1
|
Zhang M, Lei R, Wang L, Jiang Y, Zhou X, Wang Y. KLF4 regulates FAM3A to promotes angiotensin II-induced proliferation and migration of vascular smooth muscle cells through the PI3K/AKT signaling pathway. Peptides 2025; 187:171379. [PMID: 40015605 DOI: 10.1016/j.peptides.2025.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Hypertension, a major cause of cardiovascular disease, is linked to vascular remodeling, which is influenced by phenotypic changes in vascular smooth muscle cells (VSMCs). Studies have shown that KLF4 influences vascular remodeling by promoting VSMC dedifferentiation, increasing proliferation, and enhancing inflammatory responses, while FAM3 may play a key role in VSMC migration and proliferation. Angiotensin II (Ang II) contributes to remodeling, but the mechanisms are unclear. METHODS Ang II was used to stimulate VSMCs in order to evaluate the expression levels of KLF4 and FAM3A. EdU assays, transwell and scratch wound healing assays measured proliferation and migration. KLF4 knockdown and overexpression experiments were performed to examine the effects on FAM3A expression and VSMC behavior. Western blotting was conducted to analyze protein expression levels of KLF4, FAM3A, and PI3K/AKT signaling components. Bioinformatics analysis was used to predict KLF4 binding sites on the FAM3A promoter. Luciferase and CHIP assays confirmed regulation. RESULTS Ang II stimulation increased VSMC proliferation, migration, and the expression of KLF4 and FAM3A. Knockdown of KLF4 reduced Ang II-induced proliferation and migration of VSMCs, accompanied by decreased FAM3A expression. Conversely, overexpression of KLF4 enhanced FAM3A levels, promoting VSMC proliferation and migration. Bioinformatics, luciferase reporter assays and CHIP assay confirmed that KLF4 directly binds to the FAM3A promoter. FAM3A knockdown inhibited Ang II-induced VSMC proliferation and migration by reducing PI3K/AKT pathway activation, whereas FAM3A overexpression reversed the inhibitory effects of KLF4 knockdown. CONCLUSION KLF4 transcriptionally regulates FAM3A, modulating Ang II-induced VSMC proliferation and migration through the PI3K/AKT signaling pathway.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Kruppel-Like Factor 4
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Signal Transduction/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Animals
- Humans
- Cells, Cultured
Collapse
Affiliation(s)
- Min Zhang
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Rong Lei
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Liqiong Wang
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Yimin Jiang
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Xiaoyan Zhou
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Yuquan Wang
- Physical Examination Center, Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China.
| |
Collapse
|
2
|
Jasmine, Baraiya DH, Kavya TT, Mandal A, Chakraborty S, Sathish N, Francis CMR, Binoy Joseph D. Epithelial and mesenchymal compartments of the developing bladder and urethra display spatially distinct gene expression patterns. Dev Biol 2025; 520:155-170. [PMID: 39798644 PMCID: PMC7617630 DOI: 10.1016/j.ydbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The lower urinary tract is comprised of the bladder and urethra and develops from the cloaca, a transient endoderm-derived structure formed from the caudal hindgut. After cloacal septation to form the urogenital sinus and anorectal tract, the bladder gradually develops from the anterior portion of the urogenital sinus while the urethra elongates distally into the genital tubercle. The bladder is a target for regenerative and reconstructive therapies but engineering an impermeable bladder epithelial lining has proven challenging. Urethral epithelial function, including its role as an active immune barrier, is poorly studied and neglected in regenerative therapy. A deeper understanding of epithelial patterning of the urogenital sinus by the surrounding mesenchyme, also accounting for sex-specific differences, can inform regenerative therapies. In this study, we identified spatially distinct genes in the epithelial and mesenchymal compartments of the developing mouse bladder and urethra that could be potential drivers of patterning in the lower urinary tract. Our data revealed spatially restricted domains of transcription factor expression in the epithelium that corresponded with bladder or urethra-specific differentiation. Additionally, we identified the genes Wnt2, Klf4 and Pitx2 that localize to the mesenchyme of the developing bladder and could be potential drivers of bladder differentiation. Our data revealed an increase in the expression of several chemokine genes including Cx3cl1 and Cxcl14 in the developing urethral epithelium that correlated with an increase in epithelial-associated macrophages in the urethra. A survey of sex-specific differences in epithelial and mesenchymal compartments revealed several differentially expressed genes between the male and female urethra but few sex-specific differences in bladder. By comparing spatially distinct gene expression in the developing lower urinary tract, our study provides insights into the divergent differentiation trajectories of the fetal bladder and urethra that establish their adult functions.
