1
|
Meng H, Wang S, Gu L, Wang Y, Li B, Lv R, Xue L, Ren Y, Xu L, Mao L, Sun P. Potential drug targets for Neuromyelitis optica spectrum disorders (NMOSD): A Mendelian randomization analysis. PLoS One 2025; 20:e0322098. [PMID: 40294019 DOI: 10.1371/journal.pone.0322098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Certain peripheral proteins are involved in the development of Neuromyelitis optica spectrum disorders (NMOSD), such as IL-6, complement proteins, and MHC class II molecules. However, the roles of other new protein biomarkers are unclear. Current NMOSD treatments (e.g., intravenous pulse methylprednisolone, or satralizumab for IL-6 receptor inhibition) can only manage symptoms, necessitating the identification of new drug targets to treat NMOSD. The objective of this study is to identify potential drug targets for NMOSD through Mendelian randomization (MR) analysis, thereby addressing the limitations of current treatments and providing better clinical options for patients. METHODS NMOSD potential drug targets were evaluated via MR. Data was obtained from a genome-wide association study (GWAS) with 132 individuals with AQP4-IgG-positive NMOSD and 1244 controls. Genetic instruments for plasma and cerebrospinal fluid (CSF) proteins were identified. Sensitivity analyses were conducted using Bayesian co-localization, reverse causality testing and phenotype scanning. Additionally, a comparison and analysis of protein-protein interactions (PPI) were conducted to identify potential causal proteins. The implications of these findings were further explored by evaluating existing NMOSD drugs and their respective targets. RESULTS Four proteins were identified at the FDR correction via MR analysis (p < 0.05). Higher levels of PF4V1 (OR = 0.47; 95% CI, 0.29-0.78; p = 3.39 × 10-3) and FAM3B (OR = 0.12; 95% CI, 0.03-0.45; p = 1.65 × 10-3) were associated with a reduced risk of NMOSD, whereas elevated SERPINA1 (OR = 2.28; 95% CI, 1.29-4.04; p= 4.71 × 10-3) and CLEC11A (OR = 13.45; 95% CI, 1.29-4.04; p = 4.71 × 10-3) were related to an increased risk of NMOSD. Bayesian co-localization showed that the protein-related genes shared the same mutation as NMOSD (all PPH4>0.80). Reverse causality testing showed no evidence of NMOSD-driven protein changes (all p > 0.05). PPI analysis revealed SERPINA1 interacts with PF4V1 (combined score = 0.72). Drug evaluation identified Mercaptoethanol and Ferrous gluconate as repurposing candidates. CONCLUSION Increased levels of plasma CLEC11A and SERPINA1 are correlated with an elevated risk of NMOSD, whereas elevated levels of plasma PF4V1 and CSF FAM3B are associated with a decreased risk of NMOSD. The opposing effects of risk or protective proteins suggest synergistic targeting could improve efficacy beyond current immunosuppressive regimens. Nonetheless, clinical trials are required to confirm the findings.
