1
|
Liu H, Xiang R, Chen Z. The association between red blood cell distribution width-to-albumin ratio and risk of depression: A cross-sectional analysis of NHANES. J Affect Disord 2025; 379:250-257. [PMID: 40086477 DOI: 10.1016/j.jad.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The red blood cell distribution width-to-albumin ratio (RAR) serves as an indicator of systemic inflammation and nutritional status. This study examines the relationship between RAR and depressive disorder in U.S. adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS We applied logistic regression to evaluate the link between RAR and depressive risk, with its corresponding odds ratios (OR) and 95 % confidence intervals (CI) calculated. Restricted cubic spline (RCS) was adopted to assess the potential linear association, while the receiver operating characteristic (ROC) curve was used to evaluate the ability of RAR to predict the depressive risk, with the result presented as an area under the curve (AUC). RESULTS After adjusting for relevant covariates, a positive association between RAR and clinically relevant depression persisted (OR = 1.33, 95 % CI: 1.18-1.51, P < 0.001). Participants in the highest RAR quartile exhibited a greater risk of clinically relevant depression than those in the lowest quartile (OR = 1.36, 95 % CI: 1.10-1.67, P = 0.005). A linear relationship between RAR and clinically relevant depression was identified (P for non-linear = 0.473), with RAR showing a strong predictive ability for depressive risk (AUC = 0.7467). Stratified analysis showed significant interactions among smoking (P = 0.045), marital status (P < 0.001), and RAR's effect on depression outcome. CONCLUSIONS Elevated RAR is independently linked to clinically relevant depression, indicating its potential as a novel biomarker for mental health risk assessment. Further longitudinal studies are necessary to establish causality and evaluate its clinical relevance.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Zhuohang Chen
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Raza ML. The stress-immune system axis: Exploring the interplay between stress and immunity. PROGRESS IN BRAIN RESEARCH 2025; 291:289-317. [PMID: 40222784 DOI: 10.1016/bs.pbr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chapter talks about how our body and mind respond to stress and how it affects our immune system. Stress reactions, especially the fight-or-flight reaction, are helpful at first but can be harmful if they last too long. Long-term stress, caused by hormones like cortisol and adrenaline, weakens the immune system and makes people more likely to get sick. Important brain chemicals like serotonin and norepinephrine help control how our immune system works. Also, the connection between our gut and brain is an important way that mental health affects how our immune system functions. Getting older and experiencing stress early in life can affect how our immune system works. Inflammation caused by stress is connected to health issues like heart disease, depression, and autoimmune diseases. There are ways to manage stress, like being mindful and having support from friends, are important for keeping your immune system healthy and lessening harm caused by stress.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
5
|
Olean-Oliveira T, Padilha CS, Figueiredo C, Dorneles GP, Marmett B, Peres A, Romão P, Abílio de Souza Teixeira A, Jabur Ribeiro JP, Dos Santos VR, Olean-Oliveira A, Teixeira MFS, Seraphim PM, Krüger K, Rosa-Neto JC, Lira FS. Central obesity is detrimental to anti-inflammatory, phenotype, and exhaustion markers in mononuclear cells - A cross-sectional study. Clin Nutr ESPEN 2023; 58:397-408. [PMID: 38057032 DOI: 10.1016/j.clnesp.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To investigate the role of central obesity on immunometabolic response in peripheral blood mononuclear cells (PBMCs) from normal weight and overweight/obese young men. METHODS Eighteen individuals were classified as normal weight (NW; n = 9 - age: 25 ± 5 and BMI: 21.4 ± 1.7) and overweight/obese (OW; n = 9 - age: 29 ± 7 and BMI: 29.2 ± 2.7). The body composition was evaluated by dual-energy x-ray absorptiometry (DXA), waist circumference, and visceral and subcutaneous fat depots by ultrasound. Physical activity levels, metabolic parameters, immune phenotypic characterization, cytokine production by lipopolysaccharide (LPS) -stimulated whole blood cells and LPS or phorbol 12-myristate 13-acetate (PMA)-stimulated PBMC, and mitochondrial respiration in PBMCs were evaluated. Expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR-4), hypoxia-inducible factor-1 alpha (HIF-1α), and adrenergic receptor beta 1 and 2 (AR-β1 and β2) genes were evaluated in cultured PBMC using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Individuals with overweight/obese (OW) presented higher glucose (P = 0.009) and leptin (P = 0.010) than individuals with normal weight (NW). PBMCs of OW under stimulation with LPS presented a lower production of interleukin-10 (IL-10) (P = 0.011) and macrophage inflammatory protein-1alpha (MIP-1α) (P = 0.048) than NW. Mitochondrial respiration rates were not different between NW and OW subjects. Cultured PBMCs in LPS-stimulated condition indicated higher gene expression of AR-β2 in OW, while PMA-stimulated PBMCs presented lower expression of AMPK (P = 0.002) and higher expression of NF-κB (P=<0.0001) than NW. OW presented higher numbers of CD3+CD4+ T cells (P = 0.009) and higher expression of programmed cell death protein 1 (PD-1) in CD8+ T cells (P = 0.001) than NW. CONCLUSION Central obesity promoted reductions in interleukin 10 production response and increase in AR-β2 expressions in mitogen-stimulated PBMCs. Furthermore, central obesity altered the phenotype of PBMCs, also increasing the expression of PD-1 exhaustion markers in young adults.
