1
|
Guo X, Huang X, Yang Y, Dong L, Kong D, Zhang J. FNDC5/Irisin in dementia and cognitive impairment: update and novel perspective. Braz J Med Biol Res 2024; 57:e13447. [PMID: 38985081 PMCID: PMC11249199 DOI: 10.1590/1414-431x2024e13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/23/2024] [Indexed: 07/11/2024] Open
Abstract
Epidemiological surveys show that the incidence of age-related dementia and cognitive impairment is increasing and it has been a heavy burden for society, families, and healthcare systems, making the preservation of cognitive function in an increasingly aging population a major challenge. Exercise is beneficial for brain health, and FDNC5/irisin, a new exercise-induced myokine, is thought to be a beneficial mediator to cognitive function and plays an important role in the crosstalk between skeletal muscle and brain. This review provides a critical assessment of the recent progress in both fundamental and clinical research of FDNC5/irisin in dementia and cognitive impairment-related disorders. Furthermore, we present a novel perspective on the therapeutic effectiveness of FDNC5/irisin in alleviating these conditions.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Endocrinology and Metabolism, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Xiaocheng Huang
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Luying Dong
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Dehuan Kong
- Department of Endocrinology and Metabolism, Taian City Central Hospital, Taian, Shandong, China
| | - Jianmei Zhang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| |
Collapse
|
2
|
Lin J, Zhang X, Sun Y, Xu H, Li N, Wang Y, Tian X, Zhao C, Wang B, Zhu B, Zhao R. Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation. Sci Rep 2024; 14:10658. [PMID: 38724553 PMCID: PMC11082241 DOI: 10.1038/s41598-024-61415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
This study aimed to investigate the effects of exercise on excessive mitochondrial fission, insulin resistance, and inflammation in the muscles of diabetic rats. The role of the irisin/AMPK pathway in regulating exercise effects was also determined. Thirty-two 8-week-old male Wistar rats were randomly divided into four groups (n = 8 per group): one control group (Con) and three experimental groups. Type 2 diabetes mellitus (T2DM) was induced in the experimental groups via a high-fat diet followed by a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 30 mg/kg body weight. After T2DM induction, groups were assigned as sedentary (DM), subjected to 8 weeks of treadmill exercise training (Ex), or exercise training combined with 8-week cycloRGDyk treatment (ExRg). Upon completion of the last training session, all rats were euthanized and samples of fasting blood and soleus muscle were collected for analysis using ELISA, immunofluorescence, RT-qPCR, and Western blotting. Statistical differences between groups were analyzed using one-way ANOVA, and differences between two groups were assessed using t-tests. Our findings demonstrate that exercise training markedly ameliorated hyperglycaemia, hyperlipidaemia, and insulin resistance in diabetic rats (p < 0.05). It also mitigated the disarranged morphology and inflammation of skeletal muscle associated with T2DM (p < 0.05). Crucially, exercise training suppressed muscular excessive mitochondrial fission in the soleus muscle of diabetic rats (p < 0.05), and enhanced irisin and p-AMPK levels significantly (p < 0.05). However, exercise-induced irisin and p-AMPK expression were inhibited by cycloRGDyk treatment (p < 0.05). Furthermore, the administration of CycloRGDyk blocked the effects of exercise training in reducing excessive mitochondrial fission and inflammation in the soleus muscle of diabetic rats, as well as the positive effects of exercise training on improving hyperlipidemia and insulin sensitivity in diabetic rats (p < 0.05). These results indicate that regular exercise training effectively ameliorates insulin resistance and glucolipid metabolic dysfunction, and reduces inflammation in skeletal muscle. These benefits are partially mediated by reductions in mitochondrial fission through the irisin/AMPK signalling pathway.
Collapse
Affiliation(s)
- Junjie Lin
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Xin Zhang
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Yu Sun
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Haocheng Xu
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Nan Li
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuanxin Wang
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Xin Tian
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zhao
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Bin Wang
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Baishu Zhu
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Grzeszczuk M, Dzięgiel P, Nowińska K. The Role of FNDC5/Irisin in Cardiovascular Disease. Cells 2024; 13:277. [PMID: 38334669 PMCID: PMC10854770 DOI: 10.3390/cells13030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Disorders of cardiomyocyte metabolism play a crucial role in many cardiovascular diseases, such as myocardial infarction, heart failure and ischemia-reperfusion injury. In myocardial infarction, cardiomyocyte metabolism is regulated by mitochondrial changes and biogenesis, which allows energy homeostasis. There are many proteins in cells that regulate and control metabolic processes. One of them is irisin (Ir), which is released from the transmembrane protein FNDC5. Initial studies indicated that Ir is a myokine secreted mainly by skeletal muscles. Further studies showed that Ir was also present in various tissues. However, its highest levels were observed in cardiomyocytes. Ir is responsible for many processes, including the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT) by increasing the expression of thermogenin (UCP1). In addition, Ir affects mitochondrial biogenesis. Therefore, the levels of FNDC5/Ir in the blood and myocardium may be important in cardiovascular disease. This review discusses the current knowledge about the role of FNDC5/Ir in cardiovascular disease.
