1
|
Liu S, Hu Y, Xu W, Liu W, Wang B, Zeng X, Shao Z, Yang C, Xiong L, Cai X. Restoration of lysosomal function attenuates autophagic flux impairment in nucleus pulposus cells and protects against mechanical overloading-induced intervertebral disc degeneration. Autophagy 2025; 21:979-995. [PMID: 39675125 PMCID: PMC12013417 DOI: 10.1080/15548627.2024.2440844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of low back pain that incurs large socioeconomic burdens. Growing evidence reveals that macroautophagy/autophagy dysregulation contributes to IVDD, but the exact role of autophagy and its regulatory mechanisms remain largely unknown. Here, we found that mechanical overloading impaired the autophagic flux of nucleus pulposus (NP) cells in vivo and in vitro. Mechanistically, the impairment of autophagic flux was attributed to lysosomal dysfunction induced by overloading. Overloading could also lead to lysosomal membrane permeabilization and consequent lysosome-dependent cell death. As critical effectors of lysosomal quality control pathways, CHMP4B (charged multivesicular body protein 4B) and TFEB (transcription factor EB) were downregulated in overloading-treated NP cells and degenerative discs. Restoring lysosomal function by CHMP4B or TFEB overexpression attenuated autophagic flux impairment of NP cells and protected against overloading-induced IVDD. Additionally, human IVDD was associated with impaired autophagy, and defective lysosomal quality control was also linked to human IVDD. Collectively, these findings highlighted that lysosomal defects were crucial for mechanical overloading-induced autophagic flux impairment and death of NP cells, suggesting the potential therapeutic relevance of restoring lysosomal function for IVDD.Abbreviations: ADAMTS4: ADAM metallopeptidase with thrombospondin type 1 motif 4; Ad: adenovirus; AO: acridine orange; BafA1: bafilomycin A1; CHMP4B: charged multivesicular body protein 4B; CTSD: cathepsin D; CV%: coefficient of variation; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complex required for transport; HE: haemotoxylin and eosin; IVDD: intervertebral disc degeneration; LAMP: lysosomal associated membrane protein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MMP3: matrix metallopeptidase 3; MRI: magnetic resonance imaging; NP: nucleus pulposus; PG: Pfirrmann grade; PI: propidium iodide; RT-qPCR: reverse transcription-quantitative PCR; SOFG: safranin O fast green; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianlin Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopaedics, Hefeng Central Hospital, Enshi, China
| |
Collapse
|
2
|
Yao S, Li Y, Ruan H, Wu L, Zeng H. Gubi Decoction Ameliorates Porous Cartilage Endplate in an Intervertebral Disc Degeneration Model Mouse Through Inhibition of NF-κB Activity and Pyroptosis. J Inflamm Res 2025; 18:5293-5309. [PMID: 40264591 PMCID: PMC12013640 DOI: 10.2147/jir.s492365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background Intervertebral disc (IVD) degeneration (IVDD) is highly prevalent among the elderly population and stands as a leading cause of low back pain. Our prior studies have highlighted the therapeutic potential of Gubi decoction (GBD) in alleviating knee osteoarthritis, however, but the specific mechanism of GBD in treating IVDD is not clear. Objective To ascertain the clear mechanism of GBD for enhancing its therapeutic efficacy in treating lVDD, through comparison of its effects across different doses of GBD and clinical positive control drugs using a mouse IVDD model. Methods In this study, 8-week-old male mice were treated with lumbar spine instability (LSI) surgery to construct IVDD model mice. From day 3 post-LSI surgery, mice in the loxoprofen sodium tablets (LST), GBD-L, GBD-M and GBD-H groups were gavage administration with LST (23.1 mg/kg) and GBD (6.1, 12.2 and 24.4 g/kg body weight, respectively) 5 times a week for 4 and 8 weeks separately. After 8 weeks of LSI modeling, the therapeutic efficacy on IVDD was evaluated through changes in lumbar spine function, histopathological morphology, extracellular matrix (ECM) metabolism, nucleus pulposus (NP) cell viability, and cartilage endplate (CEP) cell pyroptosis; at 4 weeks after modeling, the activation of NF-κB signaling was detected. Results GBD can attenuate the progression of IVDD in mice, resulting in substantially increases disc height index (DHI) and NP matrix, reduced the degree of annulus fibrosus (AF) tear and the formation of