Collapse
Affiliation(s)
- Jasmine
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Divyeksha H Baraiya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - T T Kavya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Aparna Mandal
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Shreya Chakraborty
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Neha Sathish
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Cynthia Marian Rebecca Francis
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Diya Binoy Joseph
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India.
| |
Collapse
|
3
|
Han X, Li W, Chen C, Liu J, Sun J, Wang F, Wang C, Mu J, Gu X, Liu F, Xie H, Yang S, Shen C. Genetic variants and mRNA expression levels of KLF4 and KLF5 with hypertension: A combination of case-control study and cohort study. J Biomed Res 2024; 39:103-113. [PMID: 39187911 PMCID: PMC11873589 DOI: 10.7555/jbr.38.20240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024] Open
Abstract
Hypertension (HT) is a major risk factor for cardiovascular diseases. Krüppel-like factors (KLFs) are important transcription factors in eukaryotes. Studies have reported that KLF4 and KLF5 are correlated with several cardiovascular diseases, but population-based studies on associations between HT and KLF4 or KLF5 have rarely been reported. Therefore, the current study investigated the associations of genetic variants and mRNA expression levels of KLF4 and KLF5 with HT, as well as the effects of antihypertensive drugs on the expression levels of these genes. The associations of one single-nucleotide polymorphism (SNP) in KLF4 and three SNPs in KLF5 with HT were analyzed using a combination of case-control and cohort studies. The study populations were selected from a community-based cohort in four regions of Jiangsu province. The risks of HT were estimated through logistic and Cox regression analyses. In addition, mRNA expression levels of KLF4 and KLF5 were detected in 246 controls and 385 HT cases selected from the aforementioned cohort. Among the HT cases, 263 were not taking antihypertensive drugs [AHD(-)] and 122 were taking antihypertensive drugs [AHD(+)]. In the case-control study, SNP rs9573096 (C>T) in KLF5 was significantly associated with an increased risk of HT in the additive model (adjusted odds ratio [OR], 1.106; 95% confidence interval [CI], 1.009 to 1.212). In the cohort study of the normotensive population, rs9573096 in KLF5 was also significantly associated with an increased risk of HT in the additive model (adjusted hazards ratio [HR], 1.199; 95% CI, 1.070 to 1.344). KLF4 and KLF5 mRNA expression levels were significantly higher in the AHD(-) group than in the control group ( P < 0.05), but lower in the AHD(+) group than in the AHD(-) group ( P < 0.05). The current study demonstrated the associations of KLF4 and KLF5 genetic variants with hypertension, as well as the association of the indicative variations in mRNA expression levels of KLF4 and KLF5 with the risk of hypertension and antihypertensive treatment.