Collapse
Affiliation(s)
- Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Camila S Padilha
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Biology of Ageing Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Missenden Rd, NSW 2050, Sydney, Australia
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Marmett
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Abílio de Souza Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - José Procópio Jabur Ribeiro
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Vanessa Ribeiro Dos Santos
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Marcos F S Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Patrícia M Seraphim
- Department of Physiotherapy, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, 35394 Giessen, Germany
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Centro de Investigação em Desporto e Atividade Física, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Alblowy AH, Maan N, Ibrahim AA. Optimal control strategies for SGLT2 inhibitors as a novel anti-tumor agent and their effect on human breast cancer cells with the effect of time delay and hyperglycemia. Comput Biol Med 2023; 166:107552. [PMID: 37826954 DOI: 10.1016/j.compbiomed.2023.107552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Breast cancer is the most frequent cancer in the world, and it continues to have a significant impact on the total number of cancer deaths. Recently, oncology findings hint at the role of excessive glucose in cancer progression and immune cells' suppression. Sequel to this revelation is ongoing researches on possible inhibition of glucose flow into the tumor micro-environment as therapeutics for malignant treatment. In this study, the effect of glucose blockage therapeutics such as SGLT-2 inhibitors drug on the dynamics of normal, tumors and immune cells interaction is mathematically studied. The asymptomatic nature of the breast cancer is factored into the model using time delay. We first investigate the boundedness and non-negativity of the solution. The condition for existence of critical equilibrium point is determined, and its global stability conditions are derived using Lyapunov function. This revealed that a timely administration of the SGLT-2 inhibitors drug can eliminate tumor cells. Secondly, we determine the sufficient and necessary conditions for optimal control strategy of SGLT-2 inhibitors so as to avert side effects on normal cells using a Pontryagin's Minimum Principle. The results showed that if the ingestion rate of the inhibitor drug is equal to the digestion rate, the tumor cells can be completely eliminated within 9 months without side effects. The analytical results were numerically verified and the qualitative views of interacting cells dynamics is showcased.
Collapse
Affiliation(s)
- Abeer Hamdan Alblowy
- Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 2440, Saudi Arabia; Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Normah Maan
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Abdulkareem Afolabi Ibrahim
- Department of Mathematics and Statistics, Federal Polytechnic Kaura Namoda, Kaura-Namoda, Zamfara State, Nigeria.
| |
Collapse
|
7
|
Kim J, Kim Y, La J, Park WH, Kim HJ, Park SH, Ku KB, Kang BH, Lim J, Kwon MS, Lee HK. Supplementation with a high-glucose drink stimulates anti-tumor immune responses to glioblastoma via gut microbiota modulation. Cell Rep 2023; 42:113220. [PMID: 37804509 DOI: 10.1016/j.celrep.2023.113220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
A high-sugar diet induces lifestyle-associated metabolic diseases, such as obesity and diabetes, which may underlie the pro-tumor effects of a high-sugar diet. We supply GL261 syngeneic glioblastoma (GBM) mice with a short-term high-glucose drink (HGD) and find an increased survival rate with no evidence of metabolic disease. Modulation of the gut microbiota through HGD supplementation is critical for enhancing the anti-tumor immune response. Single-cell RNA sequencing shows that gut microbiota modulation by HGD supplementation increases the T cell-mediated anti-tumor immune response in GBM mice. We find that the cytotoxic CD4+ T cell population in GBM is increased due to synergy with anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibitors, but this effect depends upon HGD supplementation. Thus, we determine that HGD supplementation enhances anti-tumor immune responses in GBM mice through gut microbiota modulation and suggest that the role of HGD supplementation in GBM should be re-examined.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Hee Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhee Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myoung Seung Kwon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Mahgoub MO, Ali II, Adeghate JO, Tekes K, Kalász H, Adeghate EA. An Update on the Molecular and Cellular Basis of Pharmacotherapy in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24119328. [PMID: 37298274 DOI: 10.3390/ijms24119328] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic illness with an increasing global prevalence. More than 537 million cases of diabetes were reported worldwide in 2021, and the number is steadily increasing. The worldwide number of people suffering from DM is projected to reach 783 million in 2045. In 2021 alone, more than USD 966 billion was spent on the management of DM. Reduced physical activity due to urbanization is believed to be the major cause of the increase in the incidence of the disease, as it is associated with higher rates of obesity. Diabetes poses a risk for chronic complications such as nephropathy, angiopathy, neuropathy and retinopathy. Hence, the successful management of blood glucose is the cornerstone of DM therapy. The effective management of the hyperglycemia associated with type 2 diabetes includes physical exercise, diet and therapeutic interventions (insulin, biguanides, second generation sulfonylureas, glucagon-like peptide 1 agonists, dipeptidyl-peptidase 4 inhibitors, thiazolidinediones, amylin mimetics, meglitinides, α-glucosidase inhibitors, sodium-glucose cotransporter-2 inhibitors and bile acid sequestrants). The optimal and timely treatment of DM improves the quality of life and reduces the severe burden of the disease for patients. Genetic testing, examining the roles of different genes involved in the pathogenesis of DM, may also help to achieve optimal DM management in the future by reducing the incidence of DM and by enhancing the use of individualized treatment regimens.
