochondrial damage characteristics added to its observed antiepileptic functions. Finally, insulin treatment is thus extremely valuable for effecting improvements in neurological functions, as has been estimated in a series of functional tests. In conclude, the results of this study consequently demonstrate insulin to have significant potential for future application in epilepsy management.
Collapse
Affiliation(s)
- Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Xu S, Li L, Wu J, An S, Fang H, Han Y, Huang Q, Chen Z, Zeng Z. Melatonin Attenuates Sepsis-Induced Small-Intestine Injury by Upregulating SIRT3-Mediated Oxidative-Stress Inhibition, Mitochondrial Protection, and Autophagy Induction. Front Immunol 2021; 12:625627. [PMID: 33790896 PMCID: PMC8006917 DOI: 10.3389/fimmu.2021.625627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin reportedly alleviates sepsis-induced multi-organ injury by inducing autophagy and activating class III deacetylase Sirtuin family members (SIRT1-7). However, whether melatonin attenuates small-intestine injury along with the precise underlying mechanism remain to be elucidated. To investigate this, we employed cecal ligation and puncture (CLP)- or endotoxemia-induced sepsis mouse models and confirmed that melatonin treatment significantly prolonged the survival time of mice and ameliorated multiple-organ injury (lung/liver/kidney/small intestine) following sepsis. Melatonin partially protected the intestinal barrier function and restored SIRT1 and SIRT3 activity/protein expression in the small intestine. Mechanistically, melatonin treatment enhanced NF-κB deacetylation and subsequently reduced the inflammatory response and decreased the TNF-α, IL-6, and IL-10 serum levels; these effects were abolished by SIRT1 inhibition with the selective blocker, Ex527. Correspondingly, melatonin treatment triggered SOD2 deacetylation and increased SOD2 activity and subsequently reduced oxidative stress; this amelioration of oxidative stress by melatonin was blocked by the SIRT3-selective inhibitor, 3-TYP, and was independent of SIRT1. We confirmed this mechanistic effect in a CLP-induced sepsis model of intestinal SIRT3 conditional-knockout mice, and found that melatonin preserved mitochondrial function and induced autophagy of small-intestine epithelial cells; these effects were dependent on SIRT3 activation. This study has shown, to the best of our knowledge, for the first time that melatonin alleviates sepsis-induced small-intestine injury, at least partially, by upregulating SIRT3-mediated oxidative-stress inhibition, mitochondrial-function protection, and autophagy induction.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyang Han
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
14
|
Xue J, Ajuwon KM, Fang R. Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. ACTA ACUST UNITED AC 2020; 6:421-428. [PMID: 33364458 PMCID: PMC7750791 DOI: 10.1016/j.aninu.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
The intestinal tract is a host to 100 trillion of microbes that have co-evolved with mammals over the millennia. These commensal organisms are critical to the host survival. The roles that symbiotic microorganisms play in the digestion, absorption, and metabolism of nutrients have been clearly demonstrated. Additionally, commensals are indispensable in regulating host immunity. This is evidenced by the poorly developed gut immune system of germ-free mice, which can be corrected by transplantation of specific commensal bacteria. Recent advances in our understanding of the mechanism of host–microbial interaction have provided the basis for this interaction. This paper reviews some of these key studies, with a specific focus on the effect of the microbiome on the immune organ development, nonspecific immunity, specific immunity, and inflammation.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, United States
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| |
Collapse
|
15
|