Collapse
Affiliation(s)
- Maciej Grzeszczuk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Katarzyna Nowińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| |
Collapse
|
4
|
Liu Q, Zhu Y, Li G, Guo T, Jin M, Xi D, Wang S, Liu X, Guo S, Liu H, Fan J, Liu R. Irisin ameliorates myocardial ischemia-reperfusion injury by modulating gut microbiota and intestinal permeability in rats. PLoS One 2023; 18:e0291022. [PMID: 37656700 PMCID: PMC10473488 DOI: 10.1371/journal.pone.0291022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Recently, myocardial ischemia-reperfusion (I/R) injury was suggested associated with intestinal flora. However, irisin has demonstrated beneficial effects on myocardial I/R injury, thus increasing interest in exploring its mechanism. Therefore, whether irisin interferes in gut microbiota and gut mucosal barrier during myocardial I/R injury was investigated in the present study. Irisin was found to reduce the infiltration of inflammatory cells and fracture in myocardial tissue, myocardial enzyme levels, and the myocardial infarction (MI) area. In addition, the data showed that irisin reverses I/R-induced gut dysbiosis as indicated by the decreased abundance of Actinobacteriota and the increased abundance of Firmicutes, and maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the production of proinflammatory cytokines interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Based on the results, irisin could be a good candidate for ameliorating myocardial I/R injury and associated diseases by alleviating gut dysbiosis, endothelial dysfunction and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qingqing Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Yu Zhu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guangyao Li
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Tiantian Guo
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Mengtong Jin
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Duan Xi
- LinFen Central Hospital, LinFen, China
| | | | - Xuezhi Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Shuming Guo
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Hui Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Jiamao Fan
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Ronghua Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| |
Collapse
|
5
|
Xu R, Liu Q, Ma X, Hou J. Irisin inhibits PCSK9 expression through activating AMPK-SREBP2 pathway. Biochem Biophys Res Commun 2022; 630:77-83. [PMID: 36152348 DOI: 10.1016/j.bbrc.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
AIMS Previous studies found that irisin attenuated the vascular wall inflammation caused by Oxidized low-density lipoprotein (ox-LDL), and recent experiments have shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) can act on various cells in the vascular wall to induce inflammatory responses. But, the relationship between irisin and PCSK9 has not been reported. The aim of this study was to investigate the effect of irisin on PSCK9 in endothelial cells and hepatocytes under the induction of ox-LDL. METHODS Experiments were performed using human umbilical vein endothelial cells and Hep G2, and cells were treated with irisin and (or) ox-LDL for evaluating expression of PCSK9 and downstream inflammatory proteins, while the expression levels of AMP-dependent protein kinase (AMPK) and sterol-regulatory element binding protein 2 (SREBP2) were also examined. Then Compound C was used to inhibit AMPK activation and SiAMPK for silencing of AMPK mRNA, and the above assays were also performed to deeply validate the role of the AMPK-SREBP2 pathway. RESULTS Irisin treatment significantly downregulated the expression of PCSK9 and inflammation-related proteins induced by ox-LDL, also restored the content of p-AMPK and reduced the SREBP2 content. After the use of Compound C or SiAMPK, the content of p-AMPK was obviously decreased, and the positive effect of irisin was greatly weakened. CONCLUSIONS This study demonstrates that irisin suppresses PCSK9 expression through the AMPK-SREBP2 pathway and ameliorates ox-LDL-induced endothelial cells inflammation.