Collapse
Affiliation(s)
- Mohamed Omer Mahgoub
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi P.O. Box 25669, United Arab Emirates
| | - Ifrah Ismail Ali
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Jennifer O Adeghate
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, NY 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, 635 W. 165th St., New York, NY 10032, USA
| | - Kornélia Tekes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Boeira MCDR, Dorneles GP, Junior WF, Peres A. The influence of physical activity level and cytomegalovirus serostatus on the cytokine levels of young individuals. Immunol Lett 2023; 256-257:28-33. [PMID: 36996911 DOI: 10.1016/j.imlet.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The practice of physical activity (PA) is a non-pharmacological variable that alters the immune response through changes in cytokines and cellular immunity. Inversely latent cytomegalovirus (CMV) infection prematurely ages the immune system and contributes to the chronic inflammatory condition in several diseases and in aging. This study aimed to compare the association of the PA level and CMV serostatus on whole blood mitogen-stimulated cytokine production of young individuals. The resting blood samples were collected from 100 volunteers of both sexes assigned to one of six groups according to the degree of PA and CMV serostatus: sedentary CMV- (n = 15), moderate physical activity CMV- (moderate PA CMV -, n = 15), high physical activity CMV- (high PA CMV-, n = 15), sedentary CMV+ (n = 20), moderate physical activity CMV + (moderate PA CMV+, n = 20) and high physical activity CMV + (high PA CMV +, n = 20). The collected peripheral blood got diluted in supplemented RPMI-1640 culture medium and incubated for 48 hours with a 2% concentration of phytohemagglutinin at 37ºC and CO2 at 5%. The supernatants were collected and used for the IL-6, IL-10, TNF-α, and INF-γ analysis by the ELISA method. The IL-10 concentration was higher in the Moderate PA and High PA groups when compared to the sedentary group, regardless of CMV status. The physically active (moderate and high PA) CMV+ individuals presented lower concentrations of IL-6 and TNF-α compared to CMV+ sedentary individuals, and the sedentary CMV+ subjects had a higher concentration of INF-γ compared to Sedentary CMV- subjects (p < 0.05). In summary, it is possible to infer that PA is key to controlling inflammation related to CMV infection. The stimulation of physical exercise is an important factor in controlling many diseases at the populational level.
Collapse
|
10
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
11
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|
12
|
Zequan X, Yonggang S, Heng X, Yaodong W, Xin M, Dan L, Li Z, Tingting D, Zirong W. Transcriptome-based analysis of early post-mortem formation of pale, soft, and exudative (PSE) pork. Meat Sci 2022; 194:108962. [PMID: 36126390 DOI: 10.1016/j.meatsci.2022.108962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Pale, soft, and exudative (PSE) meat can cause consumer dissatisfaction and economic losses. This study determined meat quality, glycolytic enzyme activity, and differential gene expression in the longissimus lumborum (LL) and semimembranosus (SM) of normal and PSE pork carcasses. The SM did not result in PSE meat. Hexokinase, lactate dehydrogenase, and pyruvate kinase activities were lower in the SM of PSE carcasses than in the normal carcasses. Functional enrichment analysis revealed that immune, inflammatory, and muscle fibre genes were significantly enriched in PSE pork. More specifically, PPP1R3G and MSS51 may be key genes regulating pork quality in the SM. Meanwhile, the differential expression of PLVAB, ADIPOQ, LEP, MYH4, MYH7, MYL3, MYL6B, FOS, ATF3, and HSPA6 may induce PSE formation in the LL. These results may provide insights into PSE pork formation mechanisms and reveal candidate genes for improving meat quality after validation.
Collapse
Affiliation(s)
- Xu Zequan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China; Tecon Biology Ltd., Urumqi, Xinjiang, China
| | - Shao Yonggang
- College of Animal Science, Xinjiang Agricultural University, Xinjiang, China
| | - Xu Heng
- Tecon Biology Ltd., Urumqi, Xinjiang, China
| | | | - Ma Xin
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Liu Dan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhang Li
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Du Tingting
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wang Zirong
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
13
|
Metabolomic Response throughout 16 Weeks of Combined Aerobic and Resistance Exercise Training in Older Women with Metabolic Syndrome. Metabolites 2022; 12:metabo12111041. [PMID: 36355124 PMCID: PMC9693245 DOI: 10.3390/metabo12111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increases in longevity and obesity have led to a higher prevalence of Metabolic Syndrome (MetS) and several chronic conditions, such as hypertension. The prevalence of MetS and hypertension increases with advancing age and their detrimental effects on health can be attenuated by physical activity. Combined aerobic and resistance exercise training (CT) is recommended to maintain good health in older adults and is known to generate important metabolic adaptations. In this study we performed a metabolomics analysis, based on Hydrogen Nuclear Magnetic Resonance (1H NMR), to investigate the kinetics of changes in metabolism in non-physically active older women with MetS in response to 16 weeks of CT. A subset of women with MetS were selected from a larger randomized trial (that included men and women without MetS), with 12 participants on CT and 13 from the Control Group (CG). CT comprised walking/running at 63% of VO2max, three times/week, and resistance training (RT), consisting of 15 repetitions of seven exercises at moderate intensity, twice/week. Serum metabolomic profile was analysed at baseline (0W), 4 (4W), 8 (8W), 12 (12W) and 16 weeks (16W) for CT or CG. Cardiorespiratory fitness, RT load, blood pressure, body composition, lipid and glycaemic profile were also assessed. After 16 weeks CT increased cardiorespiratory fitness (13.1%, p < 0.05) and RT load (from 48% in the lat pulldown to 160% in the leg press, p < 0.05), but there were no changes in MetS parameters, such as body composition (Body Mass, Body Mass Index (BMI), body fat percentage and waist circumference), blood pressure, lipid and glycaemic profile. However, we identified potential higher substrate to the tricarboxylic acid cycle (increase in 2-Oxobutyrate from 0W (0.0029 ± 0.0009) to 4W (0.0038 ± 0.0011) and 8W (0.0041 ± 0.0015), p < 0.05), followed by alterations (different from 0W, p < 0.05) in the production of ketone bodies (3-Hydroxybutyrate, 0W (0.0717 ± 0.0377) to 16W (0.0397 ± 0.0331), and Acetoacetate, 0W (0.0441 ± 0.0240) to 16W (0.0239 ± 0.0141)), which together might explain the known improvement in fatty acid oxidation with exercise. There was also a late increase in ornithine at 16W of CT. Further studies are needed to investigate the association between these metabolic pathways and clinical outcomes in this population.