cavity in CEP. In parallel, GBD significantly improved the matrix metabolism-related indexes of IVD at 8 weeks after modeling. Mechanically, GBD inhibited the expression of pyroptosis-related indicators NOD-like receptor thermal protein-domain associated protein 3 (NLRP3), cysteinyl aspartate specific-proteinase-1 (CASPASE1), gasdermin D (GSDMD), interleukin-1β (IL-1β) and interleukin-18 (IL-18) in CEP. Furthermore, GBD suppressed nuclear translocation of P65 protein, and decreased the amount of p-I-κB in CEP at 4 weeks after modeling. Conclusion In summary, GBD can effectively inhibit the activation of NF-κB signaling and pyroptosis of ECP, relieve the porosity of ECP, and then delay the IVDD process. GBD may serve as a potential therapeutic agent for IVDD treatment.
Collapse
Affiliation(s)
- Sai Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
- Frontier Innovation Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yanan Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongfeng Ruan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Lianguo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Hanbing Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| |
Collapse
|
3
|
Chen W, Liu D, Lu K, Xu M, Li D, Yan W, Chen S, Li B. Organoids of Musculoskeletal System for Disease Modeling, Drug Screening, and Regeneration. Adv Healthc Mater 2025; 14:e2402444. [PMID: 39610173 DOI: 10.1002/adhm.202402444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Musculoskeletal diseases have emerged as the leading cause of disability worldwide, with their prevalence increasing annually. In light of this escalating health challenge, organoids, an emerging technology in tissue engineering, offer promising solutions for disease modeling, drug screening, regeneration, and repair processes. The successful development of musculoskeletal organoids represents a significant breakthrough, providing a novel platform for studying musculoskeletal diseases and facilitating the discovery of new treatments. Moreover, organoids serve as valuable complements to traditional 2D culture methods and animal models, offering rich insights into musculoskeletal biology. This review provides an overview of organoid technology, outlining the construction processes of various musculoskeletal organoids and highlighting their similarities and differences. Furthermore, the challenges associated with organoid technology in musculoskeletal systems are discussed and insights into future perspectives are offered.
Collapse
Affiliation(s)
- Weicheng Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Dachuan Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Lu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Mengping Xu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Di Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Wei Yan
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Song Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
4
|
Liu XW, Huang SS, Xu P, Xu HW, Wang DK, Wang SJ. Transcription factor EP300 targets SIRT5 to promote autophagy of nucleus pulposus cells and attenuate intervertebral disc degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119933. [PMID: 40096894 DOI: 10.1016/j.bbamcr.2025.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a prevalent spinal ailment and the leading cause of chronic low back pain. Understanding the exact pathogenesis of IVDD and developing targeted molecular drugs will be important in the future. Autophagy plays a key role in the metabolic processes and in the quality control of proteins in IVDD. However, the role of autophagy in the senescence of nucleus pulposus cell (NPC), the primary cells in the intervertebral disc responsible for maintaining the disc's structure and function, is not yet clear. METHODS Gene expression profiling data of human disc tissue were obtained from the Gene Expression Omnibus GSE15227, GSE23130, and GSE70362 datasets. Autophagy-related differentially expressed genes were identified from the Molecular Signatures Database (MSigDB) database. Weighted gene co-expression network analysis (WGCNA), receiver operating characteristic (ROC) curves, and least absolute shrinkage and selection operator (LASSO) regression identified an autophagy-related hub gene that encodes the E1A binding protein EP300 transcription factor in IVDD samples. Potential downstream target genes of EP300 were identified by bioinformatics analysis. The analysis identified sirtuin 5 (SIRT5) as a potential