Collapse
Affiliation(s)
- Runqiu Xu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang, 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Qi Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang, 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xiaoxue Ma
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang, 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang, 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China.
| |
Collapse
|
6
|
Huerta-Delgado AS, Roffe-Vazquez DN, Luna-Ceron E, Gonzalez-Gil AM, Casillas-Fikentscher A, Villarreal-Calderon JR, Enriquez C, de la Peña-Almaguer E, Castillo EC, Silva-Platas C, Garcia-Rivas G, Elizondo-Montemayor L. Association of irisin levels with cardiac magnetic resonance, inflammatory, and biochemical parameters in patients with chronic heart failure versus controls. Magn Reson Imaging 2022; 93:62-72. [PMID: 35842196 DOI: 10.1016/j.mri.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Chronic heart failure (CHF) represents a significant cause of morbidity and mortality globally. Metabolic maladaptation has proven to be critical in the progression of this condition. Preclinical studies have shown that irisin, an adipomyokine involved in metabolic regulations, can induce positive cardioprotective effects by improving cardiac remodeling, cardiomyocyte viability, calcium delivery, and reducing inflammatory mediators. However, data on clinical studies identifying the associations between irisin levels and functional imaging parameters are scarce in CHF patients. The objective of this study was to determine the association of irisin levels with cardiac imaging measurements through cardiac magnetic resonance, inflammatory markers, and biochemical parameters in patients with CHF compared with control subjects. METHODS AND RESULTS Thirty-two subjects diagnosed with CHF and thirty-two healthy controls were evaluated in a cross-sectional study. Serum irisin levels were significantly lower in patients with CHF than in controls. This is the first study to report a significant positive correlation between irisin levels and cardiac magnetic resonance parameters such as left ventricular ejection fraction, fraction shortening, and global radial strain. A negative correlation was demonstrated between irisin levels and brain natriuretic peptide, insulin levels, and Homeostatic model assessment for insulin resistance index. We did not observe significant correlations between irisin levels and inflammatory cytokines. CONCLUSIONS Given the importance of fraction shortening and global radial strain as accurate markers of ventricular wall motion, these results support the hypothesis that irisin may play an essential role in maintaining an adequate myocardial wall architecture, deformation, and thickness.
Collapse
Affiliation(s)
- Anna S Huerta-Delgado
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Daniel N Roffe-Vazquez
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Eder Luna-Ceron
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Adrian M Gonzalez-Gil
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Andrea Casillas-Fikentscher
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - José R Villarreal-Calderon
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Cecilio Enriquez
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Erasmo de la Peña-Almaguer
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Gerardo Garcia-Rivas
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico; Tecnologico de Monterrey, Cardiovascular Medicine and Metabolomics Research Group, Escuela de Medicina, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico; Tecnologico de Monterrey, Cardiovascular Medicine and Metabolomics Research Group, Escuela de Medicina, 66278 San Pedro Garza-Garcia, N.L., Mexico.
| |
Collapse
|
7
|
Qin S, Tian Z, Boidin M, Buckley BJR, Thijssen DHJ, Lip GYH. Irisin is an Effector Molecule in Exercise Rehabilitation Following Myocardial Infarction (Review). Front Physiol 2022; 13:935772. [PMID: 35845994 PMCID: PMC9276959 DOI: 10.3389/fphys.2022.935772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Regular exercise is an effective non-pharmacological therapy for treatment and prevention of cardiovascular disease (CVD). The therapeutic benefits of exercise are mediated partly through improved vascular and increase in metabolic health. Release of exercise-responsive myokines, including irisin, is associated with beneficial effects of exercise in CVD patients. Observations: The present review provides an overview of the role of exercise in cardiac rehabilitation of patients with myocardial infarction (MI). Further, the role of irisin as a motion-responsive molecule in improving vascular and metabolic health is explored. Possible mechanism of cardioprotective effect of irisin-mediated exercise on myocardial infarction are also summarized in this review. Conclusion and significance of the review: Irisin is associated with reduced inflammation, antioxidant properties, and anti-apoptotic effect, implying that it is a potential key mediator of the beneficial effects of exercise on vascular and metabolic health. The findings show that irisin is a promising therapeutic target for treatment of patients with cardiovascular disease, particularly post-MI. Further research should be conducted to elucidate the potential mechanisms of cardioprotective effects of irisin and explored whether irisin induced by exercise exerts rehabilitation effects post-MI.