Collapse
|
14
|
Rossi FE, Maldonado AJ, Cholewa JM, Ribeiro SLG, de Araújo Barros CA, Figueiredo C, Reichel T, Krüger K, Lira FS, Minuzzi LG. Exercise training-induced changes in immunometabolic markers in youth badminton athletes. Sci Rep 2022; 12:15539. [PMID: 36109571 PMCID: PMC9477844 DOI: 10.1038/s41598-022-19591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the metabolic and inflammatory fluctuations in two seasonal phases of badminton training, and the ability of youth badminton athletes to respond to an inflammatory challenge given by acute exercise on these markers. Thirteen youth badminton athletes who participated in national and international competitions were recruited. Metabolic and cytokine profile were measured at rest and in response to a maximal exercise intermittent test, in the pre- and final phases of a badminton annual season. At rest, glucose (-7.58 mg/dL; p = 0.045) and HDL-cholesterol (HDL-c) (-26.87 mg/dL; p < 0.0001) decreased at final-season. The variation of HDL-c in response to a maximal exercise test increased at final-season in comparison to pre-season (+ 10.20 mg/dL p = 0.042). Similarly, delta changes of IL-10 (+ 3.41 pg/ml; p = 0.047) and IL-1Ra (+ 141.3 pg/ml; p = 0.031) were greater at final-season. In addition, a significantly greater variation of the anti-inflammatory IL-10/IL-17 ratio was observed at final-season (+ 0.37; p = 0.010). In conclusion, our results showed a major responsivity of IL-10 and IL-1Ra to a maximal exercise even at the end of an entire season. The major responsivity of these cytokines at this time point suggests a more effective acute inflammatory response in youth badminton athletes. Therefore, the results of this study may be applied by coaches, trainers and sport nutritionist for proper training management.
Collapse
Affiliation(s)
- Fabrício Eduardo Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piaui (UFPI), Teresina, PI, Brazil.
- Graduate Program in Science and Health, Department of Physical Education, Federal University of Piaui (UFPI), "Ministro Petrônio Portella" Campus, Teresina, PI, 64049-550, Brazil.
| | | | | | - Sergio Luiz Galan Ribeiro
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piaui (UFPI), Teresina, PI, Brazil
| | - Clara Andressa de Araújo Barros
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piaui (UFPI), Teresina, PI, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Gießen, 35394, Gießen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Gießen, 35394, Gießen, Germany
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
- Research Center for Sport and Physical Activity, Faculty of Sports Science and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
- Research Center for Sport and Physical Activity, Faculty of Sports Science and Physical Education, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Kumar P, Singh R, Kumar A, Toropova AP, Toropov AA, Devi M, Lal S, Sindhu J, Singh D. Identifications of good and bad structural fragments of hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids with correlation intensity index and consensus modelling using Monte Carlo based QSAR studies, their molecular docking and ADME analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:677-700. [PMID: 36093620 DOI: 10.1080/1062936x.2022.2120068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The application of QSAR along with other in silico tools like molecular docking, and molecular dynamics provide a lot of promise for finding new treatments for life-threatening diseases like Type 2 diabetes mellitus (T2DM). The present study is an attempt to develop Monte Carlo algorithm-based QSAR models using freely available CORAL software. The experimental data on the α-amylase inhibition by a series of benzothiazole-linked hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids were selected as endpoint for the model generation. Initially, a total of eight QSAR models were built using correlation intensity index (CII) as a criterion of predictive potential. The model developed from split 6 using CII was the most reliable because of the highest numerical value of the determination coefficient of the validation set (r2VAL = 0.8739). The important structural fragments responsible for altering the endpoint were also extracted from the best-built model. With the goal of improved prediction quality and lower prediction errors, the validated models were used to build consensus models. Molecular docking was used to know the binding mode and pose of the selected derivatives. Further, to get insight into their metabolism by living beings, ADME studies were investigated using internet freeware, SwissADME.
Collapse
Affiliation(s)
- P Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - R Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - A Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, India
| | - A P Toropova
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A A Toropov
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - S Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - J Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - D Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
16
|
Sharari S, Kabeer B, Mohammed I, Haris B, Pavlovski I, Hawari I, Bhat AA, Toufiq M, Tomei S, Mathew R, Syed N, Nisar S, Maacha S, Grivel JC, Chaussabel D, Ericsson J, Hussain K. Understanding the Role of GLUT2 in Dysglycemia Associated with Fanconi-Bickel Syndrome. Biomedicines 2022; 10:biomedicines10092114. [PMID: 36140215 PMCID: PMC9495670 DOI: 10.3390/biomedicines10092114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fanconi−Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized by the accumulation of glycogen mainly in the liver. It is inherited in an autosomal recessive manner due to mutations in the SLC2A2 gene. SLC2A2 encodes for the glucose transporter GLUT2 and is expressed in tissues that are involved in glucose homeostasis. The molecular mechanisms of dysglycemia in FBS are still not clearly understood. In this study, we report two cases of FBS with classical phenotypes of FBS associated with dysglycemia. Genomic DNA was extracted and analyzed by whole-genome and Sanger sequencing, and patient PBMCs were used for molecular analysis. One patient had an exonic SLC2A2 mutation (c.1093C>T in exon 9, R365X), while the other patient had a novel intronic SLC2A2 mutation (c.613-7T>G). Surprisingly, the exonic mutation resulted in the overexpression of dysfunctional GLUT2, resulting in the dysregulated expression of other glucose transporters. The intronic mutation did not affect the coding sequence of GLUT2, its expression, or glucose transport activity. However, it was associated with the expression of miRNAs correlated with type 1 diabetes mellitus, with a particular significant overexpression of hsa-miR-29a-3p implicated in insulin production and secretion. Our findings suggest that SLC2A2 mutations cause dysglycemia in FBS either by a direct effect on GLUT2 expression and/or activity or, indirectly, by the dysregulated expression of miRNAs implicated in glucose homeostasis.