Collapse
Affiliation(s)
- Xu Han
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Changying Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahui Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junxiang Sun
- Department of Cardiology, the Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Wuxi, Jiangsu 214200, China
| | - Feifan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Wang
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jialing Mu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xincheng Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fangyuan Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hankun Xie
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Song Yang
- Department of Cardiology, the Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Wuxi, Jiangsu 214200, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Hu D, Ge Y, Xi Y, Chen J, Wang H, Zhang C, Cui Y, He L, Su Y, Chen J, Hu C, Xiao H. MicroRNA-145 Gene Modification Enhances the Retention of Bone Marrow-Derived Mesenchymal Stem Cells within Corpus Cavernosum by Targeting Krüppel-Like Factor 4. World J Mens Health 2024; 42:638-649. [PMID: 38164035 PMCID: PMC11216959 DOI: 10.5534/wjmh.230149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE The poor retention and ambiguous differentiation of stem cells (SCs) within corpus cavernosum (CC) limit the cell application in erectile dysfunction (ED). Herein, the effects and mechanism of microRNA-145 (miR-145) gene modification on modulating the traits and fate of bone marrow-derived mesenchymal stem cells (BMSCs) were investigated. MATERIALS AND METHODS The effects of miR-145 on cell apoptosis, proliferation, migration, and differentiation were determined by flow cytometry, cell counting kit-8, transwell assays and myogenic induction. Then, the age-related ED rats were recruited to four groups including phosphate buffer saline, BMSC, vector-BMSC, overexpressed-miR-145-BMSC groups. After cell transplantation, the CC were harvested and prepared to demonstrate the retention and differentiation of BMSCs by immunofluorescent staining. Then, the target of miR-145 was verified by quantitative real-time polymerase chain reaction and immunohistochemical. After that, APTO-253, as an inducer of Krüppel-like factor 4 (KLF4), was introduced for rescue experiments in corpus cavernosum smooth muscle cells (CCSMCs) under the co-culture system. RESULTS In vitro, miR-145 inhibited the migration and apoptosis of BMSCs and promoted the differentiation of BMSCs into smooth muscle-like cells with stronger contractility. In vivo, the amount of 5-ethynyl-2'-deoxyuridine (EdU)+cells within CC was significantly enhanced and maintained in the miR-145 gene modified BMSC group. The EdU/CD31 co-staning was detected, however, no co-staining of EdU/α-actin was observed. Furthermore, miR-145, which secreted from the gene modified BMSCs, dampened the expression of KLF4. However, the effects of miR-145 on CCSMCs could be rescued by APTO-253. CONCLUSIONS Overall, miR-145 modification prolongs the retention of the transplanted BMSCs within the CC, and this effect might be attributed to the modulation of the miR-145/KLF4 axis. Consequently, our findings offer a promising and innovative strategy to enhance the local stem cell-based treatments.
Collapse
Affiliation(s)
- Daoyuan Hu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhang Xi
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Cui
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhao He
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Su
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Xiaoshan Z, Huan C, Zhilin G, Liwen M, Yan Z, Yue C. Hypoxia-inducible factor-1α attenuates renal podocyte injury in male rats in a simulated high-altitude environment by upregulating Krüppel-like factor 4 expression. Exp Physiol 2024; 109:1188-1198. [PMID: 38774964 PMCID: PMC11215487 DOI: 10.1113/ep091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have shown that podocyte injury is involved in the development of proteinuria in rats under hypobaric hypoxia conditions. Prolyl hydroxylase inhibitors (PHIs) may reduce proteinuria. This study aimed to further investigate whether the protective effects of hypoxia-inducible factor 1α (HIF1α) on podocyte injury induced by hypobaric hypoxia are related to Krüppel-like factor 4 (KLF4). Rats were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5000 m), and a PHI was intraperitoneally injected. Urinary protein electrophoresis was performed and the morphology of the podocytes was observed by electron microscopy. Rat podocytes were cultured under 1% O2, and siRNA was used to interfere with KLF4 expression. The protein expression levels of HIF1α, KLF4, CD2-associated protein (CD2AP) and nephrin were determined by western blotting. Compared with those in the experimental group, the rats in the intervention group on day 14 had lower urinary protein levels, increased protein expression levels of CD2AP and nephrin, and reduced podocyte injury. The results of in vitro experiments showed that the protein expression levels of KLF4, CD2AP and nephrin were greater in the PHI intervention group and lower in the HIF1α inhibitors group than in the low-oxygen group. The protein expression of CD2AP and nephrin in the siKLF4-transfected podocytes treated with PHI and HIF1α inhibitors did not differ significantly from that in the low-oxygen group. HIF1α may be involved in reducing progressive high-altitude proteinuria by regulating KLF4 expression and contributing to the repair of podocyte injury induced by hypobaric hypoxia.