Collapse
Affiliation(s)
- Shuguang Qin
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- *Correspondence: Zhenjun Tian,
| | - Maxime Boidin
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
- Cardiovascular Prevention and Rehabilitation (EPIC) Center, Montreal Heart Institute, Montreal, QC, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Benjamin J. R. Buckley
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dick H. J. Thijssen
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Yue R, Lv M, Lan M, Zheng Z, Tan X, Zhao X, Zhang Y, Pu J, Xu L, Hu H. Irisin protects cardiomyocytes against hypoxia/reoxygenation injury via attenuating AMPK mediated endoplasmic reticulum stress. Sci Rep 2022; 12:7415. [PMID: 35523819 PMCID: PMC9076689 DOI: 10.1038/s41598-022-11343-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays a central role in myocardial ischemia/reperfusion (I/R) injury. Irisin has been reported to have protective properties in ischemia disease. In this study, we aimed at investigating whether irisin could alleviate myocardial I/R injury by ER stress attenuation. The in vitro model of hypoxia/reoxygenation (H/R) was established, which resembles I/R in vivo. Cell viability and apoptosis were estimated. Expressions of cleaved caspase-3, cytochrome c, GRP78, pAMPK, CHOP, and eIF2α were assessed by western blot. Our results revealed that pre-treatment with irisin significantly decreased cytochrome c release from mitochondria and caspase-3 activation caused by H/R. Irsin also reduced apoptosis and increased cell viability. These effects were abolished by AMPK inhibitor compound C pre-treatment. Also, GRP78 and CHOP expressions were up-regulated in the H/R group compared to the control group; however, irisin attenuated their expression. The pAMPK level was significantly decreased compared to the control, and this effect could be partly reversed by metformin pre-treatment. These results suggest that ER stress is associated with cell viability decreasing and cardiomyocytes apoptosis induced by H/R. Irisin could efficiently protect cardiomyocytes from H/R-injury via attenuating ER stress and ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.,Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.,Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Mingming Lv
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Zaiyong Zheng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Yulong Zhang
- Anesthesiology Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jun Pu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Lei Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China. .,Department of Cardiology, Central Hospital of Guangyuan, No. 16, Jing Alley, Lizhou District, Guangyuan, 628000, Sichuan, People's Republic of China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China. .,Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Wang PW, Pang Q, Zhou T, Song XY, Pan YJ, Jia LP, Zhang AH. Irisin alleviates vascular calcification by inhibiting VSMC osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling pathway in chronic kidney disease. Atherosclerosis 2022; 346:36-45. [DOI: 10.1016/j.atherosclerosis.2022.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
|
10
|
Cao GY, Yang C, Jin ZT, Wei HW, Xin C, Zheng CR, Xu JB, Huang Q, Zhang Z, Hu TH. FNDC5/irisin reduces ferroptosis and improves mitochondrial dysfunction in hypoxic cardiomyocytes by Nrf2/HO-1 Axis. Cell Biol Int 2022; 46:723-736. [PMID: 35032153 DOI: 10.1002/cbin.11763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Myocardial infarction is characterized by cardiomyocyte death and mitochondrial dysfunction induced by ischemia. Ferroptosis, a novel form of cell death, has been found to play critical roles under ischemic conditions. Recently, several studies have shown that fibronectin type III domain-containing 5 (FNDC5) and its cleaved form, irisin, protect the heart against injury. However, its protective effect on ferroptosis and mitochondrial impairments is still unclear. Thus, our aim was to investigate the role of irisin in ferroptosis and mitochondrial dysfunction in cardiomyocytes under hypoxic conditions. Cardiomyocytes were treated with FNDC5 overexpression and/or irisin under normoxic and hypoxic conditions. Cell viability was assessed by CCK-8 assay. Reactive oxygen species production was evaluated by dihydroethidium staining. In addition, the intracellular ferrous iron level (Fe2+ ) and the relative concentration of MDA and ATP content were determined using an iron assay kit, lipid peroxidation assay kit and ATP bioluminescent assay kit. The SOD level in cells was measured using an ELISA kit. Furthermore, an immunoblotting assay was used to determine ferroptosis-related mitochondrial proteins. Hypoxia promoted cell death, increased ferroptosis and caused mitochondrial dysfunction in cardiomyocytes. Interestingly, FNDC5 overexpression and/or irisin administration elevated cell viability, decreased ferroptosis and reversed mitochondrial impairments induced by hypoxia. Mechanistically, FNDC5/irisin reduced ferroptosis and reversed mitochondrial impairments by Nrf2/HO-1 axis in hypoxic cardiomyocytes. Thus, we have demonstrated that FNDC5/irisin plays a protective role in ferroptosis and mitochondrial dysfunction in hypoxia-induced cardiomyocyte. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guang-Ying Cao
- Medical College of Soochow University, Suzhou, Jiangsu,China; PLA Rocket Force Characteristic Medical Center, Beijing, China.,Anshun People's Hospital, Anshun, Guizhou, China
| | - Chao Yang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhi-Tao Jin