Collapse
Affiliation(s)
- Sanaa Sharari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | - Idris Mohammed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | - Basma Haris
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | - Iman Hawari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | | | - Sara Tomei
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | | | - Najeeb Syed
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Sabah Nisar
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Selma Maacha
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | | | | | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 D4 Dublin, Ireland
| | - Khalid Hussain
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
- Correspondence:
| |
Collapse
|
17
|
Romão PR, Teixeira PC, Schipper L, da Silva I, Santana Filho P, Júnior LCR, Peres A, Gonçalves da Fonseca S, Chagas Monteiro M, Lira FS, Andrey Cipriani Frade M, Comerlato J, Comerlato C, Sant'Anna FH, Bessel M, Abreu CM, Wendland EM, Dorneles GP. Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. Int Immunopharmacol 2022; 108:108697. [PMID: 35405594 PMCID: PMC8920784 DOI: 10.1016/j.intimp.2022.108697] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.
Collapse
Affiliation(s)
- Pedro Rt Romão
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Paula C Teixeira
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Schipper
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Igor da Silva
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Santana Filho
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Marta Chagas Monteiro
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, SP, Brazil
| | - Marco Andrey Cipriani Frade
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | - Marina Bessel
- Hospital Moinhos de Vento, Porto Alegre, Rio Grande do Sul, Brazil
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eliana M Wendland
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Pediatrics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
18
|
High-intensity intermittent exercise induces a potential anti-inflammatory response in healthy women across the menstrual cycle. Cytokine 2022; 154:155872. [DOI: 10.1016/j.cyto.2022.155872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
19
|
Lozada-Mellado M, Llorente L, Hinojosa-Azaola A, García-Morales JM, Ogata-Medel M, Alcocer-Varela J, Pineda-Juárez JA, Castillo-Martínez L. Comparison of the Impacts of a Dynamic Exercise Program vs. a Mediterranean Diet on Serum Cytokine Concentrations in Women With Rheumatoid Arthritis. A Secondary Analysis of a Randomized Clinical Trial. Front Nutr 2022; 9:834824. [PMID: 35548581 PMCID: PMC9082589 DOI: 10.3389/fnut.2022.834824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a disease characterized by a chronic inflammatory state. High pro-inflammatory cytokine levels are associated with disease activity. Exercise and the Mediterranean diet (MD) exert anti-inflammatory effects; however, their impacts on inflammation in RA patients remains unknown. This study aimed to compare the effects of six-months of dynamic exercise program (DEP) vs. MD on pro- and anti-inflammatory cytokine serum concentrations. Methods Secondary analysis of a randomized clinical trial in which 90 women with RA were randomly assigned to the DEP (n = 30), MD (n = 30), or control group (n = 30). All patients received pharmacological treatment. Serum concentrations of pro-inflammatory (TNF-α, TNF-β, IL-1β, IL-6 pg/mL) and anti-inflammatory (IL-10, IL-Ra pg/mL) cytokines were measured at baseline and after 6 months using the Luminex technique. Results After 6 months of follow-up, we found an improvement of the median percentages changes concentrations of TNF-α (DEP, -12.3; MD, -13.3; control, 73.2; p = 0.01), TNF-β (DEP, -67.4; MD, -54.9; control, 0; p = 0.04), and IL-6 (DEP, -19.9; MD, -37.7; control, 45.5; p = 0.04) in the DEP and MED groups in comparison with control group. IL-1Ra concentrations increased only in the MD group (13.8) compared to levels in the control group (-31.7), p = 0.04. There were no statistically significant differences between DEP and MD groups. Only n = 27 participants in the DEP group, n = 26 in the MD group, and n = 21 in the control group completed the follow-up. Conclusion The DEP and the MD have potential effects in the concentrations of pro-inflammatory cytokines compared with those in a control group. Only the MD elevated the concentration of IL-Ra. Clinical Trial Registration [ClinicalTrials.gov], identifier [NCT02900898].
Collapse
Affiliation(s)
- Mariel Lozada-Mellado
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Hinojosa-Azaola
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M. García-Morales
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Midori Ogata-Medel
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan A. Pineda-Juárez
- Research Coordination, Centro Medico Nacional 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - Lilia Castillo-Martínez
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
20
|
High fructose diet: A risk factor for immune system dysregulation. Hum Immunol 2022; 83:538-546. [DOI: 10.1016/j.humimm.2022.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
21
|
Damasceno de Lima R, Pedersen M, Costa do Bomfim FR, Chiarotto GB, Canciglieri PH, Pauli JR, Felonato M. Effects of different physical training protocols on inflammatory markers in Zymosan-induced rheumatoid arthritis in Wistar rats. Cell Biochem Funct 2022; 40:321-332. [PMID: 35298040 DOI: 10.1002/cbf.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and involvement of the synovial membrane, causing joint damage and deformities. No effective drug treatment is available, and physical exercise has been utilized to alleviate the inflammatory processes. This study aimed to investigate the effects of different exercise training protocols on Zymosan-induced RA inflammatory markers in the right knee of Wistar rats. The rodents were subjected to aerobic, resisted, and combined physical training protocols with variations in the total training volume (50% or 100% of resistance and aerobic training volume) for 8 weeks. All physical training protocols reduced cachexia and systemic inflammatory processes. The histological results showed an increase in the inflammatory influx to the synovial tissue of the right knee in all physical training protocols. The rats that underwent combined physical training with reduced volume had a lower inflammatory influx compared to the other experimental groups. A reduction in the mRNA expression of inflammatory genes and an increase in anti-inflammatory gene expression were also observed. The physical training protocol associated with volume reduction attenuated systemic and synovial inflammation of the right knee, reducing the impact of Zymosan-induced RA in rats.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| | - Matheus Pedersen
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| | | | | | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maíra Felonato
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| |
Collapse
|
22
|
Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022; 12:8691-8707. [PMID: 35424805 PMCID: PMC8985157 DOI: 10.1039/d1ra07888g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
Electronic skins (e-skins) are soft (deformable and stretchable) state-of-the-art wearable devices that emulate the attributes of human skin and act as a Human-Machine Interface (HMI). Recent advances in e-skin for real-time detection of medical signals such as pulse, temperature, electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and other bioelectric signals laid down an intelligent foundation for early prediction and diagnosis of diseases with a motive of reducing the risk of the ailment reaching to the end stage. In particular, sweat testing has been employed in diverse applications ranging from medical diagnosis of diabetes, cystic fibrosis, tuberculosis, blood pressure, and autonomic neuropathy to evaluating fluid and electrolyte balance in athletes. Typically, sweat testing techniques are done by trained experts and require off-body measurements, which prevent individuals from de-coding health issues quickly and independently. With the onset of soft electronics, wearable sweat sensors overcome this disadvantage via in situ sweat measurements with real-time feedback, timely diagnosis, creating the potential for preventive care and treatment. Over the past few decades, wearable microfluidic-based e-skin sweat sensors have paved a new way, promising sensing interfaces that are highly compatible with arranging medical and electronic applications. The present review highlights the recent research carried out in the microfluidic-based wearable sweat sensors with a critical focus on real-time sensing of lactate, chloride, and glucose concentration; sweat rate, simultaneously with pH, and total sweat loss for preventive care, timely diagnosis, and point-of-care health and fitness monitoring.