downstream target of EP300. Chromatin immunoprecipitation (ChIP)-qPCR, small interfering RNA (siRNA), and luciferase reporter gene assays were used to verify the interaction of EP300 and SIRT5 in vitro. For in vivo experiments, SIRT5 knockout mice and SIRT5-overexpressing adeno-associated virus serotype 5 (AAV5) were constructed to verify the effect of the EP300-SIRT5 signal axis on the progression of IVDD. RESULTS EP300 expression was reduced in the IVDD samples compared with its expression in healthy disc tissue samples. The reduced EP300 expression inhibited the occurrence of autophagy, which promoted NPC senescence. ChIP-qPCR and luciferase reporter gene assays showed that EP300 promoted SIRT5 expression by direct binding to its promoter. Activation of EP300 expression increased SIRT5 expression and significantly improved autophagy for inhibition of NPC senescence. In vivo experiments confirmed that knockdown of EP300 promoted NPC senescence and led to an exacerbation of IVDD, which was reversed by SIRT5 overexpression. CONCLUSION Our results provide the first evidence for the importance of EP300 and SIRT5 interactions in promoting IVDD development by inhibiting autophagy during IVDD. The EP300-SIRT5 signaling axis was identified as a promising target for therapy of IVDD based on autophagy genes.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shan-Shan Huang
- Department of Geriatric Neurology of Hua Shan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Pei Xu
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dian-Kai Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Wu R, Zhao XJ, Du Y, Dong Y, Song X, Zhu Y. Lipid metabolic disorders and their impact on cartilage endplate and nucleus pulposus function in intervertebral disk degeneration. Front Nutr 2025; 12:1533264. [PMID: 40129665 PMCID: PMC11931516 DOI: 10.3389/fnut.2025.1533264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/06/2025] [Indexed: 03/26/2025] Open
Abstract
Lipid metabolism encompasses the processes of digestion, absorption, synthesis, and degradation of fats within biological systems, playing a crucial role in sustaining normal physiological functions. Disorders of lipid metabolism, characterized by abnormal blood lipid levels and dysregulated fatty acid metabolism, have emerged as significant contributors to intervertebral disk degeneration (IDD). The pathogenesis of IDD is multifaceted, encompassing genetic predispositions, nutritional and metabolic factors, mechanical stressors, trauma, and inflammatory responses, which collectively facilitate the progression of IDD. Although the precise mechanisms underlying IDD remain incompletely elucidated, there is substantial consensus regarding the close association between lipid metabolism disorders and its development. Intervertebral disks are essential for maintaining spinal alignment. Their primary functions encompass shock absorption, preservation of physiological curvature, facilitation of movement, and provision of stability. The elasticity and thickness of these disks effectively absorb daily impacts, safeguard the spine, uphold its natural curvature and flexibility, while also creating space for nerve roots to prevent compression and ensure normal transmission of nerve signals. Research indicates that such metabolic disturbances may compromise the functionality of cartilaginous endplates (CEP) and nucleus pulposus (NP), thereby facilitating IDD's onset and progression. The CEP is integral to internal material exchange and shock absorption while mitigating NP herniation under mechanical load conditions. As the central component of intervertebral disks, NP is essential for maintaining disk height and providing shock-absorbing capabilities; thus, damage to these critical structures accelerates IDD progression. Furthermore, lipid metabolism disorders contribute to IDD through mechanisms including activation of endoplasmic reticulum stress pathways, enhancement of oxidative stress levels, induction of cellular pyroptosis alongside inhibition of autophagy processes-coupled with the promotion of inflammation-induced fibrosis and fibroblast proliferation leading to calcification within intervertebral disks. This review delineates the intricate interplay between lipid metabolism disorders and IDD; it is anticipated that advancing our understanding of this pathogenesis will pave the way for more effective preventive measures and therapeutic strategies against IDD in future research.