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Han-Wen Wei
- Medical College of Soochow University, Suzhou, Jiangsu,China; PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Xin
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Ji-Bing Xu
- Anshun People's Hospital, Anshun, Guizhou, China
| | - Qing Huang
- Anshun People's Hospital, Anshun, Guizhou, China
| | - Zheng Zhang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Tao-Hong Hu
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
11
|
Wang X, Zhang Z, Lan X, Fu K, Xu G, Zhao J, Yuan H. Irisin Is Correlated with Blood Pressure in Obstructive Sleep Apnea Patients. Int J Hypertens 2021; 2021:4717349. [PMID: 34804606 PMCID: PMC8601862 DOI: 10.1155/2021/4717349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Despite approximately 95% primary cases of hypertension, secondary hypertension seems to be common with resistant forms. Notably, obstructive sleep apnea (OSA) is known as a common cause of secondary hypertension and has a major characteristic of obesity. Irisin acts as a link between muscles and adipose tissues in obesity, playing an essential role in human blood pressure (BP) regulation. However, whether irisin is associated with secondary hypertension caused by OSA and how it takes effect essentially have not been elucidated. PURPOSE To investigate the changes of irisin and its relationship with BP in OSA. METHODS 72 snoring patients finished Epworth Sleep Scale (ESS) evaluation before polysomnography (PSG). BP was the average of three brachial BP values by mercury sphygmomanometer. Serum irisin level was determined by enzyme-linked immunosorbent assay (ELISA). Results were analyzed by SPSS software. RESULTS Irisin was higher in the severe and quite severe group than that in control and nonsevere groups (p < 0.05). For BP, significant differences were found between the control group and the other three groups (p < 0.05) and between the quite severe and the other three groups (p ≤ 0.001). Positive correlations were found between irisin and apnea-hypopnea index (AHI), AHI and BP, and irisin level and BP. Negative correlations were between irisin and SpO2 nadir and SpO2 nadir and BP. Positive correlation still existed between AHI and irisin even after adjusting for some obesity-related variables. CONCLUSIONS Irisin may serve as a potential biomarker for severity of OSA independently of obesity and imply the development of hypertension.
Collapse
Affiliation(s)
- Xing Wang
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhengjiao Zhang
- Department of Neurology and Sleep Center, People's Hospital of Jilin Province, Changchun, China
| | - Xiaoxin Lan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Keyou Fu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Guanhua Xu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jingyi Zhao
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Haibo Yuan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. ENDOCRINES 2021; 2:266-283. [PMID: 35392577 PMCID: PMC8986094 DOI: 10.3390/endocrines2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Irisin is a myokine that primarily targets adipose tissue, where it increases energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissue. As our knowledge has deepened in recent years, muscle has been found to be a major target organ for irisin as well. Several studies have attempted to characterize the role of irisin in muscle to improve glucose metabolism through mechanisms such as reducing insulin resistance. Although they are very intriguing reports, some contradictory results make it difficult to grasp the whole picture of the action of irisin on muscle. In this review, we attempted to organize the current knowledge of the role of irisin in muscle glucose metabolism. We discussed the direct effects of irisin on glucose metabolism in three types of muscle, that is, skeletal muscle, smooth muscle, and the myocardium. We also describe irisin’s effects on mitochondria and its interactions with other hormones. Furthermore, to consider the relationship between the irisin-induced improvement of glucose metabolism in muscle and systemic disorders of glucose metabolism, we reviewed the results from animal interventional studies and human clinical studies.
Collapse
|
13
|
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol 2021; 12:620608. [PMID: 33597894 PMCID: PMC7882619 DOI: 10.3389/fphys.2021.620608] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exercise not only produces beneficial effects on muscle itself via various molecular pathways, but also mediates the interaction between muscles and other organs in an autocrine/paracrine manner through myokines, which plays a positive role in maintaining overall health. Irisin, an exercise-derived myokine, has been found involved in the regulation of some cardiovascular diseases. However, the relationship between irisin and cardiovascular health is not fully elucidated and there are some divergences on the regulation of irisin by exercise. In this review, we present the current knowledge on the origin and physiology of irisin, describe the regulation of irisin by acute and chronic exercises, and discuss the divergences of the related research results. Importantly, we discuss the role of irisin as a biomarker in the diagnosis of cardiovascular diseases and describe its treatment and molecular mechanism in some cardiovascular diseases. It is expected that irisin will be used as a therapeutic agent to combat cardiovascular diseases or other disorders caused by inactivity in the near future.