Collapse
Affiliation(s)
- Zeng Xiaoshan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Cheng Huan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Gan Zhilin
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Mo Liwen
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Zeng Yan
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Cheng Yue
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| |
Collapse
|
6
|
Zhang R, Wang H, Cheng X, Fan K, Gao T, Qi X, Gao S, Zheng G, Dong H. High estrogen induces trans-differentiation of vascular smooth muscle cells to a macrophage-like phenotype resulting in aortic inflammation via inhibiting VHL/HIF1a/KLF4 axis. Aging (Albany NY) 2024; 16:9876-9898. [PMID: 38843385 PMCID: PMC11210252 DOI: 10.18632/aging.205904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
Estrogen is thought to have a role in slowing down aging and protecting cardiovascular and cognitive function. However, high doses of estrogen are still positively associated with autoimmune diseases and tumors with systemic inflammation. First, we administered exogenous estrogen to female mice for three consecutive months and found that the aorta of mice on estrogen develops inflammatory manifestations similar to Takayasu arteritis (TAK). Then, in vitro estrogen intervention was performed on mouse aortic vascular smooth muscle cells (MOVAS cells). Stimulated by high concentrations of estradiol, MOVAS cells showed decreased expression of contractile phenotypic markers and increased expression of macrophage-like phenotypic markers. This shift was blocked by tamoxifen and Krüppel-like factor 4 (KLF4) inhibitors and enhanced by Von Hippel-Lindau (VHL)/hypoxia-inducible factor-1α (HIF-1α) interaction inhibitors. It suggests that estrogen-targeted regulation of the VHL/HIF-1α/KLF4 axis induces phenotypic transformation of vascular smooth muscle cells (VSMC). In addition, estrogen-regulated phenotypic conversion of VSMC to macrophages is a key mechanism of estrogen-induced vascular inflammation, which justifies the risk of clinical use of estrogen replacement therapy.
Collapse
MESH Headings
- Kruppel-Like Factor 4
- Animals
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Macrophages/metabolism
- Macrophages/drug effects
- Mice
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Female
- Estrogens/pharmacology
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Cell Transdifferentiation/drug effects
- Phenotype
- Aorta/pathology
- Aorta/drug effects
- Inflammation/metabolism
Collapse
Affiliation(s)
- Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Reheman A, Wu Q, Xu J, He J, Qi M, Li K, Cao G, Feng X. Transcriptomic analysis of the hypoxia-inducible factor 1α impact on the gene expression profile of chicken fibroblasts under hypoxia. Poult Sci 2024; 103:103410. [PMID: 38277890 PMCID: PMC10840346 DOI: 10.1016/j.psj.2023.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional regulator that mediates cellular adaptive responses to hypoxia. Hypoxia-inducible factor 1α (HIF-1α) is involved in the development of ascites syndrome (AS) in broiler chickens. Therefore, studying the effect of HIF-1α on the cellular transcriptome under hypoxic conditions will help to better understand the mechanism of HIF-1α in the development of AS in broilers. In this study, we analyzed the gene expression profile of the chicken fibroblast cell line (DF-1) under hypoxic conditions by RNA-seq. Additionally, we constructed the HIF-1α knockdown DF-1 cell line by using the RNAi method and analyzed the gene expression profile under hypoxic conditions. The results showed that exposure to hypoxia for 48 h had a significant impact on the expression of genes in the DF-1 cell line, which related to cell proliferation, stress response, and apoptosis. In addition, after HIF-1α knockdown more differential expression genes appeared than in wild-type cells, and the expression of most hypoxia-related genes was either down-regulated or remained unchanged. Pathway analysis results showed that differentially expressed genes were mainly enriched in pathways related to cell proliferation, apoptosis, and oxidative phosphorylation. Our study obtained transcriptomic data from chicken fibroblasts at different hypoxic times and identified the potential regulatory network associated with HIF-1α. This data provides valuable support for understanding the transcriptional regulatory mechanism of HIF-1α in the development of AS in broilers.