Collapse
Affiliation(s)
- Hongqi Meng
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Shengnan Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Gu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Yuhao Wang
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Beibei Li
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Ruyue Lv
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Letian Xue
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Yanming Ren
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Li Xu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Xia Q, Chang KC, Sun Y, Nahmou M, Noro T, Cheng Y, Kong X, Mo X, Goldberg JL, Wu S. Retinal ganglion cells induce stem cell-derived neuroprotection via IL-12 to SCGF-β crosstalk. Stem Cell Res Ther 2025; 16:90. [PMID: 40001251 PMCID: PMC11863831 DOI: 10.1186/s13287-025-04198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Stem cell-derived secreted factors could protect neurons in neurodegenerative disease or after injury. The exact neuroprotective components in the secretome remain challenging to discover. Here we developed a cell-to-cell interaction model to identify a retinal ganglion cell (RGC)-protective factor derived from induced pluripotent stem cells (iPSCs). METHODS Primary RGCs were co-cultured with iPSCs or treated with iPSC-conditioned media in vitro. Cell viability were assayed using live-cell staining, and culture supernatant were analyzed via multiplexed antibody-based assays and ELISA. In vivo tests were carried out under mouse optic nerve crush model and RGC transplantation study in rats. Paired t-tests were used for data analysis between two groups. RESULTS RGC viability was significantly enhanced when iPSCs were first stimulated with RGC-derived supernatant before iPSC-conditioned medium was collected and added into RGC culture. A significant increase of stem cell growth factor-beta (SCGF-β) concentration was detected in the latter conditioned medium. SCGF-β enhanced RGC survival in vitro and in vivo, and RGC-derived interleukin-12(p70) (IL-12[p70]) promotes secretion of iPSC-derived SCGF-β. Downstream of this IL-12(p70)-to-SCGF-β axis, ngn2 was significantly upregulated, and was found both necessary and sufficient for RGC survival. CONCLUSION This study addresses a longstanding question of how neurons and stem cells interact to promote neuroprotection, and define a novel molecular interaction pathway whereby RGC's secretion of IL-12(p70) enhances iPSCs' secretion of SCGF-β, and SCGF-β protects RGCs via upregulating ngn2, suggesting that neurons may call on stem cells for their own protection.
Collapse
Affiliation(s)
- Qing Xia
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Department of Ophthalmology and Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yanan Sun
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Takahiko Noro
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Department of Ophthalmology, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yun Cheng
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiangmei Kong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiaofen Mo
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| | - Suqian Wu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Hua J, Wang K, Chen Y, Xu X, Dong G, Li Y, Liu R, Xiong Y, Ding J, Zhang T, Zeng X, Li Y, Sun H, Gu Y, Liu S, Ouyang W, Liu C. Molecular characterization of human HSPCs with different cell fates in vivo using single-cell transcriptome analysis and lentiviral barcoding technology. Clin Transl Med 2024; 14:e70085. [PMID: 39538416 PMCID: PMC11560861 DOI: 10.1002/ctm2.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) possess the potential to produce all types of blood cells throughout their lives. It is well recognized that HSPCs are heterogeneous, which is of great significance for their clinical applications and the treatment of diseases associated with HSPCs. This study presents a novel technology called Single-Cell transcriptome Analysis and Lentiviral Barcoding (SCALeBa) to investigate the molecular mechanisms underlying the heterogeneity of human HSPCs in vivo. The SCALeBa incorporates a transcribed barcoding library and algorithm to analyze the individual cell fates and their gene expression profiles simultaneously. Our findings using SCALeBa reveal that HSPCs subset with stronger stemness highly expressed MYL6B, ATP2A2, MYO19, MDN1, ING3, and so on. The high expression of COA3, RIF1, RAB14, and GOLGA4 may contribute to the pluripotent-lineage differentiation of HSPCs. Moreover, the roles of the representative genes revealed in this study regarding the stemness of HPSCs were confirmed with biological experiments. HSPCs expressing MRPL23 and RBM4 genes may contribute to differentiation bias into myeloid and lymphoid lineage, respectively. In addition, transcription factor (TF) characteristics of lymphoid and myeloid differentiation bias HSPCs subsets were identified and linked to previously identified genes. Furthermore, the stemness, pluripotency, and differentiation-bias genes identified with SCALeBa were verified in another independent HSPCs dataset. Finally, this study proposes using the SCALeBa-generated tracking trajectory to improve the accuracy of pseudo-time analysis results. In summary, our study provides valuable insights for understanding the heterogeneity of human HSPCs in vivo and introduces a novel technology, SCALeBa, which holds promise for broader applications. KEY POINTS: SCALeBa and its algorithm are developed to study the molecular mechanism underlying human HSPCs identity and function. The human HSPCs expressing MYL6B, MYO19, ATP2A2, MDN1, ING3, and PHF20 may have the capability for high stemness. The human HSPCs expressing COA3, RIF1, RAB14, and GOLGA4 may have the capability for pluripotent-lineage differentiation. The human HSPCs expressing MRPL23 and RBM4 genes may have the capability to differentiate into myeloid and lymphoid lineage respectively in vivo. The legitimacy of the identified genes with SCALeBa was validated using biological experiments and a public human HSPCs dataset. SCALeBa improves the accuracy of differentiation trajectories in monocle2-based pseudo-time analysis.