Collapse
Affiliation(s)
- Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haichao Ding
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yuting Deng
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaoling Xiong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
14
|
Marrano N, Biondi G, Borrelli A, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Irisin and Incretin Hormones: Similarities, Differences, and Implications in Type 2 Diabetes and Obesity. Biomolecules 2021; 11:286. [PMID: 33671882 PMCID: PMC7918991 DOI: 10.3390/biom11020286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; (N.M.); (G.B.); (A.B.); (A.C.); (S.P.); (L.L.); (A.N.)
| | | |
Collapse
|
15
|
Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wei S, Lv Y, Wu R. Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 2021; 236:931-945. [PMID: 32583428 DOI: 10.1002/jcp.29903] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Ischemia reperfusion (I/R)-induced acute kidney injury (AKI) is a common and serious condition. Irisin, an exercise-induced hormone, improves mitochondrial function and reduces reactive oxygen species (ROS) production. Glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis and its inactivation aggravates renal I/R injury by inducing ROS production. However, the effect of irisin on GPX4 and I/R-induced AKI is still unknown. To study this, male adult mice were subjected to renal I/R by occluding bilateral renal hilum for 30 min, which was followed by 24 hr reperfusion. Our results showed serum irisin levels were decreased in renal I/R mice. Irisin (250 μg/kg) treatment alleviated renal injury, downregulated inflammatory response, improved mitochondrial function, and reduced ER stress and oxidative stress after renal I/R, which were associated with upregulation of GPX4. Treated with RSL3 (a GPX4 inhibitor) abolished irisin's protective effect. Thus, irisin attenuates I/R-induced AKI through upregulating GPX4.
Collapse
Affiliation(s)
- Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Ou-Yang WL, Guo B, Xu F, Lin X, Li FXZ, Shan SK, Wu F, Wang Y, Zheng MH, Xu QS, Yuan LQ. The Controversial Role of Irisin in Clinical Management of Coronary Heart Disease. Front Endocrinol (Lausanne) 2021; 12:678309. [PMID: 34276559 PMCID: PMC8281113 DOI: 10.3389/fendo.2021.678309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Irisin, a PGC1α-dependent myokine, was once believed to have beneficial effects induced by exercise. Since its first discovery of adipose browning in 2012, multiple studies have been trying to explore the metabolic functions of irisin, such as glucose and lipid metabolism. However, recently many studies with irisin concentration measuring were doubt for methodological problems, which may account for the continuous inconsistencies. New tools like recombinant irisin and gene-knockout mice are required to reconfirm the questioned functions of irisin. In this paper, we make a critical introduction to the latest researches concerning the relationship between irisin and coronary heart disease, which includes atherosclerosis, stable angina pectoris and acute coronary syndromes. These studies provided various controversial evidence of short and long-term monitoring and therapeutic effect from molecular cellular mechanisms, in vivo experiments and epidemiological investigation. But with ambiguities, irisin still has a long way to go to identify its functions in the clinical management.
Collapse
Affiliation(s)
- Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
17
|
Liu Y, Zhu C, Guo J, Chen Y, Meng C. The Neuroprotective Effect of Irisin in Ischemic Stroke. Front Aging Neurosci 2020; 12:588958. [PMID: 33414714 PMCID: PMC7782245 DOI: 10.3389/fnagi.2020.588958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Irisin is a PGC-1α-dependent myokine that causes increased energy expenditure by driving the development of white adipose tissue into brown fat-like tissue. Exercise can improve irisin levels and lead to its release into the blood. In ischemic stroke, neurons are always sensitive to energy supply; after a series of pathophysiological processes, reactive oxygen species that are detrimental to cell survival via mitochondrial dysfunction are generated in large quantities. As a protein associated with exercise, irisin can alleviate brain injury in the pathogenesis of ischemic stroke. It is thought that irisin can upregulate the levels of brain-derived neurotrophic factor (BDNF), which protects nerve cells from injury during ischemic stroke. Furthermore, the release of irisin into the blood via exercise influences the mitochondrial dynamics crucial to maintaining the normal function of nerve cells. Consequently, we intended to summarize the known effects of irisin during ischemic stroke.
Collapse
Affiliation(s)
- Yaqiang Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonghong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoyue Meng
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Drewlo S, Johnson E, Kilburn BA, Kadam L, Armistead B, Kohan-Ghadr HR. Irisin induces trophoblast differentiation via AMPK activation in the human placenta. J Cell Physiol 2020; 235:7146-7158. [PMID: 32020629 DOI: 10.1002/jcp.29613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Irisin, an adipokine, regulates differentiation and phenotype in various cell types including myocytes, adipocytes, and osteoblasts. Circulating irisin concentration increases throughout human pregnancy. In pregnancy disorders such as preeclampsia and gestational diabetes mellitus, circulating irisin levels are reduced compared to healthy controls. To date, there are no data on the role and molecular function of irisin in the human placenta or its contribution to pathophysiology. Aberrant trophoblast differentiation is involved in the pathophysiology of preeclampsia. The current study aimed to assess the molecular effects of irisin on trophoblast differentiation and function. First-trimester placental explants were cultured and treated with low (10 nM) and high (50 nM) physiological doses of irisin. Treatment with irisin dose-dependently increased both in vitro placental outgrowth (on Matrigel™) and trophoblast cell-cell fusion. Adenosine monophosphate-activated protein kinase (AMPK) signaling, an important regulator of cellular energy homeostasis that is involved in trophoblast differentiation and pathology, was subsequently investigated. Here, irisin exposure induced placental AMPK activation. To determine the effects of irisin on trophoblast differentiation, two trophoblast-like cell lines, HTR-8/SVneo and BeWo, were treated with irisin and/or a specific AMPK inhibitor (Compound C). Irisin-induced AMPK phosphorylation in HTR-8/SVneo cells. Additionally, as part of the differentiation process, integrin switching from α6 to α1 occurred as well as increased invasiveness. Overall, irisin promoted differentiation in villous and extravillous cell-based models via AMPK pathway activation. These findings provide evidence that exposure to irisin promotes differentiation and improves trophoblast functions in the human placenta that are affected in abnormal placentation.