Collapse
Affiliation(s)
- Aikebaier Reheman
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Qijun Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianing Xu
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Jiang He
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Kai Li
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar , Xinjiang 843300, China.
| |
Collapse
|
8
|
Xiong A, Xiong R, Luo F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon 2024; 10:e24471. [PMID: 38298665 PMCID: PMC10827772 DOI: 10.1016/j.heliyon.2024.e24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases and is characterized by cartilage degeneration, synovial inflammation, joint stiffness and even loss of motor function. In the clinical treatment of arthritis, conventional analgesic and anti-inflammatory drugs have great side effects. We have evaluated the possibility of the endogenous transcription regulator Ski as an anti-inflammatory alternative in OA through experimental studies in animal models and in vivo and in vitro. Male Sprague‒Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce symptoms identical to those of human OA. We isolated knee synovial tissue under sterile conditions and cultured primary synovial cells. In vitro, Ski inhibits the proinflammatory factors IL-1β, IL-6 and TNF-α mRNA and protein expression in lipopolysaccharide (LPS)-stimulated fibroblast-like synoviocytes (FLSs) and U-937 cells. In addition, Ski attenuates or inhibits OA-induced synovial inflammation by upregulating the protein expression of the anti-inflammatory factor IL-4 and downregulating the protein expression of downstream molecules related to the NF-κB inflammatory signaling pathway. In vivo, Ski downregulated proinflammatory factors and p-NF-κB p65 in KOA synovial tissue and alleviated pain-related behaviors in KOA rats. These experimental data show that Ski has strong anti-inflammatory activity. Ski is an endogenous factor, and if used in the clinical treatment of OA, the side effects are small. However, the anti-inflammatory mechanism of Ski must be further studied.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Renping Xiong
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
9
|
Biswas A, Sahoo S, Riedlinger GM, Ghodoussipour S, Jolly MK, De S. Transcriptional state dynamics lead to heterogeneity and adaptive tumor evolution in urothelial bladder carcinoma. Commun Biol 2023; 6:1292. [PMID: 38129585 PMCID: PMC10739805 DOI: 10.1038/s42003-023-05668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Intra-tumor heterogeneity contributes to treatment failure and poor survival in urothelial bladder carcinoma (UBC). Analyzing transcriptome from a UBC cohort, we report that intra-tumor transcriptomic heterogeneity indicates co-existence of tumor cells in epithelial and mesenchymal-like transcriptional states and bi-directional transition between them occurs within and between tumor subclones. We model spontaneous and reversible transition between these partially heritable states in cell lines and characterize their population dynamics. SMAD3, KLF4 and PPARG emerge as key regulatory markers of the transcriptional dynamics. Nutrient limitation, as in the core of large tumors, and radiation treatment perturb the dynamics, initially selecting for a transiently resistant phenotype and then reconstituting heterogeneity and growth potential, driving adaptive evolution. Dominance of transcriptional states with low PPARG expression indicates an aggressive phenotype in UBC patients. We propose that phenotypic plasticity and dynamic, non-genetic intra-tumor heterogeneity modulate both the trajectory of disease progression and adaptive treatment response in UBC.
Collapse
Affiliation(s)
- Antara Biswas
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.
| | | | - Gregory M Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Saum Ghodoussipour
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Mylonas KS, Peroulis M, Kapelouzou A. Transfection of Vein Grafts with Early Growth Response Factor-1 Oligodeoxynucleotide Decoy: Effects on Stem-Cell Genes and Toll-like Receptor-Mediated Inflammation. Int J Mol Sci 2023; 24:15866. [PMID: 37958848 PMCID: PMC10647335 DOI: 10.3390/ijms242115866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The long-term patency of vein grafts is challenged by intimal hyperplasia. We sought to explore the intricate relationships between the transcription factor Egr-1, toll-like receptors (TLRs), and stem cell genes and also assessed oligodeoxynucleotide decoys (ODNs) as a strategy to prevent vein graft failures. A total of 42 New Zealand white rabbits were fed hyperlipidemic chow and classified into three groups. A double-stranded Egr-1 ODN was synthesized and infused in vein grafts prior to anastomosis with the common carotid artery. All vein grafts were retrieved at the conclusion of the predefined experimental period. Real-time quantitative polymerase chain reaction was performed to estimate expression patterns for several genes of interest. MYD88, TLR2-4, TLR8, NF-kB, TNF-α, IFNβ, and IFNγ; chemokines CCL4, CCL20, CCR2; numerous interleukins; and stem cell genes KFL4, NANOG, HOXA5, and HIF1α were universally downregulated in the ODN arm compared with the controls. By understanding these multifaceted interactions, our study offers actionable insights that may pave the way for innovative interventions in vascular reconstructions.