Collapse
Affiliation(s)
- Ruixia Wu
- Inner Mongolia Medical University, Hohhot, China
| | - Xiao Juan Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yaxin Du
- Inner Mongolia Medical University, Hohhot, China
| | - Yizhi Dong
- Inner Mongolia Medical University, Hohhot, China
| | - Xinyue Song
- Inner Mongolia Medical University, Hohhot, China
| | - Yong Zhu
- Peking University Cancer Hospital Inner Mongolia Hospital, Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Matsuo T, Takeoka Y, Yurube T, Tsujimoto T, Kanda Y, Miyazaki K, Ohnishi H, Ryu M, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Transient Receptor Potential Vanilloid 4 Knockdown Decreases Extracellular Matrix Synthesis via Autophagy Suppression in the Rat Intervertebral Disc. JOR Spine 2025; 8:e70046. [PMID: 39963549 PMCID: PMC11832302 DOI: 10.1002/jsp2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Background Transient receptor potential vanilloid 4 (TRPV4) has been identified as a Ca2+-permeable channel and is activated under physiological mechanical stimulation in disc nucleus pulposus (NP) cells. Meanwhile, the Ca2+-dependent AMP-activated protein kinase (AMPK)/mTOR pathway activates autophagy in notochordal cells. We hypothesized that TRPV4 is involved in the maintenance of intradiscal homeostasis via autophagy. Our objective was to elucidate the role of TRPV4 in extracellular matrix (ECM) metabolism and autophagy in the rat intervertebral disc through a loss-of-function study with the RNA interference (RNAi) technique. Methods In vitro study: Small interfering RNA (siRNA) was applied to knockdown TRPV4 by the reverse transfection method in rat disc NP cells. Expression of TRPV4, AMPK/mTOR pathway-related markers, and autophagy markers were measured by Western blotting (WB). Next, ECM metabolism was assessed under serum starvation and/or proinflammatory interleukin-1 beta (IL-1β) stimulation. In vivo study: TRPV4 and control siRNAs were injected into rat discs. To confirm in vivo transfection, WB for TRPV4 was conducted in rat disc NP-tissue protein extracts 2, 28, and 56 days after injection. Furthermore, 24-h temporary static compression-induced disruption of TRPV4 siRNA-injected discs was observed by radiography, histomorphology, and immunofluorescence. Results In vitro study: In disc cells, three different TRPV4 siRNAs consistently suppressed autophagy with TRPV4 protein knockdown (mean 33.2% [95% CI: -50.8, -15.5], 44.1% [-61.7, -26.4], 58.3% [-76.0, -40.7]). ECM metabolism was significantly suppressed by TRPV4 RNAi under proinflammatory IL-1β stimulation. In vivo study: The WB displayed sustained decreases in TRPV4 protein expression 2, 28, and 56 days after injection. Under the loaded condition, TRPV4 siRNA-injected discs presented radiographic height loss ([-31.7, -7.75]), histomorphological damage ([0.300, 4.70]), and immunofluorescent suppression of autophagy ([1.61, 20.5]) and ECM metabolism ([-25.2, -6.41]) compared to control siRNA-injected discs at 56 days. Conclusions The TRPV4 could be a therapeutic target for intervertebral disc diseases via modulating autophagy.