Collapse
Affiliation(s)
- Junnan Hua
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | - Ke Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | - Xiaojing Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | - Guoyi Dong
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Yue Li
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Rui Liu
- BGIShenzhenChina
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Yecheng Xiong
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Jiabin Ding
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGIShenzhenChina
| | | | - Xinru Zeng
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | | | | | | | - Sixi Liu
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Wenjie Ouyang
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| | - Chao Liu
- BGIShenzhenChina
- BGI Hemogen TherapeuticShenzhenChina
| |
Collapse
|
4
|
Xu K, Huang RQ, Wen R, Yang Y, Cheng Y, Chang B. The role of Clec11a in bone construction and remodeling. Front Endocrinol (Lausanne) 2024; 15:1429567. [PMID: 39188913 PMCID: PMC11345164 DOI: 10.3389/fendo.2024.1429567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Rui-qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yao Yang
- Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- School of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Bae KB, Kim HM, Son JW, Ryu JY, Hwang YC, Koh JT, Oh WM, Park C, Lee BN. Effect of 3D-printed polycaprolactone/osteolectin scaffolds on the odontogenic differentiation of human dental pulp cells. Biomed Mater 2024; 19:045027. [PMID: 38740059 DOI: 10.1088/1748-605x/ad4ad9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hae-Mi Kim
- Private practice, Local Dental Clinic, Seoul, Republic of Korea
| | - Ji-Won Son
- Researcher, Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Ryu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Huang AF, Zhou L, Xu WD. The causal associations of inflammatory cytokines with obesity and systemic lupus erythematosus: A Mendelian randomization study. Int J Rheum Dis 2024; 27:e15214. [PMID: 38831532 DOI: 10.1111/1756-185x.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Previous studies have partly discussed the roles of inflammatory cytokines in obesity and systemic lupus erythematosus (SLE), but the causal relationship among inflammatory cytokines, obesity, and SLE is unclear. It is challenging to comprehensively evaluate the causal relationship between these variables. This study aimed to investigate the role of cytokines as intermediates between obesity and SLE. METHODS The inverse-variance weighted method (IVW) of mendelian randomization (MR) is mainly used to explore the causal relationship between exposure and outcome by using the genetic variation of the open large genome-wide association studies (GWAS), namely single-nucleotide polymorphisms (SNPs) related to obesity (more than 600 000 participants), inflammatory cytokines (8293 healthy participants) and SLE (7219 cases). Methods such as weighted median, MR-Egger are used to evaluate the reliability of causality. Reverse analysis is performed for each MR analysis to avoid reverse causality. Cochran's Q statistic and funnel chart are used to detect heterogeneity, MR-Egger intercept test and leave-one-out sensitivity analyses evaluated pleiotropy. RESULTS Obesity was associated with 25 cytokines, and 3 cytokines were associated with SLE, including CTACK (OR = 1.19, 95% CI: 1.06, 1.33, p = .002), IL-18 (OR = 1.13, 95% CI: 1.01, 1.26, p = .027), SCGFb (OR = 0.89, 95% CI: 0.79, 0.99, p = .044). In the opposite direction, SLE was associated with 18 cytokines, and 2 cytokines were associated with obesity, including IP-10 (βIVW = -.03, 95% CI: -0.05, -0.01, p = .002), MIP-1B (βIVW = -.03, 95% CI: -0.05, -0.01, p = .004). CONCLUSION Our MR study suggested that CTACK, IL-18 and SCGFb may play an intermediary role in obesity to SLE, while IP-10 and MIP-1B may play an intermediary role in SLE to obesity.