Collapse
Affiliation(s)
| | - Michail Peroulis
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
11
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
13
|
Abd GM, Laird MC, Ku JC, Li Y. Hypoxia-induced cancer cell reprogramming: a review on how cancer stem cells arise. Front Oncol 2023; 13:1227884. [PMID: 37614497 PMCID: PMC10442830 DOI: 10.3389/fonc.2023.1227884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer stem cells are a subset of cells within the tumor that possess the ability to self-renew as well as differentiate into different cancer cell lineages. The exact mechanisms by which cancer stem cells arise is still not completely understood. However, current research suggests that cancer stem cells may originate from normal stem cells that have undergone genetic mutations or epigenetic changes. A more recent discovery is the dedifferentiation of cancer cells to stem-like cells. These stem-like cells have been found to express and even upregulate induced pluripotent stem cell markers known as Yamanaka factors. Here we discuss developments in how cancer stem cells arise and consider how environmental factors, such as hypoxia, plays a key role in promoting the progression of cancer stem cells and metastasis. Understanding the mechanisms that give rise to these cells could have important implications for the development of new strategies in cancer treatments and therapies.
Collapse
Affiliation(s)
- Genevieve M. Abd
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Madison C. Laird
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
14
|
Liu Y, Luo Y, Shi X, Lu Y, Li H, Fu G, Li X, Shan L. Role of KLF4/NDRG1/DRP1 axis in hypoxia-induced pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023:166794. [PMID: 37356737 DOI: 10.1016/j.bbadis.2023.166794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya Lu
- Department of Respiratory Disease, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
15
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
16
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
17
|
Huang N, Wang D, Zhu TT, Ge XY, Liu H, Yao MZ, Guo YZ, Peng J, Wang Q, Zhang Z, Hu CP. Plasma exosomes confer hypoxic pulmonary hypertension by transferring LOX-1 cargo to trigger phenotypic switching of pulmonary artery smooth muscle cells. Biochem Pharmacol 2023; 207:115350. [PMID: 36435201 DOI: 10.1016/j.bcp.2022.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
The pulmonary vascular remodeling (PVR), the pathological basis of pulmonary hypertension (PH), entails pulmonary artery smooth muscle cells (PASMCs) phenotypic switching, but appreciation of the underlying mechanisms is incomplete. Exosomes, a novel transfer machinery enabling delivery of its cargos to recipient cells, have been recently implicated in cardiovascular diseases including PH. The two critical questions of whether plasma-derived exosomes drive PASMCs phenotypic switching and what cargo the exosomes transport, however, remain unclear. Herein, by means of transmission electron microscopy and protein detection, we for the first time, characterized lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) as a novel cargo of plasma-derived exosomes in PH. With LOX-1 knockout (Olr1-/-) rats-derived exosomes, we demonstrated that exosomal LOX-1 could be transferred into PASMCs and thus elicited cell phenotypic switching. Of importance, Olr1-/- rats exhibited no cell phenotypic switching and developed less severe PH, but administration of wild type rather than Olr1-/- exosomes to Olr1-/- rats recapitulated the phenotype of PH with robust PASMCs phenotypic switching. We also revealed that exosomal LOX-1 triggered PASMCs phenotypic switching, PVR and ultimately PH via ERK1/2-KLF4 signaling axis. This study has generated proof that plasma-derived exosomes confer PH by delivering LOX-1 into PASMCs. Hence, exosomal LOX-1 represents a novel exploitable target for PH prevention and treatment.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan 450052, China
| | - Di Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453000, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan 453000, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yan-Zi Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Qing Wang
- The Interventional Radiology & Vascular Surgery Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
18
|
A systematic study of HIF1A cofactors in hypoxic cancer cells. Sci Rep 2022; 12:18962. [PMID: 36347941 PMCID: PMC9643333 DOI: 10.1038/s41598-022-23060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hypoxia inducible factor 1 alpha (HIF1A) is a transcription factor (TF) that forms highly structural and functional protein-protein interactions with other TFs to promote gene expression in hypoxic cancer cells. However, despite the importance of these TF-TF interactions, we still lack a comprehensive view of many of the TF cofactors involved and how they cooperate. In this study, we systematically studied HIF1A cofactors in eight cancer cell lines using the computational motif mining tool, SIOMICS, and discovered 201 potential HIF1A cofactors, which included 21 of the 29 known HIF1A cofactors in public databases. These 201 cofactors were statistically and biologically significant, with 19 of the top 37 cofactors in our study directly validated in the literature. The remaining 18 were novel cofactors. These discovered cofactors can be essential to HIF1A's regulatory functions and may lead to the discovery of new therapeutic targets in cancer treatment.