Collapse
Affiliation(s)
- Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Eugenia Johnson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Leena Kadam
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Brooke Armistead
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
19
|
Xin C, Zhang Z, Gao G, Ding L, Yang C, Wang C, Liu Y, Guo Y, Yang X, Zhang L, Zhang L, Liu Y, Jin Z, Tao L. Irisin Attenuates Myocardial Ischemia/Reperfusion Injury and Improves Mitochondrial Function Through AMPK Pathway in Diabetic Mice. Front Pharmacol 2020; 11:565160. [PMID: 33013403 PMCID: PMC7516196 DOI: 10.3389/fphar.2020.565160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Aims Several recent reports have shown irisin protects the heart against ischemia/reperfusion injury. However, the effect of irisin on I/R injury in diabetic mice has not been described. The present study was designed to investigate the role of irisin in myocardial ischemia-reperfusion (MI/R) injury in diabetic mice. Methods A mouse model of diabetes was established by feeding wild type or gene-manipulated adult male mice with a high-fat diet. All the mice received intraperitoneal injection of irisin or PBS. Thirty minutes after injection, mice were subjected to 30 min of myocardial ischemia followed by 3h (for cell apoptosis and protein determination), 24 h (for infarct size and cardiac function). Results Knock-out of gene FNDC5 augmented MI/R injury in diabetic mice, while irisin treatment attenuated MI/R injury, improved cardiac function, cellular ATP biogenetics, mitochondria potential, and impaired mitochondrion-related cell death. More severely impaired AMPK pathway was observed in diabetic FNDC5-/- mice received MI/R. Knock-out of gene AMPK blocks the beneficial effects of irisin on MI/R injury, cardiac function, cellular ATP biogenetics, mitochondria potential, and mitochondrion-related cell death. Conclusions Our present study demonstrated that irisin improves the mitochondria function and attenuates MI/R injury in diabetic mice through AMPK pathway.
Collapse
Affiliation(s)
- Chao Xin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guojie Gao
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Liping Ding
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengzhu Wang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yanjun Liu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yufei Guo
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xueqing Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lijuan Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lina Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhitao Jin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
20
|
Deng J, Zhang N, Chen F, Yang C, Ning H, Xiao C, Sun K, Liu Y, Yang M, Hu T, Zhang Z, Jiang W. Irisin ameliorates high glucose-induced cardiomyocytes injury via AMPK/mTOR signal pathway. Cell Biol Int 2020; 44:2315-2325. [PMID: 32770767 DOI: 10.1002/cbin.11441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
High glucose (HG)-induced cardiomyocytes (CMs) injury is a leading cause of diabetic cardiomyopathy with little treatment options. Irisin, a new myokine, which is cleaved from its precursor fibronectin type III domain-containing protein 5 (FNDC5), has aroused great attention as an essential cardioprotective factor and glucose metabolism regulator but little was known on diabetic cardiomyopathy yet. Here, we aim to clarify the role of irisin in the HG-induced CMs injury. Neonatal Sprague-Dawley rat CMs were cultured in a normal or HG medium for 12, 24, and 48 hr, respectively before exposing to irisin. The apoptosis level was determined by terminal-deoxynucleotidyl transferase-mediated-dUTP nick end-labeling assay. Cell viability was measured with the conventional methyl thiazolyl tetrazolium assay. Moreover, reactive oxygen species production was evaluated by dihydroethidium staining. Inflammatory factors, namely tumor necrosis factor-α, interleukin-6, interleukin-1β were determined by enzyme-linked immunosorbent assay kits. Furthermore, protein and messenger RNA (mRNA) expressions were measured by western blot and quantitative real-time polymerase chain reaction, respectively. HG increases the apoptosis of CMs and activated the inflammatory responses and oxidative stress in CMs. Meanwhile, the mRNA and protein expressions of FNDC5 are decreased after HG exposure. Nevertheless, the increased apoptosis is alleviated by irisin treatment. Notably, irisin suppresses the inflammatory responses and oxidative stress in injured CMs. Mechanically, after the administration of Compound C, AMP-activated protein kinase (AMPK) inhibitor, these cardioprotective effects resulting from irisin are reversed. Irisin plays a significant role in antiapoptosis, anti-inflammation, antioxidative stress in HG-induced CMs via AMPK/mammalian target of the rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Cardiology, Postgraduate Training Base in PLA Rocket Force Characteristic Medical Center, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ning Zhang