Collapse
Affiliation(s)
- An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhou
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Hu W, Liu Y, Lian C, Lu H. Genetic insight into putative causes of xanthelasma palpebrarum: a Mendelian randomization study. Front Immunol 2024; 15:1347112. [PMID: 38601164 PMCID: PMC11004296 DOI: 10.3389/fimmu.2024.1347112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Xanthelasma palpebrarum (XP) is the most common form of cutaneous xanthoma, with a prevalence of 1.1%~4.4% in the population. However, the cause of XP remains largely unknown. In the present study, we used Mendelian randomization to assess the genetic association between plasma lipids, metabolic traits, and circulating protein with XP, leveraging summary statistics from large genome-wide association studies (GWAS). Genetically predicted plasma cholesterol and LDL-C, but not HDL-C or triglyceride, were significantly associated with XP. Metabolic traits, including BMI, fasting glucose, type 2 diabetes, systolic and diastolic blood pressure, were not significantly associated with XP. Furthermore, we found genetically predicted 12 circulating proteins were associated with XP, including FN1, NTM, FCN2, GOLM1, ICAM5, PDE5A, C5, CLEC11A, CXCL1, CCL2, CCL11, CCL13. In conclusion, this study identified plasma cholesterol, LDL-C, and 12 circulating proteins to be putative causal factors for XP, highlighting the role of plasma cholesterol and inflammatory response in XP development.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Cuihong Lian
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haocheng Lu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Swanson AJ, Rogowski VJ, Bishop JA, Walker DM, Roxas GM, Raimondi SL. CLEC11A methylation is correlated to AML subtypes and cytogenetic risk factors but not patient demographics. PLoS One 2024; 19:e0300477. [PMID: 38466706 PMCID: PMC10927138 DOI: 10.1371/journal.pone.0300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal cancer of the blood, which leads to the death of over 11,000 patients in the United States each year. Research on identifying, characterizing, and treating AML is crucial in the fight against this deadly disease. Recent studies have examined the role of CLEC11A in cancer, including AML. However, there have been conflicting reports related to tumor progression and survival. Because survival is based on a variety of factors, including classification of the tumor, genetic risk factors, and demographics, it is imperative that we determine what role CLEC11A may have in cancer survival. Therefore, utilizing data from the Genomic Data Commons, we analyzed CLEC11A methylation in 108 AML patients compared to FAB classification, cytogenetic risk factors, age, race, and gender. Our results show statistically significant correlations between methylation of CLEC11A and FAB classification as well as poor genetic risk factors. However, no difference was observed in CLEC11A methylation when compared to demographic data. Our results, matched with a known biological function of CLEC11A in early hematopoiesis, indicate that CLEC11A may be an important marker for AML diagnosis and prognosis and provide relevant data in the ongoing search for novel therapeutics to improve AML survival.
Collapse
Affiliation(s)
- Allyson J. Swanson
- Department of Biology, Elmhurst University, Elmhurst, Illinois, United States of America
| | - Victor J. Rogowski
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, Illinois, United States of America
| | - Jacob A. Bishop
- Department of Biology, Elmhurst University, Elmhurst, Illinois, United States of America
| | - Dylan M. Walker
- Department of Biology, Elmhurst University, Elmhurst, Illinois, United States of America
| | - Gina M. Roxas
- Environmental Studies Program, Elmhurst University, Elmhurst, Illinois, United States of America
| | - Stacey L. Raimondi
- Department of Biology, Elmhurst University, Elmhurst, Illinois, United States of America
| |
Collapse
|
10
|
Mohajerani F, Tehrankhah ZM, Rahmani S, Afsordeh N, Shafiee S, Pourgholami MH, Soltani BM, Sadeghizadeh M. CLEC19A overexpression inhibits tumor cell proliferation/migration and promotes apoptosis concomitant suppression of PI3K/AKT/NF-κB signaling pathway in glioblastoma multiforme. BMC Cancer 2024; 24:19. [PMID: 38167030 PMCID: PMC10763001 DOI: 10.1186/s12885-023-11755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Fatemeh Mohajerani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Zahra Moazezi Tehrankhah
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Shafiee
- Department of Neurosurgery, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran.
| |
Collapse
|
11
|
Qiu M, Bae KB, Liu G, Jang JH, Koh JT, Hwang YC, Lee BN. Osteolectin Promotes Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2023; 49:1660-1667. [PMID: 37774945 DOI: 10.1016/j.joen.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.
