1
|
Luo X, Tang N, Ren Y, Li J, Zhu H, Wu S, Ding Z. Single-cell multi-dimensional data analysis decodes RNF19A-mediated drug resistance in rheumatoid arthritis fibroblast-like synoviocytes: mechanisms and biological insights. Cell Mol Life Sci 2025; 82:180. [PMID: 40293542 PMCID: PMC12037462 DOI: 10.1007/s00018-025-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/16/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease, affecting approximately 1% of the global population. Methotrexate (MTX) is the most widely prescribed drug for RA treatment; however, its efficacy is often limited, with resistance frequently observed. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA progression and are closely linked to drug resistance, although the underlying mechanisms remain poorly understood. In this study, we conducted a comprehensive analysis of public single-cell transcriptomics data from osteoarthritis and rheumatoid arthritis synovial tissues, identifying RNF19A as a gene potentially associated with RA resistance in FLS. Our findings indicate that RNF19A is significantly overexpressed in drug-resistant FLS and is closely associated with the dysregulation of FLS proliferation, migration, invasion, and apoptosis. Furthermore, we demonstrated that RNF19A promotes functional disruption in FLS by ubiquitinating and degrading MKP-1, thereby activating the MAPK signaling pathway. This activation also facilitates the nuclear translocation of ZBTB20, an upstream transcription factor of RNF19A, which further enhances RNF19A transcription. This biological process creates a positive feedback loop in FLS, contributing to RA resistance-a mechanism that was also validated in vivo. In summary, this study is the first to underscore the crucial role of RNF19A in mediating drug resistance in RA FLS, elucidating the underlying biological processes, and providing novel insights into RA pathogenesis, thereby offering a new experimental foundation for RA drug development.
Collapse
Affiliation(s)
- Xin Luo
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yijun Ren
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingchen Li
- Department of Food Engineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Huancheng Zhu
- Lab of Research and Engineering of Cell Therapy Technology, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song Wu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiyu Ding
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Lab of Research and Engineering of Cell Therapy Technology, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang Z, Jiang W, Zhang C, Yin Y, Mu N, Wang Y, Yu L, Ma H. Frataxin inhibits the sensitivity of the myocardium to ferroptosis by regulating iron homeostasis. Free Radic Biol Med 2023; 205:305-317. [PMID: 37343689 DOI: 10.1016/j.freeradbiomed.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
RATIONALE Myocardial ischemia/reperfusion (I/R) injury is characterized by cell death via various cellular mechanisms upon reperfusion. As a new type of cell death, ferroptosis provides new opportunities to reduce myocardial cell death. Ferroptosis is known to be more active during reperfusion than ischemia. However, the mechanisms regulating ferroptosis during ischemia and reperfusion remain largely unknown. METHODS The contribution of ferroptosis in ischemic and reperfused myocardium were detected by administered of Fer-1, a ferroptosis inhibitor to C57BL/6 mice, followed by left anterior descending (LAD) ligation surgery. Ferroptosis was evaluated by measurement of cell viability, ptgs2 mRNA level, iron production, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. H9C2 cells were exposed to hypoxia/reoxygenation to mimic in vivo I/R. We used LC-MS/MS to identify potential E3 ligases that interacted with frataxin in heart tissue. Cardiac-specific overexpression of frataxin in whole heart was achieved by intracardiac injection of frataxin, carried by adeno-associated virus serotype 9 (AAV9) containing cardiac troponin T (cTnT) promoter. RESULTS We showed that regulators of iron metabolism, especially iron regulatory protein activity, were increased in the ischemic myocardium or hypoxia cardiomyocytes. In addition, we found that frataxin, which is involved in iron metabolism, is differentially expressed in the ischemic and reperfused myocardium and involved in the regulation of cardiomyocytes ferroptosis. Furthermore, we identified an E3 ligase, NHL repeat-containing 1 (NHLRC1), that mediates frataxin ubiquitination degradation. Cardiac-specific overexpression of frataxin ameliorated myocardial I/R injury through ferroptosis inhibition. CONCLUSIONS Through a multi-level study from molecule to animal model, these findings uncover the key role of frataxin in inhibiting cardiomyocyte ferroptosis and provide new strategies and perspectives for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
3
|
Keen A, Zhang F, Reader JS, Tzima E. Proteostasis and resilience in the mechanically-stressed vascular endothelium. CURRENT OPINION IN PHYSIOLOGY 2023; 34:None. [PMID: 40124949 PMCID: PMC11922819 DOI: 10.1016/j.cophys.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation.