Collapse
|
19
|
Loers JU, Vermeirssen V. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks. BMC Bioinformatics 2022; 23:363. [PMID: 36064320 PMCID: PMC9442970 DOI: 10.1186/s12859-022-04908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators. RESULTS SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels. CONCLUSIONS We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
20
|
Mylonas KS, Karangelis D, Androutsopoulou V, Chalikias G, Tziakas D, Mikroulis D, Iliopoulos DC, Nikiteas N, Schizas D. Stem cell genes in atheromatosis: The role of
Klotho
,
HIF1α
,
OCT4
, and
BMP4. IUBMB Life 2022; 74:1003-1011. [DOI: 10.1002/iub.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Konstantinos S. Mylonas
- Department of Cardiac Surgery Onassis Cardiac Surgery Center Athens Greece
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimos Karangelis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Vasiliki Androutsopoulou
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - George Chalikias
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Tziakas
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
- Fourth Department of Cardiac Surgery HYGEIA Hospital Athens Greece
| | - Nikolaos Nikiteas
- Second Propaedeutic Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
21
|
Xiong A, Li J, Xiong R, Xia Y, Jiang X, Cao F, Lu H, Xu J, Shan F. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model. Sci Rep 2022; 12:2701. [PMID: 35177771 PMCID: PMC8854620 DOI: 10.1038/s41598-022-06773-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is an important cause of death in young adults and children. Till now, the treatment of TBI in the short- and long-term complications is still a challenge. Our previous evidence implied aquaporin 4 (AQP4) and hypoxia inducible factor-1α (HIF-1α) might be potential targets for TBI. In this study, we explored the roles of AQP4 and HIF-1α on brain edema formation, neuronal damage and neurological functional deficits after TBI using the controlled cortical injury (CCI) model. The adult male Sprague Dawley rats were randomly divided into sham and TBI group, the latter group was further divided into neutralized-AQP4 antibody group, 2-methoxyestradiol (2-ME2) group, and their corresponding control, IgG and isotonic saline groups, respectively. Brain edema was examined by water content. Hippocampal neuronal injury was assessed by neuron loss and neuronal skeleton related protein expressions. Spatial learning and memory deficits were evaluated by Morris water maze test and memory-related proteins were detected by western blot. Our data showed that increased AQP4 protein level was closely correlated with severity of brain edema after TBI. Compared with that in the control group, both blockage of AQP4 with neutralized-AQP4 antibody and inhibition of HIF-1α with 2-ME2 for one-time treatment within 30-60 min post TBI significantly ameliorated brain edema on the 1st day post-TBI, and markedly alleviated hippocampal neuron loss and spatial learning and memory deficits on the 21st day post-TBI. In summary, our preliminary study revealed the short-term and long-term benefits of targeting HIF-1α-AQP4 axis after TBI, which may provide new clues for the selection of potential therapeutic targets for TBI in clinical practice.
Collapse
Affiliation(s)
- Ao Xiong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450042, Henan, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Department of Traumatic Shock and Blood Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xu Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450042, Henan, China
| | - Fuyang Cao
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450042, Henan, China
| | - Hong Lu
- Department of Radiology, Chongqing No. 7 Hospital of Chongqing University of Technology, Chongqing, 400054, China
| | - Jianzhong Xu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450042, Henan, China.