Collapse
Affiliation(s)
- Manfei Qiu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Guo Liu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Dental Science Research, Institute, Chonnam National University, Gwangju, Republic of Korea; Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Perini S, Filosi M, Domenici E. Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs. Transl Psychiatry 2023; 13:109. [PMID: 37012247 PMCID: PMC10070641 DOI: 10.1038/s41398-023-02407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
- EURAC Research, Bolzano, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy.
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.
| |
Collapse
|
14
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
15
|
Abstract
The term "lectin" is derived from the Latin word lego- (aggregate) (Boyd & Shapleigh, 1954). Indeed, lectins' folds can flexibly alter their pocket structures just like Lego blocks, which enables them to grab a wide-variety of substances. Thus, this useful fold is well-conserved among various organisms. Through evolution, prototypic soluble lectins acquired transmembrane regions and signaling motifs to become C-type lectin receptors (CLRs). While CLRs seem to possess certain intrinsic affinity to self, some CLRs adapted to efficiently recognize glycoconjugates present in pathogens as pathogen-associated molecular patterns (PAMPs) and altered self. CLRs further extended their diversity to recognize non-glycosylated targets including pathogens and self-derived molecules. Thus, CLRs seem to have developed to monitor the internal/external stresses to maintain homeostasis by sensing various "unfamiliar" targets. In this review, we will summarize recent advances in our understanding of CLRs, their ligands and functions and discuss future perspectives.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
16
|
Zhang Z, Ji W, Huang J, Zhang Y, Zhou Y, Zhang J, Dong Y, Yuan T, Yang Q, Ding X, Tang L, Li H, Yin J, Wang Y, Ji T, Fei J, Zhang B, Chen P, Hu H. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients. Clin Transl Med 2022; 12:e1072. [PMID: 36305631 PMCID: PMC9615475 DOI: 10.1002/ctm2.1072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Malignant pleural effusion (MPE) is an adverse prognostic factor in patients with osteoblastic osteosarcoma; however, the cellular contexts of MPE are largely unknown. EXPERIMENTAL DESIGN We performed single-cell RNA-sequencing (scRNA-seq) on 27 260 cells from seven MPE samples and 91 186 cells from eight osteosarcoma tissues, including one recurrent, one lung metastasis and six primary tumour (PT) samples, to characterize their tumour microenvironment. RESULTS Thirteen main cell groups were identified in osteosarcoma tumour and MPE samples. Immune cells dominate the cellular contexts in MPE with more T/NK cells and less osteoclasts compared to PT samples. Of T/NK cells, CD8+ GNLY+ , CD8+ KLRC2+ T cells and FCGR3A+ NK cells were enriched in MPE but CD4+ FOXP3+ Tregs were enriched in PT samples. Naïve IGHD+ B and immune regulatory IGHA1+ B cells were largely identified in MPE, whereas bone metabolism-related CLEC11A+ B cells were significantly enriched in osteosarcoma PT. M2-type TAMs, including CLEC11A_TAM, C1QC_TAM and Prolif_TAMs, among myeloid cells were enriched in PT, which may suppress cytotoxicity activities of T cells through multiple ligand-receptor interactions. Mature LAMP3+ DCs were transformed from CD1C+ DC and CLEC9A+ DC sub-clusters when exposure to tumour alloantigens, which may improve T cell cytotoxicity activities on tumour cells under anti-PD-L1 treatments. In further, immune cells from MPE usually present up-regulated glycolysis and down-regulated oxidative phosphorylation and riboflavin metabolism activities compared to those in PT samples. CONCLUSIONS Our study provided a novel cellular atlas of MPE and PT in patients with advanced osteosarcoma, which may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhichang Zhang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina,Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China
| | - Weiping Ji
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jin Huang
- Pathology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yawen Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jianjun Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Dong
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ting Yuan
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qingcheng Yang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaomin Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lina Tang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Hongtao Li
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junyi Yin
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yonggang Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tong Ji
- Department of Orthopaedics, Shanghai Ninth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jia Fei
- Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Peizhan Chen
- Clinical Research Center, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Hu
- Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China,Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
17
|
Kim MJ, Valderrábano RJ, Wu JY. Osteoblast Lineage Support of Hematopoiesis in Health and Disease. J Bone Miner Res 2022; 37:1823-1842. [PMID: 35983701 PMCID: PMC11346465 DOI: 10.1002/jbmr.4678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Abstract
In mammals, hematopoiesis migrates to the bone marrow during embryogenesis coincident with the appearance of mineralized bone, where hematopoietic stem cells (HSCs) and their progeny are maintained by the surrounding microenvironment or niche, and sustain the entirety of the hematopoietic system. Genetic manipulation of niche factors and advances in cell lineage tracing techniques have implicated cells of both hematopoietic and nonhematopoietic origin as important regulators of hematopoiesis in health and disease. Among them, cells of the osteoblast lineage, from stromal skeletal stem cells to matrix-embedded osteocytes, are vital niche residents with varying capacities for hematopoietic support depending on stage of differentiation. Here, we review populations of osteoblasts at differing stages of differentiation and summarize the current understanding of the role of the osteoblast lineage in supporting hematopoiesis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Matthew J Kim
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Chen X, Ji Y, Feng F, Liu Z, Qian L, Shen H, Lao L. C-type lectin domain-containing protein CLEC3A regulates proliferation, regeneration and maintenance of nucleus pulposus cells. Cell Mol Life Sci 2022; 79:435. [PMID: 35864364 PMCID: PMC11071857 DOI: 10.1007/s00018-022-04477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
It is widely assumed that as connective tissue, the intervertebral disc (IVD) plays a crucial role in providing flexibility for the spinal column. The disc is comprised of three distinct tissues: the nucleus pulposus (NP), ligamentous annulus fibrous (AF) that surrounds the NP, and the hyaline cartilaginous endplates (CEP). Nucleus pulposus, composed of chondrocyte-like NP cells and its secreted gelatinous matrix, is critical for disc health and function. The NP matrix underwent dehydration accompanied by increasing fibrosis with age. The degeneration of matrix is almost impossible to repair, with the consequence of matrix stiffness and senescence of NP cells and intervertebral disc, suggesting the value of glycoproteins in extracellular matrix (ECM). Here, via database excavation and biological function screening, we investigated a C-type lectin protein, CLEC3A, which could support differentiation of chondrocytes as well as maintenance of NP cells and was essential to intervertebral disc homeostasis. Furthermore, mechanistic analysis revealed that CLEC3A could stimulate PI3K-AKT pathway to accelerate cell proliferation to further play part in NP cell regeneration.
Collapse
Affiliation(s)
- Xiuyuan Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Feng
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lifeng Lao
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
19
|
Cerebrospinal Fluid in Classical Trigeminal Neuralgia: An Exploratory Study on Candidate Biomarkers. Biomedicines 2022; 10:biomedicines10050998. [PMID: 35625736 PMCID: PMC9138315 DOI: 10.3390/biomedicines10050998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe type of facial pain. A neurovascular conflict between cranial nerve V and a nearby vessel is the main pathophysiological mechanism, but additional factors are likely necessary to elicit TN. In this study, the primary aim was to explore differences in protein expression in the cerebrospinal fluid (CSF) of TN patients in relation to controls. Methods: Sixteen TN patients treated with microvascular decompression and 16 control patients undergoing spinal anesthesia for urological conditions were included. Lumbar CSF was collected preoperatively for the TN patients and before spinal anesthesia for the controls. A multiplexed proximity extension analysis of 91 CSF proteins was conducted using Proseek Multiplex Development 96, including biomarkers of cell communication, cell death, neurogenesis, and inflammation Results: The TN patients and the controls were of similar age, sex, and burden of co-morbidities. The TN patients exhibited higher concentrations of Clec11a, LGMN, MFG-E8, and ANGPTL-4 in CSF than the controls (q < 0.05). Conclusions: TN patients exhibited increased CSF biomarkers indicative of peripheral demyelinating injury (Clec11a), immune tolerance and destruction of myelin (LGMN), neuronal cell death (MFG-E8), and disturbances in myelin clearance (ANGPTL-8). Our findings are hypothesis-generating for candidate biomarkers and pathophysiological processes in classical TN.
