1
|
Soltanieh SK, Khastar S, Kaur I, Kumar A, Bansal J, Fateh A, Nathiya D, Husseen B, Rajabivahid M, Dehghani-Ghorbi M, Akhavan-Sigari R. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys 2025; 83:279-294. [PMID: 39377981 DOI: 10.1007/s12013-024-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 01/03/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.
Collapse
Affiliation(s)
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Jaya Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Ata Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Dehghan H, Ghasempour A, Sabeti Akbar-Abad M, Khademi Z, Sedighi M, Jamialahmadi T, Sahebkar A. An update on the therapeutic role of RNAi in NAFLD/NASH. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:45-67. [PMID: 38458743 DOI: 10.1016/bs.pmbts.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Unhealthy lifestyles have given rise to a growing epidemic of metabolic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). NAFLD often occurs as a consequence of obesity, and currently, there is no FDA-approved drug for its treatment. However, therapeutic oligonucleotides, such as RNA interference (RNAi), represent a promising class of pharmacotherapy that can target previously untreatable conditions. The potential significance of RNAi in maintaining physiological homeostasis, understanding pathogenesis, and improving metabolic liver diseases, including NAFLD, is discussed in this article. We explore why NAFLD/NASH is an ideal target for therapeutic oligonucleotides and provide insights into the delivery platforms of RNAi and its therapeutic role in addressing NAFLD/NASH.
Collapse
Affiliation(s)
- Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Shi N, Sun K, Tang H, Mao J. The impact and role of identified long noncoding RNAs in nonalcoholic fatty liver disease: A narrative review. J Clin Lab Anal 2023; 37:e24943. [PMID: 37435630 PMCID: PMC10431402 DOI: 10.1002/jcla.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, but its mechanism and pathophysiology remain unclear. Long noncoding RNAs (lncRNAs) may exert a vital influence on regulating various biological functions in NAFLD. METHODS The databases such as Google Scholar, PubMed, and Medline were searched using the following keywords: nonalcoholic fatty liver disease, nonalcoholic fatty liver disease, NAFLD, nonalcoholic steatohepatitis, nonalcoholic steatohepatitis, NASH, long noncoding RNAs, and lncRNAs. Considering the titles and abstracts, unrelated studies were excluded. The authors evaluated the full texts of the remaining studies. RESULTS We summarized the current knowledge of lncRNAs and the main signaling pathways of lncRNAs involved in NAFLD explored in recent years. As a heterogeneous group of noncoding RNAs (ncRNAs), lncRNAs play crucial roles in biological processes underlying the pathophysiology of NAFLD. The mechanisms, particularly those associated with the regulation of the expression and activities of lncRNAs, play important roles in NAFLD. CONCLUSION A better comprehension of the mechanism controlled by lncRNAs in NAFLD is necessary for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for diagnosis.
Collapse
Affiliation(s)
- Na Shi
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Internal MedicineThe Third People's Hospital of ChengduChengduChina
| | - Kang Sun
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haiying Tang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jingwei Mao
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
4
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Wang C, Yu H, Lu S, Ke S, Xu Y, Feng Z, Qian B, Bai M, Yin B, Li X, Hua Y, Dong L, Li Y, Zhang B, Li Z, Chen D, Chen B, Zhou Y, Pan S, Fu Y, Jiang H, Wang D, Ma Y. LncRNA Hnf4αos exacerbates liver ischemia/reperfusion injury in mice via Hnf4αos/Hnf4α duplex-mediated PGC1α suppression. Redox Biol 2022; 57:102498. [PMID: 36242914 PMCID: PMC9576992 DOI: 10.1016/j.redox.2022.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bao Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Anorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China.
| |
Collapse
|
6
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets. PPAR Res 2022; 2022:6161694. [PMID: 36164476 PMCID: PMC9509273 DOI: 10.1155/2022/6161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
Collapse
|
8
|
Yu L, Tai L, Gao J, Sun M, Liu S, Huang T, Yu J, Zhang Z, Miao W, Li Y, Song Z, Zhang H, Zhou L. A New lncRNA, lnc-LLMA, Regulates Lipid Metabolism in Pig Hepatocytes. DNA Cell Biol 2022; 41:202-214. [PMID: 34981960 DOI: 10.1089/dna.2021.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A large variety of long noncoding RNAs (lncRNAs) have been discovered through high-throughput sequencing technology and some have been demonstrated to play important roles in lipid metabolism regulation. In our study, we found a highly expressed lncRNA (lnc-LLMA, liver lipid metabolism-associated lncRNA) in the liver of Duroc pigs, which was enriched in the nucleus. It displays potent tissue specificity among different pig breeds. Overexpression of lnc-LLMA can cause a decline in intracellular triglyceride (TG) levels and increases in ATP and mitochondrial DNA levels in pig primary hepatocytes and HepG2 cells. In addition, the expression levels of MTTP, APOB, CPT1α, and other genes were increased by overexpression of lnc-LLMA. It downregulated expression of G6Pase and SREBP1 genes. Chromatin isolation by RNA purification (ChRIP) experiments demonstrated that microsomal triglyceride transfer protein (MTTP) and glycogen synthase 2 (GYS2) were the potential interacting proteins of lnc-LLMA. The overexpression of the GYS2 gene rescued the decreasing intracellular TG levels caused by the increase of lnc-LLMA. Similarly, overexpression of MTTP was also able to save the lnc-LLMA-induced decrease in intracellular TG. Our study demonstrated that this novel lncRNA was closely related to lipid metabolism and affected lipid transport and mitochondrial function through MTTP and GYS2. Our results provided a new direction for further studying the effect of lncRNA on lipid metabolism regulation.