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
22
|
Espinosa-Diez C, Mandi V, Du M, Liu M, Gomez D. Smooth muscle cells in atherosclerosis: clones but not carbon copies. JVS Vasc Sci 2021; 2:136-148. [PMID: 34617064 PMCID: PMC8489213 DOI: 10.1016/j.jvssci.2021.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 01/23/2023] Open
Abstract
Our knowledge of the contribution of vascular smooth muscle cells (SMCs) to atherosclerosis has greatly advanced in the previous decade with the development of techniques allowing for the unambiguous identification and phenotypic characterization of SMC populations within the diseased vascular wall. By performing fate mapping or single-cell transcriptomics studies, or a combination of both, the field has made key observations: SMCs populate atherosclerotic lesions by the selective expansion and investment of a limited number of medial SMCs, which undergo profound and diverse modifications of their original phenotype and function. Thus, if SMCs residing within atherosclerotic lesions and contributing to the disease are clones, they are not carbon copies and can play atheroprotective or atheropromoting roles, depending on the nature of their phenotypic transitions. Tremendous progress has been made in identifying the transcriptional mechanisms biasing SMC fate. In the present review, we have summarized the recent advances in characterizing SMC investment and phenotypic diversity and the molecular mechanisms controlling SMC fate in atherosclerotic lesions. We have also discussed some of the remaining questions associated with these breakthrough observations. These questions include the underlying mechanisms regulating the phenomenon of SMC oligoclonal expansion; whether single-cell transcriptomics is reliable and sufficient to ascertain SMC functions and contributions during atherosclerosis development and progression; and how SMC clonality and phenotypic plasticity affects translational research and the therapeutic approaches developed to prevent atherosclerosis complications. Finally, we have discussed the complementary approaches the field should lean toward by combining single-cell phenotypic categorization and functional studies to understand further the complex SMC behavior and contribution in atherosclerosis.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Varun Mandi
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa,Correspondence: Delphine Gomez, PhD, Division of Cardiology, Department of Medicine, University of Pittsburgh, 200 Lothrop St, Biomedical Science Tower, Rm 1723, Pittsburgh, PA 15261
| |
Collapse
|
23
|
Kamat SM, Mendelsohn AR, Larrick JW. Rejuvenation Through Oxygen, More or Less. Rejuvenation Res 2021; 24:158-163. [PMID: 33784834 DOI: 10.1089/rej.2021.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modest modulation of oxygen intake, either by inducing mild intermittent hypoxia or hyperoxia appears to induce modest rejuvenative changes in mammals, in part, by activating key regulator hypoxia-induced factor 1a (HIF-1a). Interestingly both lower oxygen and transient higher oxygen levels induce this hypoxia regulator. Hyperbaric oxygen induces HIF-1a by the hyperoxic-hypoxic paradox that results from an overinduction of protective factors under intermittent hyperoxic conditions, leading to a state somewhat similar to that induced by hypoxia. A key difference being that SIRT1 is induced by hyperoxia, whereas it is reduced during hypoxia by the activity of HIF-1a. In a recent report, a small clinical trial employing 60 sessions of intermittent hyperbaric oxygen therapy (HBOT) studying old humans resulted in increased mean telomere length of immune cells including B cells, natural killer cells, T helper, and cytotoxic T lymphocytes. Moreover, there was a reduction in CD28null senescent T helper and cytotoxic T cells. In a parallel report, HBOT has been reported to enhance cognition in older adults, especially attention and information processing speed through increased cerebral blood flow (CBF) in brain regions where CBF tends to decline with age. The durability of these beneficial changes is yet to be determined. These preliminary results require follow-up, including more extensive characterization of changes in aging-associated biomarkers. An interesting avenue of potential work is to elucidate potential connections between hypoxia and epigenetics, especially the induction of the master pluripotent regulatory factors, which when expressed transiently have been reported to ameliorate some aging biomarkers and pathologies.
Collapse
|