Crespo I, Fernández-Palanca P, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates mitophagy, innate immunity and circadian clocks in a model of viral-induced fulminant hepatic failure. J Cell Mol Med 2020; 24:7625-7636. [PMID: 32468679 PMCID: PMC7339179 DOI: 10.1111/jcmm.15398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The haemorrhagic disease virus (RHDV) is a non‐cultivable virus that promotes in rabbits an acute disease which accomplishes many characteristics of an animal model of fulminant hepatic failure (FHF). Beneficial effects of melatonin have been reported in RHDV‐infected rabbits. This study investigated whether protection against viral‐derived liver injury by melatonin is associated with modulation of mitophagy, innate immunity and clock signalling. Rabbits were experimentally infected with 2 × 104 haemagglutination units of a RHDV isolate and killed at 18, 24 and 30 hours after infection (hpi). Melatonin (20 mg/kg body weight ip) was administered at 0, 12 and 24 hpi. RHDV infection induced mitophagy, with the presence of a high number of mitophagosomes in hepatocytes and increased expression of mitophagy genes. Greater expression of main innate immune intermediaries and inflammasome components was also found in livers with RHDV‐induced FHF. Both mitophagy and innate immunity activation was significantly hindered by melatonin. FHF induction also elicited an early dysregulation in clock signalling, and melatonin was able to prevent such circadian disruption. Our study discloses novel molecular routes contributing to RHDV‐induced damage progression and supports the potential of melatonin as a promising therapeutic option in human FHF.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
16
|
Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci 2019; 239:117036. [PMID: 31697951 DOI: 10.1016/j.lfs.2019.117036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
AIMS Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury. Sirtuin3(SIRT3), as one member of the sirtuin family, protects against oxidative stress-related diseases. However, the association between melatonin and SIRT3 in cerebral I/R injury is not well understood. Our experiment was planned to investigate whether melatonin protects against cerebral I/R injury through SIRT3 activation. MAIN METHODS We selected transient middle cerebral artery occlusion (tMCAO) mice as the model of cerebral I/R injury. Male C57/BL6 mice were pre-treated with or without a selective SIRT3 inhibitor and then subjected to tMCAO surgery. Melatonin (20 mg/kg) was given to mice by intraperitoneal injection after ischemia and before reperfusion. Then, we observed the changes in the SIRT3 and downstream relative proteins, infarction volume, neurological score, Nissl, H&E and TUNEL staining, and the expression of apoptosis proteins after tMCAO. KEY FINDINGS Melatonin upregulated the expression of SIRT3 after tMCAO, and alleviated the neurological dysfunction and cell apoptosis through SIRT3 activation. SIGNIFICANCE Our research proved that melatonin promoted SIRT3 expression after tMCAO and alleviated cerebral I/R injury by activating the SIRT3 signaling pathway. This study provides novel therapeutic targets and mechanisms for the treatment of ischemic stroke in the clinic, especially during cerebrovascular reperfusion.
Collapse
Affiliation(s)
- Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Pengqi Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| |
Collapse
|
17
|
Wang Y, Chen Q, Shi C, Jiao F, Gong Z. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep 2019; 20:4081-4090. [PMID: 31545489 PMCID: PMC6797988 DOI: 10.3892/mmr.2019.10660] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the anti‑ferroptosis effects of the HMGB1 inhibitor glycyrrhizin (GLY). The present study used a cell and animal model of acute liver failure (ALF), induced using tumor necrosis factor‑α, lipopolysaccharide and D‑galactosamine, to investigate the effects of GLY. The expression of glutathione peroxidase 4 (GPX4) and high mobility group protein B1 (HMGB1), heme oxygenase‑1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were detected were detected by western blotting in L02 hepatocytes and mouse liver. The expression of GPX4 and HMGB1 in L02 hepatocytes and mouse liver was detected by immunofluorescence. The pathological changes to liver tissues were determined by hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) were tested using kits. Compared with the normal group, the degree of liver damage and liver function in the model animal group was severe. The protein levels of HMGB1 in L02 cells and liver tissues were significantly increased. The expression of NRF2, HO‑1 and GPX4 was significantly decreased. The levels of LDH, Fe2+, malondialdehyde (MDA) and ROS were increased, whereas the level of GSH was decreased. Treatment with GLY reduced the degree of liver damage, the expression of HMGB1 was decreased, and the levels of Nrf2, HO‑1 and GPX4 were increased. The levels of LDH, Fe2+, MDA, ROS were decreased, while the level of GSH was increased by GLY treatment. The results of the present study indicated that HMGB1 is involved in the process of ferroptosis. The HMGB1 inhibitor GLY significantly reduced the degree of ferroptosis during ALF by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|