Collapse
Affiliation(s)
- Humairah Tabasum
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Nikita Gill
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Rahul Mishra
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Saifullah Lone
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| |
Collapse
|
23
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
24
|
The Effects of Dietary Protein Supplementation on Exercise-Induced Inflammation and Oxidative Stress: A Systematic Review of Human Trials. Antioxidants (Basel) 2021; 11:antiox11010013. [PMID: 35052517 PMCID: PMC8773319 DOI: 10.3390/antiox11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
This systematic review examined the effects of whole protein and commonly consumed amino acid supplements on markers of exercise-induced inflammation and oxidative stress and was reported according to the PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception until June 2021. The inclusion criteria were randomized clinical trials in humans, healthy adult participants (≥18 years), dietary protein/amino acid interventions, and measurements of oxidative stress/the redox status or inflammation post-exercise. The Cochrane Collaboration risk of bias 2 tool was used to critically appraise the studies. Data extracted from thirty-four studies were included in the systematic review (totaling 757 participants with only 10 females; age range 19–40 years). The included trials examined five types of whole protein and seven different amino acids supplements; most studies (n = 20) failed to identify statistically significant effects on markers of inflammation or oxidative stress after exercise; some (n = 14) showed either anti-inflammatory or antioxidant effects on some, but not all, markers. In conclusion, we found weak and inconsistent evidence that dietary protein/amino acid interventions can modify exercise-induced changes in oxidative stress and inflammation. However, given that these were not the primary outcomes in many of the included studies and many had design limitations, further research is warranted (Open Science Framework registration number: 10.17605/OSF.IO/AGUR2).
Collapse
|
25
|
Figueiredo C, Padilha C, Dorneles G, Peres A, Krüger K, Rosa Neto JC, Lira F. Type and Intensity as Key Variable of Exercise in Metainflammation diseases: A Review. Int J Sports Med 2021; 43:743-767. [PMID: 34902867 DOI: 10.1055/a-1720-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monocyte and lymphocyte subpopulations exhibit functions that vary between the anti- and pro-inflammatory spectrum, such as classic CD16- and non-classical CD16+ monocytes, as well as T helper 2 lymphocytes (Th2), the Th1/Th17 lymphocytes ratio, and T regulatory lymphocytes (Treg). Metabolic disease-associated inflammation is accompanied by an imbalance in monocyte and lymphocyte phenotypes and functionality, as well as a stronger proportion of inflammatory subpopulations. These changes appear to be important for the development and progression of diseases like diabetes and cardiovascular disease. On the other hand, the regular practice of physical exercise is an important tool to restore the functionality of monocytes and lymphocytes, and to balance the subtypes ratio. However, key variables regarding exercise prescription, such as the type of exercise, intensity, and volume differentially impact on the acute and chronic immune response in individuals diagnosed with meta inflammation diseases. Here, we discuss the impact of different physical exercise protocols, acutely and chronically, on monocytes and lymphocytes of individuals with metabolic disease-associated inflammation. In this review, we focus on the best effects of different exercise protocols to dose the "exercise pill" in different inflammatory status.