- Department of surgery, Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Feng Chen
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hongjuan Ning
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chun Xiao
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ke Sun
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongfei Liu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ming Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Taohong Hu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Jiang
- Department of Cardiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
21
|
Yano N, Zhang L, Wei D, Dubielecka PM, Wei L, Zhuang S, Zhu P, Qin G, Liu PY, Chin YE, Zhao TC. Irisin counteracts high glucose and fatty acid-induced cytotoxicity by preserving the AMPK-insulin receptor signaling axis in C2C12 myoblasts. Am J Physiol Endocrinol Metab 2020; 318:E791-E805. [PMID: 32182124 PMCID: PMC7272726 DOI: 10.1152/ajpendo.00219.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Irisin, a newly identified myokine, is critical to modulating body metabolism and biological homeostasis. However, whether irisin protects the skeletal muscles against metabolic stresses remains unknown. In this study, we determine the effect of irisin on high glucose and fatty acid-induced damages using irisin-overexpressed mouse C2C12 (irisin-C2C12) myoblasts and skeletal muscle from irisin-injected mice. Compared with empty vector-transfected control C2C12 cells, irisin overexpression resulted in a marked increase in cell viability and decrease in apoptosis under high-glucose stress. Progression of the cell cycle into the G2/M phase in the proliferative condition was also observed with irisin overexpression. Furthermore, glucose uptake, glycogen accumulation, and phosphorylation of AMPKα/insulin receptor (IR) β-subunit/Erk1/2 in response to insulin stimulation were enhanced by irisin overexpression. In irisin-C2C12 myoblasts, these responses of phosphorylation were preserved under palmitate treatment, which induced insulin resistance in the control cells. These effects of irisin were reversed by inhibiting AMPK with compound C. In addition, high glucose-induced suppression of the mitochondrial membrane potential was also prevented by irisin. Moreover, suppression of IR in irisin-C2C12 myoblasts by cotransfection of shRNA against IR also mitigated the effects of irisin while not affecting AMPKα phosphorylation. As an in vivo study, soleus muscles from irisin-injected mice showed elevated phosphorylation of AMPKα and Erk1/2 and glycogen contents. Our results indicate that irisin counteracts the stresses generated by high glucose and fatty acid levels and irisin overexpression serves as a novel approach to elicit cellular protection. Furthermore, AMPK activation is a crucial factor that regulates insulin action as a downstream target.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Ling Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Dennis Wei
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Y Liu
- Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
22
|
Tu T, Peng J, Jiang Y. FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev 2020; 29:533-543. [PMID: 31914844 DOI: 10.1089/scd.2019.0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Askin L, Uzel KE, Tanriverdi O, Turkmen S. Serum Irisin: Pathogenesis and Clinical Research in Cardiovascular Diseases. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, muscular function/dysfunction has gained importance in the maintenance of metabolic homeostasis in cardiovascular diseases. Skeletal muscle plays a vital role in coordinating the activity and metabolism of endocrine organs by secreting many myokines, especially irisin. Irisin
is a polypeptide hormone consisting of 112 amino acids secreted into the blood from muscle and adipose tissues. Serum irisin levels are associated with cardiometabolic risk factors such as obesity and insulin resistance as defined by homeostatic model assessment. Irisin reduces endothelial
damage by inhibiting inflammation and oxidative stress, thus playing a key role in maintaining endothelial cell function. Unsurprisingly, low irisin levels cause endothelial dysfunction and increase the incidence of atherosclerosis. We aimed to summarize the studies on this issue since we
have not found any review in the literature on the role of serum irisin levels in the process of atherosclerosis and other cardiovascular events in cardiovascular diseases.
Collapse
Affiliation(s)
- Lutfu Askin
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Kader Eliz Uzel
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Okan Tanriverdi
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Serdar Turkmen
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| |
Collapse
|