Collapse
|
20
|
Li J, Wang Q, An Y, Chen X, Xing Y, Deng Q, Li Z, Wang S, Dai X, Liang N, Hou Y, Yang H, Shang Z. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta. Front Cell Dev Biol 2022; 10:836887. [PMID: 35450295 PMCID: PMC9017713 DOI: 10.3389/fcell.2022.836887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells derived from placenta (PMSCs) are an attractive source for regenerative medicine because of their multidifferentiation potential and immunomodulatory capabilities. However, the cellular and molecular heterogeneity of PMSCs has not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin sequencing (scATAC-seq) techniques to cultured PMSCs from human full-term placenta. Based on the inferred characteristics of cell clusters, we identify several distinct subsets of PMSCs with specific characteristics, including immunomodulatory-potential and highly proliferative cell states. Furthermore, integrative analysis of gene expression and chromatin accessibility showed a clearer chromatin accessibility signature than those at the transcriptional level on immunomodulatory-related genes. Cell cycle gene-related heterogeneity can be more easily distinguished at the transcriptional than the chromatin accessibility level in PMSCs. We further reveal putative subset-specific cis-regulatory elements regulating the expression of immunomodulatory- and proliferation-related genes in the immunomodulatory-potential and proliferative subpopulations, respectively. Moreover, we infer a novel transcription factor PRDM1, which might play a crucial role in maintaining immunomodulatory capability by activating PRDM1-regulon loop. Collectively, our study first provides a comprehensive and integrative view of the transcriptomic and epigenomic features of PMSCs, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of PMSC subset-based cell therapy.
Collapse
Affiliation(s)
- Jinlu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | | | | | - Yanan Xing
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zelong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- BGI College, Northwest University, Xi’an, China
- *Correspondence: Zhouchun Shang,
| |
Collapse
|
21
|
dos Anjos KFL, da Silva CDC, de Souza MAA, de Mattos AB, Coelho LCBB, Machado G, de Melo JV, de Figueiredo RCBQ. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells. Biomolecules 2021; 11:1748. [PMID: 34944393 PMCID: PMC8698878 DOI: 10.3390/biom11121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
Collapse
Affiliation(s)
- Keicyanne Fernanda Lessa dos Anjos
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Cynarha Daysy Cardoso da Silva
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Alessandra Batista de Mattos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Ciências Biológicas, Departamento de Bioquímica, Campus da UFPE, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil;
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Janaina Viana de Melo
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Regina Celia Bressan Queiroz de Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| |
Collapse
|
22
|
Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology 2021; 461:152927. [PMID: 34492314 DOI: 10.1016/j.tox.2021.152927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Lead (Pb) exposure has been a major public health concern for a long time now due to its permanent adverse effects on the human body. The process of lead toxicity has still not been fully understood, but recent advances in Omics technology have enabled researchers to evaluate lead-mediated alterations at the epigenome-wide level. DNA methylation is one of the widely studied and well-understood epigenetic modifications. Pb has demonstrated its ability to induce not just acute deleterious health consequences but also alters the epi-genome such that the disease manifestation happens much later in life as supported by Barkers Hypothesis of the developmental origin of health and diseases. Furthermore, these alterations are passed on to the next generation. Based on previous in-vivo, in-vitro, and human studies, this review provides an insight into the role of Pb in the development of several human disorders.