Collapse
Affiliation(s)
- Adam Keen
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Feiran Zhang
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - John S Reader
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | | |
Collapse
|
4
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
5
|
Liu J, Du X, Yao Q, Jiang T, Cui Q, Xie X, Zhao Z, Lai B, Wang N, Xiao L. Procyanidin B2 ameliorates endothelial dysfunction induced by nicotine via the induction of tetrahydrobiopterin synthesis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Liang Q, Wu J, Zhao X, Shen S, Zhu C, Liu T, Cui X, Chen L, Wei C, Cheng P, Cheng W, Wu A. Establishment of tumor inflammasome clusters with distinct immunogenomic landscape aids immunotherapy. Am J Cancer Res 2021; 11:9884-9903. [PMID: 34815793 PMCID: PMC8581407 DOI: 10.7150/thno.63202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammasome signaling is a reaction cascade that influences immune response and cell death. Although the inflammasomes participate in tumorigenesis, their role as an oncogenic booster or a tumor suppresser is still controversial. Therefore, it is important to comprehensively investigate the inflammasome signaling status across various cancers to clarify its clinical and therapeutic significance. Methods: A total of 9881 patients across 33 tumor types from The Cancer Genome Atlas database were included in this study. Five gene sets were identified to step-wisely profile inflammasome signaling. Unsupervised clustering was used for sample classification based on gene set enrichment. Machine learning and in vitro and in vivo experiments were used to confirm the implications of inflammasome classification. Results: A hundred and forty-one inflammasome-signaling-related genes were identified to construct five gene sets representing the sensing, activation, and termination steps of the inflammasome signaling. Six inflammasome clusters were robustly established with distinct molecular, biological, clinical, and therapeutic features. Importantly, clusters with inflammasome signaling activation were found to be immunosuppressive and resistant to ICB treatment. Inflammasome inhibition reverted the therapeutic failure of ICB in inflammasome-activated tumors. Moreover, based on the proposed classification and therapeutic implications, an open website was established to provide tumor patients with comprehensive information on inflammasome signaling. Conclusions: Our study conducted a systematical investigation on inflammasome signaling in various tumor types. These findings highlight the importance of inflammasome evaluation in tumor classification and provide a foundation for improving relevant therapeutic regimens.
Collapse
|
7
|
Jiang Y, Zheng B, Yang Y, Li X, Han J. Identification of Somatic Mutation-Driven Immune Cells by Integrating Genomic and Transcriptome Data. Front Cell Dev Biol 2021; 9:715275. [PMID: 34368166 PMCID: PMC8335569 DOI: 10.3389/fcell.2021.715275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Tumor somatic mutations in protein-coding regions may generate neoantigens which may trigger antitumor immune cell response. Increasing evidence supports that immune cell response may profoundly influence tumor progression. However, there are no calculated tools to systematically identify immune cells driven by specific somatic mutations. It is urgent to develop a calculated method to comprehensively detect tumor-infiltrating immune cells driven by the specific somatic mutations in cancer. We developed a novel software package (SMDIC) that enables the automated identification of somatic mutation-driven immune cell. SMDIC provides a novel pipeline to discover mutation-specific immune cells by integrating genomic and transcriptome data. The operation modes include inference of the relative abundance matrix of tumor-infiltrating immune cells, detection of differential abundance immune cells with respect to the gene mutation status, conversion of the abundance matrix of significantly dysregulated cells into two binary matrices (one for upregulated and one for downregulated cells), identification of somatic mutation-driven immune cells by comparing the gene mutation status with each immune cell in the binary matrices across all samples, and visualization of immune cell abundance of samples in different mutation status for each gene. SMDIC provides a user-friendly tool to identify somatic mutation-specific immune cell response. SMDIC may contribute to understand the mechanisms underlying anticancer immune response and find targets for cancer immunotherapy. The SMDIC was implemented as an R-based tool which was freely available from the CRAN website https://CRAN.R-project.org/package=SMDIC.
Collapse
Affiliation(s)
- Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Eshaq RS, Harris NR. The role of tumor necrosis factor-α and interferon-γ in the hyperglycemia-induced ubiquitination and loss of platelet endothelial cell adhesion molecule-1 in rat retinal endothelial cells. Microcirculation 2021; 28:e12717. [PMID: 34008903 PMCID: PMC10078990 DOI: 10.1111/micc.12717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of the hyperglycemia-induced increase in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the ubiquitination and degradation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the diabetic retina. METHODS Type I diabetes was induced in rats by the injection of streptozotocin, with age-matched non-diabetic rats as controls. Primary rat retinal microvascular endothelial cells were grown in normal or high glucose media for 6 days or in normal glucose media for 24 h with addition of TNF-α and/or IFN-γ. PECAM-1, TNF-α, IFN-γ, and ubiquitin levels were assessed using Western blotting, immunofluorescence, and immunoprecipitation assays. Additionally, proteasome activity was assessed both in vivo and in vitro. RESULTS Under hyperglycemic conditions, total ubiquitination levels in the retina and RRMECs, and PECAM-1 ubiquitination levels in RRMECs, were significantly increased. Additionally, TNF-α and IFN-γ levels were significantly increased under hyperglycemic conditions. PECAM-1 levels in RRMECs treated with TNF-α and/or IFN-γ were significantly decreased. Moreover, there was a significant decrease in proteasome activity in the diabetic retina, hyperglycemic RRMECs, and RRMECs treated with TNF-α or IFN-γ. CONCLUSION Tumor necrosis factor-α and IFN-γ may contribute to the hyperglycemia-induced loss of PECAM-1 in retinal endothelial cells, possibly by upregulating PECAM-1 ubiquitination.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|