Collapse
Affiliation(s)
- Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lina Tai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Mingjie Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
9
|
Long non-coding RNA in Non-alcoholic fatty liver disease. Adv Clin Chem 2022; 110:1-35. [DOI: 10.1016/bs.acc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis. Cell Signal 2021; 90:110190. [PMID: 34774989 DOI: 10.1016/j.cellsig.2021.110190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Excessive hepatic lipid accumulation can lead to the occurrence of non-alcoholic fatty liver disease. Previous study showed that upregulation of lncRNA HOTAIR significantly increased total cholesterol and triglyceride. However, the function of HOTAIR in lipid accumulation during the progression NAFLD remains unclear. METHODS High fat diet was used to mimic NAFLD in vivo, and free fatty acid was used to establish in vitro model of NAFLD. Oil red O staining was applied to test the lipid accumulation. The pathological changes in mice were observed by H&E staining. Western blot and qRT-PCR were applied to assess protein and mRNA levels, respectively. RIP assay was used to explore the relationship among HOTAIR, miR-130b-3p and ROCK1. RESULTS The level of HOTAIR was upregulated in NAFLD. Downregulation of HOTAIR reversed lipid accumulation in FFA-treated HepG2 cells and primary hepatocytes. Meanwhile, HOTAIR bound with miR-130b-3p, and ROCK1 was identified to be the direct target of miR-130b-3p. Moreover, miR-130b-3p mimics-caused lipid accumulation decrease was reversed by pcDNA3.1-ROCK1. Furthermore, the effect of miR-130b-3p mimics on p-AMPK2α and ROCK1 level was partially reversed by ROCK1 overexpression. CONCLUSION Knockdown of HOTAIR significantly inhibited the progression of NAFLD through mediation of miR-130b-3p/ROCK1 axis. Our study might shed new lights on exploring new methods against NAFLD.
Collapse
|
11
|
Zhang Y, Fan X, Qiu L, Zhu W, Huang L, Miao Y. Liver X receptor α promotes milk fat synthesis in buffalo mammary epithelial cells by regulating the expression of FASN. J Dairy Sci 2021; 104:12980-12993. [PMID: 34593221 DOI: 10.3168/jds.2021-20596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Abstract
Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.
Collapse
Affiliation(s)
- Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Zhu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
12
|
Chen X, Ma H, Gao Y, Jin Y, Ning W, Hou Y, Su J. Long non-coding RNA AC012668 suppresses non-alcoholic fatty liver disease by competing for microRNA miR-380-5p with lipoprotein-related protein LRP2. Bioengineered 2021; 12:6738-6747. [PMID: 34511037 PMCID: PMC8806601 DOI: 10.1080/21655979.2021.1960463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by high morbidity. Although long noncoding RNAs (lncRNAs) are known to have a role in NAFLD pathogenesis, the identified lncRNA types are limited. In this study, NAFLD models were established in vitro and in vivo using free fatty acid-treated LO2 cells and high-fat diet-fed mice, respectively. Microarray data were downloaded from the Gene Expression Omnibus database, and AC012668 was selected for further analysis. Cell viability and apoptosis were measured using Cell Counting Kit 8 and flow cytometry assays. RNA expression was detected using reverse transcription-quantitative polymerase chain reaction. Triglyceride (TG) content and lipid deposition were detected using enzyme-linked immunosorbent assay and Oil-Red O staining. Western blotting was used to visualize protein expression. Starbase and TargetScan were used to predict the target miRNA and gene, and the predictions were verified through RNA pull-down and luciferase reporter assays. AC012668 expression levels were significantly suppressed in NAFLD models, whereas AC012668 overexpression inhibited lipogenesis-related gene (SCD1, SREBP1, FAS) expression and TG/lipid accumulation in vitro. Subsequently, miR-380-5p was predicted and verified to target AC012668, and its expression was notably increased in the NAFLD cell model. Moreover, transfection of miR-380-5p antagonized the effects of AC012668 on lipid formation and accumulation. LRP2 was confirmed to be the target gene of miR-380-5p and was downregulated in the NAFLD cell model. Silencing LRP2 reversed the effects of the miR-380-5p inhibitor on lipid formation and accumulation. AC012668 inhibited NAFLD progression via the miR-380-5p/LRP2 axis. These findings may provide a novel strategy against NAFLD.