Collapse
Affiliation(s)
- Sadiya Sadiq Shiek
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Monica Shirley Mani
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
23
|
Su M, Qiao KY, Xie XL, Zhu XY, Gao FL, Li CJ, Zhao DQ. Development of a Prognostic Signature Based on Single-Cell RNA Sequencing Data of Immune Cells in Intrahepatic Cholangiocarcinoma. Front Genet 2021; 11:615680. [PMID: 33613623 PMCID: PMC7890365 DOI: 10.3389/fgene.2020.615680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of single-cell RNA sequencing (scRNA-seq) data of immune cells from the tumor microenvironment (TME) may identify tumor progression biomarkers. This study was designed to investigate the prognostic value of differentially expressed genes (DEGs) in intrahepatic cholangiocarcinoma (ICC) using scRNA-seq. We downloaded the scRNA-seq data of 33,991 cell samples, including 17,090 ICC cell samples and 16,901 ICC adjacent tissue cell samples regarded as normal cells. scRNA-seq data were processed and classified into 20 clusters. The immune cell clusters were extracted and processed again in the same way, and each type of immune cells was divided into several subclusters. In total, 337 marker genes of macrophages and 427 marker genes of B cells were identified by comparing ICC subclusters with normal subclusters. Finally, 659 DEGs were obtained by merging B cell and macrophage marker genes. ICC sample clinical information and gene expression data were downloaded. A nine-prognosis-related-gene (PRG) signature was established by analyzing the correlation between DEGs and overall survival in ICC. The robustness and validity of the signature were verified. Functional enrichment analysis revealed that the nine PRGs were mainly involved in tumor immune mechanisms. In conclusion, we established a PRG signature based on scRNA-seq data from immune cells of patients with ICC. This PRG signature not only reflects the TME immune status but also provides new biomarkers for ICC prognosis.
Collapse
Affiliation(s)
- Miao Su
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, Hengshui People's Hospital, Hengshui, China
| | - Kuang-Yuan Qiao
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-Ying Zhu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fu-Lai Gao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Juan Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Qiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, Tang L, Zhang J, Yin J, Huang Y, Yu W, Wang Y, Zhou C, Su Y, He A, Sun Y, Shen Z, Qian B, Meng W, Fei J, Yao Y, Pan X, Chen P, Hu H. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun 2020; 11:6322. [PMID: 33303760 PMCID: PMC7730477 DOI: 10.1038/s41467-020-20059-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor with poor prognosis. Through RNA-sequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung metastatic osteosarcoma lesions, 11 major cell clusters are identified based on unbiased clustering of gene expression profiles and canonical markers. The transcriptomic properties, regulators and dynamics of osteosarcoma malignant cells together with their tumor microenvironment particularly stromal and immune cells are characterized. The transdifferentiation of malignant osteoblastic cells from malignant chondroblastic cells is revealed by analyses of inferred copy-number variation and trajectory. A proinflammatory FABP4+ macrophages infiltration is noticed in lung metastatic osteosarcoma lesions. Lower osteoclasts infiltration is observed in chondroblastic, recurrent and lung metastatic osteosarcoma lesions compared to primary osteoblastic osteosarcoma lesions. Importantly, TIGIT blockade enhances the cytotoxicity effects of the primary CD3+ T cells with high proportion of TIGIT+ cells against osteosarcoma. These results present a single-cell atlas, explore intratumor heterogeneity, and provide potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dong Yang
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qingcheng Yang
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaobin Lv
- Central Laboratory of the First Hospital of Nanchang, Nanchang, 330008, China
| | - Wentao Huang
- Pathology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhenhua Zhou
- Department of Orthopedic Oncology, Changzheng Hospital of Naval Military Medical University, Shanghai, 200003, China
| | - Yaling Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhichang Zhang
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ting Yuan
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaomin Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lina Tang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianjun Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Junyi Yin
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yujing Huang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wenxi Yu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yonggang Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chenliang Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yang Su
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Aina He
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuanjue Sun
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zan Shen
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Binzhi Qian
- MRC Centre for Reproductive Health & Edinburgh Cancer Research UK Centre, Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, 510515, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Yang Yao
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, 510515, China.
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, China.
| | - Haiyan Hu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
25
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|