Collapse
Affiliation(s)
- Caique Figueiredo
- Physical Education, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Presidente Prudente, Presidente Prudente, Brazil
| | - Camila Padilha
- Physical Education, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gilson Dorneles
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Karsten Krüger
- Dept. of Sport Medicine, Institute of Sport Science, Giessen, Germany
| | | | - Fábio Lira
- Department of Physical Education, Unesp, Presidente Prudente, Brazil
| |
Collapse
|
26
|
Siddiqui SH, Kang D, Park J, Khan M, Belal SA, Shin D, Shim K. Altered relationship between gluconeogenesis and immunity in broilers exposed to heat stress for different durations. Poult Sci 2021; 100:101274. [PMID: 34237551 PMCID: PMC8267598 DOI: 10.1016/j.psj.2021.101274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
This study determined the relationship between inflammation and gluconeogenesis level in broilers in different durations of heat stress. A total of 240 Ross 308 broilers were offered control and heat stress temperature from 21 to 35 d post-hatch, each experimental group had 8 replications, and each replication obtained 15 broilers. The temperature in the control (Ctrl) group and heat stress group were maintained at 24 ± 1°C and 34 ± 1°C, respectively throughout the experimental period. Based on the duration of heat stress, the heat stress group was divided into 2 subgroups, like, 7-d heat stress (28-day-old broiler) designated ST group and 14-d heat stress (35-day-old broiler) designated the LT group. The ad libitum commercial feed and fresh water were provided to all experimental broilers during the experiment. The growth performance of experimental broilers was calculated at 35 d. However, the liver and blood samples were collected from the Ctrl group in 21 d, as well as these samples were collected from the heat stress ST and LT groups in 28-d and 35-d, respectively. Obvious gene expression of immunity, gluconeogenesis, glycogenolysis, and glycogenesis, as well as glucose-6-phosphate dehydrogenase and adenosine triphosphate was determined in the liver sample. The blood glucose concentration and histopathology of the liver was also examined in the different grouped broilers. Body weight, weight gain, and feed intake significantly decreased in the 35-d heat stress group than the Ctrl group. However, the feed conversion ratio increased at the 35-d heat stress group than the Ctrl group. The amount of glucose-6-phosphate dehydrogenase was significantly higher in ST and LT groups than Ctrl, whereas the blood glucose level was downregulated in the LT group. The amount of adenosine triphosphate was significantly decreased in the LT group than the Ctrl and ST groups. Heat stress acts as an impediment to the general relation between gluconeogenesis and immunity, as well as changes cellular structure. This experiment contributed to the establishment of a relationship between gluconeogenesis and immunity, which affects the growth performance of broilers during heat stress.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Donghyun Shin
- The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
27
|
Padilha CS, Figueiredo C, Minuzzi LG, Chimin P, Deminice R, Krüger K, Rosa-Neto JC, Lira FS. Immunometabolic responses according to physical fitness status and lifelong exercise during aging: New roads for exercise immunology. Ageing Res Rev 2021; 68:101341. [PMID: 33839332 DOI: 10.1016/j.arr.2021.101341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Molecules such as cytokines, energetic substrates, and hormones found in the immune cell environment, especially lymphocytes and monocytes, are crucial for directing energy metabolism. In turn, changes in energy metabolism occur in a synchronized manner with the activation of certain signaling pathways, thereby this crosstalk is responsible for determining the functionality of immune cells. The immunometabolism field has grown over time and that is becoming increasingly promising in several populations; here we discuss the mechanisms involved in sedentary and physically active middle-aged individuals and master athletes. In this context, this review shows that the physical activity status and lifelong exercise seems to be good strategies for the promotion of metabolic and functional adaptations in T lymphocytes and monocytes, counteracting inflammatory environments caused by expanded adipose tissue and sedentary behavior, as well as delaying the immunosenescence caused by aging.
Collapse
Affiliation(s)
- Camila S Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil.
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Patricia Chimin
- Laboratory of Biochemistry Exercise, Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Londrina, Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise, Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Londrina, Brazil
| | - Karsten Krüger
- Institute of Sports Science, Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
28
|
Wierczeiko A, Gammel L, Radyushkin K, Nguyen VTT, Todorov H, Gerber S, Endres K. Voluntary Wheel Running Did Not Alter Gene Expression in 5xfad Mice, but in Wild-Type Animals Exclusively after One-Day of Physical Activity. Cells 2021; 10:693. [PMID: 33804749 PMCID: PMC8004053 DOI: 10.3390/cells10030693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Physical activity is considered a promising preventive intervention to reduce the risk of developing Alzheimer's disease (AD). However, the positive effect of therapeutic administration of physical activity has not been proven conclusively yet, likely due to confounding factors such as varying activity regimens and life or disease stages. To examine the impact of different routines of physical activity in the early disease stages, we subjected young 5xFAD and wild-type mice to 1-day (acute) and 30-day (chronic) voluntary wheel running and compared them with age-matched sedentary controls. We observed a significant increase in brain lactate levels in acutely trained 5xFAD mice relative to all other experimental groups. Subsequent brain RNA-seq analysis did not reveal major differences in transcriptomic regulation between training durations in 5xFAD mice. In contrast, acute training yielded substantial gene expression changes in wild-type animals relative to their chronically trained and sedentary counterparts. The comparison of 5xFAD and wild-type mice showed the highest transcriptional differences in the chronic and sedentary groups, whereas acute training was associated with much fewer differentially expressed genes. In conclusion, our results suggest that different training durations did not affect the global transcriptome of 3-month-old 5xFAD mice, whereas acute running seemed to induce a similar transcriptional stress state in wild-type animals as already known for 5xFAD mice.
Collapse
Affiliation(s)
- Anna Wierczeiko
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
- Working Group Mouse Behavioral Unit (MBU), Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Lena Gammel
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| | - Konstantin Radyushkin
- Working Group Mouse Behavioral Unit (MBU), Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Vu Thu Thuy Nguyen
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| | - Hristo Todorov
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
| | - Susanne Gerber
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
| | - Kristina Endres
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| |
Collapse
|
29
|
Wynn M. Deep tissue injury: a narrative review on the aetiology of a controversial wound. ACTA ACUST UNITED AC 2021; 30:S32-S37. [PMID: 33733858 DOI: 10.12968/bjon.2021.30.5.s32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deep tissue injuries (DTIs) were added to pressure ulcer grading systems in 2009. Since then, they have been associated with the same aetiological processes as other forms of pressure injury (PI). This is despite notable clinical differences in their presentation along with variations in natural history that suggest they are the consequence of processes distinct from those that cause other PIs. Understanding the aetiology of DTIs is essential to guide prevention and treatment in addition to ensuring healthcare governance processes deeply tied to pressure injury are effective and efficient. Current understanding of the aetiology of DTI has significant gaps, with several key challenges impeding progress in this area of PI research, including inconsistent reporting by healthcare services and the limitations of animal and computer models in addition to the ethical barriers to conducting studies on human subjects. Synthesis of early studies with studies undertaken before 2009 is also limited by the variety in definitions of DTI used before that published by the European Pressure Ulcer Advisory Panel, the National Pressure Injury Advisory Panel and the Pan Pacific Pressure Injury Alliance in 2009. To date, few prospective clinical studies have been conducted. This article presents a narrative review on the clinical and animal study evidence indicating contemporary understanding of DTI.