Collapse
Affiliation(s)
- Xiaomeng Chen
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Hong Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Gao
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Ye Jin
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Wei Ning
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Yue Hou
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| |
Collapse
|
13
|
Matboli M, Gadallah SH, Rashed WM, Hasanin AH, Essawy N, Ghanem HM, Eissa S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:6770. [PMID: 34202571 PMCID: PMC8269036 DOI: 10.3390/ijms22136770] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
AIM we aimed to construct a bioinformatics-based co-regulatory network of mRNAs and non coding RNAs (ncRNAs), which is implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), followed by its validation in a NAFLD animal model. MATERIALS AND METHODS The mRNAs-miRNAs-lncRNAs regulatory network involved in NAFLD was retrieved and constructed utilizing bioinformatics tools. Then, we validated this network using an NAFLD animal model, high sucrose and high fat diet (HSHF)-fed rats. Finally, the expression level of the network players was assessed in the liver tissues using reverse transcriptase real-time polymerase chain reaction. RESULTS in-silico constructed network revealed six mRNAs (YAP1, FOXA2, AMOTL2, TEAD2, SMAD4 and NF2), two miRNAs (miR-650 and miR-1205), and two lncRNAs (RPARP-AS1 and SRD5A3-AS1) that play important roles as a co-regulatory network in NAFLD pathogenesis. Moreover, the expression level of these constructed network-players was significantly different between NAFLD and normal control. Conclusion and future perspectives: this study provides new insight into the molecular mechanism of NAFLD pathogenesis and valuable clues for the potential use of the constructed RNA network in effective diagnostic or management strategies of NAFLD.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Shaimaa H. Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11382, Egypt; (S.H.G.); (H.M.G.)
| | - Wafaa M. Rashed
- Department of Research, Children’s Cancer Hospital-57357, Cairo 11382, Egypt;
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt;
| | - Nada Essawy
- Institut Pasteur, CEDEX 15, 75724 Paris, France;
| | - Hala M. Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11382, Egypt; (S.H.G.); (H.M.G.)
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| |
Collapse
|
14
|
Errafii K, Al-Akl NS, Khalifa O, Arredouani A. Comprehensive analysis of LncRNAs expression profiles in an in vitro model of steatosis treated with Exendin-4. J Transl Med 2021; 19:235. [PMID: 34078383 PMCID: PMC8173795 DOI: 10.1186/s12967-021-02885-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS The hallmark of non-alcoholic fatty liver disease (NAFLD) is the excessive hepatic lipid accumulation. Currently, no pharmacotherapy exists for NAFLD. However, the glucagon-like peptide-1 receptor agonists have recently emerged as potential therapeutics. Here, we sought to identify the long non-coding RNAs (LncRNAs) associated with the steatosis improvement induced by the GLP-1R agonist Exendin-4 (Ex-4) in vitro. METHODS Steatosis was induced in HepG2 cells with oleic acid. The transcriptomic profiling was performed using total RNA extracted from untreated, steatotic, and Ex-4-treated steatotic cells. We validated a subset of differentially expressed LncRNAs with qRT-PCR and identified the most significantly enriched cellular functions associated with the relevant LncRNAs. RESULTS We confirm that Ex-4 improves steatosis in HepG2 cells. We found 379 and 180 differentially expressed LncRNAs between untreated and steatotic cells and between steatotic and Ex-4-treated steatotic cells, respectively. Interestingly, 22 upregulated LncRNAs in steatotic cells became downregulated with Ex-4 exposure, while 50 downregulated LncRNAs in steatotic cells became upregulated in the presence of Ex-4. Although some LncRNAs, such as MALAT1, H19, and NEAT1, were previously associated with NAFLD, the association of others with steatosis and the positive effect of Ex-4 is being reported for the first time. Functional enrichment analysis identified many critical pathways, including fatty acid and pyruvate metabolism, and insulin, PPAR, Wnt, TGF-β, mTOR, VEGF, NOD-like, and Toll-like receptors signaling pathways. CONCLUSION Our results suggest that LncRNAs may play essential roles in the mechanisms underlying steatosis improvement in response to GLP-1R agonists and warrant further functional studies.
Collapse
Affiliation(s)
- Khaoula Errafii
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Neyla S Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar.
| |
Collapse
|