Collapse
Affiliation(s)
- Matthew Wynn
- Lecturer, Adult Nursing, University of Salford, Mary Seacole Building
| |
Collapse
|
30
|
Gomes JH, Mendes RR, Franca CS, Da Silva-Grigoletto ME, Pereira da Silva DR, Antoniolli AR, de Oliveira e Silva AM, Quintans-Júnior LJ. Acute leucocyte, muscle damage, and stress marker responses to high-intensity functional training. PLoS One 2020; 15:e0243276. [PMID: 33270727 PMCID: PMC7714345 DOI: 10.1371/journal.pone.0243276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High-intensity functional training (HIFT) has become more popular, and the number of practitioners has increased; however, it remains unclear whether perturbations in the immune parameters occur, even after one single bout. Our aim was to examine acute leucocyte, muscle damage, and stress marker responses following a single 'Cindy' workout session, and compare the results between novice and experienced participants. MATERIAL AND METHODS Twenty-three HIFT practitioners (age 31.0 ± 1.0 years) completed the 'Cindy' workout. They were categorized as novice (3-8 months of experience; n = 10) and experienced (≥18 months; n = 13). White blood cell (WBC) count, plasma creatine kinase (CK) activity, blood cortisol level, and lactate concentration were measured. Blood analysis was performed before (pre-ex), immediately after (post-ex), 30 min after (post-30 min), and 24 h after (post-24 h) a single 'Cindy' workout session. RESULTS WBC count was higher post-ex (6.8 to 11.8x103/μL) and returned to baseline values within post-30 min (p<0.01). Neutrophil (3.3 to 4.5x103/μL) and lymphocyte levels (2.8 to 5.9x103/μL) were higher post-ex and returned to baseline values after post-24 h, yet lymphocytopoenia (2.2x103/μL) was observed at post-30 min (p<0.01). CK increased post-ex (174.9 to 226.7 U.L-1) and remained elevated post-24 h. Cortisol (14.7 to 17.0 μg/dL) and lactate (1.9 to 13.5 mmol.l-1) responses increased post-ex, but only the lactate level was reduced at post-30 min (p<0.01). The experienced participants had higher WBC, lymphocyte, and cortisol concentrations post-ex than the novice ones (p<0.01). CONCLUSIONS A single HIFT session elicited significant acute perturbations in WBC count, stress markers, and muscle tissue, which is like other similar regimens. Importantly, the experienced participants showed greater lymphocyte and cortisol responses than the novice ones.
Collapse
Affiliation(s)
- João Henrique Gomes
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | | | | | | | - Angelo Roberto Antoniolli
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Laboratory of Neuroscience and Pharmacological Assays, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Nutrition Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Laboratory of Neuroscience and Pharmacological Assays, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
31
|
Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Wu W, Zhang Z, Chao Z, Li B, Li R, Jiang A, Kim KH, Liu H. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model. Gene 2020; 766:145157. [PMID: 32949697 DOI: 10.1016/j.gene.2020.145157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Glycolytic potential (GP) calculated based on glucose, glycogen, glucose-6-phosphate, and lactate contents is a critical factor for multiple meat quality characteristics. However, the genetic basis of glycolytic metabolism is still unclear. In this study, we constructed six RNA-Seq libraries using longissimus dorsi (LD) muscles from pigs divergent for GP phenotypic values and generated the whole genome-wide gene expression profiles. Furthermore, we identified 25,880 known and 220 novel genes from these skeletal muscle libraries, and 222 differentially expressed genes (DEGs) between the higher and lower GP groups. Notably, we found that the Lactate dehydrogenase B (LDHB) and Fructose-2, 6-biphosphatase 3 (PFKFB3) expression levels were higher in the higher GP group than the lower GP group, and positively correlated with GP and lactic acid (LA), and reversely correlated with pH value at 45 min postmortem (pH45min). Besides, LDHB and PFKFB3 expression were positively correlated with drip loss measured at 48 h postmortem (DL48h) and drip loss measured at 24 h postmortem (DL24h). Collectively, we identified a serial of DEGs as the potential key candidate genes affecting GP and found that LDHB and PFKFB3 are closely related to GP and GP-related traits. Our results lay a solid basis for in-depth studies of the regulatory mechanisms on GP and GP-related traits in pigs.
Collapse
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zengkai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhe Chao
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47897, USA.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
33
|
Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S, Santini A, Fortuna A, García ML, Silva AM, Souto EB. Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Review of Classical and New Compounds: Part-I. Pharmaceuticals (Basel) 2019; 12:ph12040152. [PMID: 31658729 PMCID: PMC6958392 DOI: 10.3390/ph12040152] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia together with disturbances in the metabolism of carbohydrates, proteins and fat, which in general results from an insulin availability and need imbalance. In a great number of patients, marketed anti-glycemic agents have shown poor effectiveness in maintaining a long-term glycemic control, thus being associated with severe adverse effects and leading to an emerging interest in natural compounds (e.g., essential oils and other secondary plant metabolites, namely, flavonoid-rich compounds) as a novel approach for prevention, management and/or treatment of either non-insulin-dependent diabetes mellitus (T2DM, type 2 DM) and/or Metabolic Syndrome (MS). In this review, some of these promising glucose-lowering agents will be comprehensively discussed.
Collapse
Affiliation(s)
- Raquel Vieira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Selma B Souto
- Department of Endocrinology, Hospital São João, Prof. Alameda Hernâni Monteiro, 4200 - 319 Porto, Portugal.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Ana López Machado
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Patricia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil.
- University of Tiradentes (UNIT), Industrial Biotechnology Program, Av. Murilo Dantas 300, Aracaju 49032-490, Brazil.
| | - Sajan Jose
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor, Kerala 686631, India.
| | - Antonello Santini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49-80131 Naples, Italy.
| | - Ana Fortuna
- Department of Pharmacology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3 000-548 Coimbra, Portugal.
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Amelia M Silva
- Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|