Collapse
Affiliation(s)
- Tomoya Matsuo
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshiki Takeoka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takeru Tsujimoto
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yutaro Kanda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kunihiko Miyazaki
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Hiroki Ohnishi
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Masao Ryu
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Naotoshi Kumagai
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kohei Kuroshima
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kenichiro Kakutani
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
7
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
8
|
Zhu J, Song T, Li Z, Zheng W, Liu Y, Li H, Wang S, Tang J, Feng S, Wang L, Lu X, Yuan F, Zhu Z. Integration of bioinformatics and multi-layered experimental validation reveals novel functions of acetylation-related genes in intervertebral disc degeneration. Gene 2025; 933:148974. [PMID: 39349110 DOI: 10.1016/j.gene.2024.148974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The molecular mechanisms underlying intervertebral disc degeneration (IDD) remain poorly understood. The purpose of this work is to elucidate key molecules and investigate the roles of acetylation-related RNAs and their associated pathways in IDD. METHOD Datasets GSE70362 and GSE124272 were obtained from the Gene Expression Omnibus (GEO) and combined to investigate differentially expressed genes (DEGs) associated with acetylation in IDD patients compared to healthy controls. Critical genes were pinpointed by integrating GO, KEGG and PPI networks. Furthermore, CIBERSORTx analysis was used to investigate the differences in immune cell infiltration between different groups and the biological processes (BP), cellular components (CC) and molecular functions (MF) were calculated by GSEA and GSVA. In addition, The single-cell database GSE165722 was incorporated to validate the specific expression patterns of hub genes in cells and identify distinct cell subtypes. This provides a theoretical basis for a more in-depth understanding of the roles played by critical cell subtypes in the process of IDD. Subsequently, tissues from IVD with varying degrees of degeneration were collected to corroborate the key DEGs using western blot, RT-qPCR, and immunofluorescence staining. RESULTS By integrating various datasets and references, we identified a total of 1620 acetylation-related genes. These genes were subjected to a combined analysis with the DEGs from the databases included in this study, resulting in the discovery of 358 acetylation-related differentially expressed genes (ARDEGs). A comparative analysis with differentially expressed genes obtained from three databases yielded 19 ARDEGs. The PPI network highlighted the top 10 genes (IL1B, LAMP1, PPIA, SOD2, LAMP2, FBL, MBP, SELL, IRF1 and KHDRBS1) based on their protein interaction relationships. CIBERSORTx immune infiltration analysis revealed a moderate positive correlation between the gene IL1β and Mast.cells.activated, as well as a similar correlation between the gene IRF1 and Mast.cells.activated. Single-cell dataset was used to identify cell types and illustrate the distribution of hub genes in different cell types. The two cell types with the highest AUCell scores (Neutrophils and Monocytes) were further explored, leading to the subdivision of Neutrophils into two new cell subtypes: S100A9-type Neutrophils and MARCKS-type Neutrophils. Monocytes were labeled as HLA-DRA9-type Monocytes and IGHG3-type Monocytes. Finally, molecular biology techniques were employed to validate the expression of the top 10 hub genes. Among them, four genes (IL1β, SOD2, LAMP2, and IRF1) were confirmed at the gene level, while two (IL1β and SOD2) were validated at the protein level. CONCLUSION In this study, we carried out a thorough analysis across three databases to identify and compare ARDEGs between IDD patients and healthy individuals. Furthermore, we validated a subset of these genes using molecular biology techniques on clinical samples. The identification of these differently expressed genes has the potential to offer new insights for diagnosing and treating IDD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Tongqu Song
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Zheng Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Yong Liu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Hao Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Song Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jinlong Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Shuo Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| | - Zhengya Zhu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| |
Collapse
|
9
|
Min Q, Chen X, Yifei G, Baifeng S, Zichuan W, Xiaolong S, Huajiang C, Wen Y, Yang L. FOXO3a overexpression ameliorates intervertebral disc degeneration by decreasing NLRP3-mediated pyroptosis. Int Immunopharmacol 2025; 144:113596. [PMID: 39579536 DOI: 10.1016/j.intimp.2024.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Qi Min
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Gu Yifei
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Sun Baifeng
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Wu Zichuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Shen Xiaolong
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Chen Huajiang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Yuan Wen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| | - Liu Yang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| |
Collapse
|
10
|
Ma L, Meng X, Abudurexiti T, Liu Y, Gao J, Sheng W. MANF overexpression ameliorates oxidative stress-induced apoptosis of human nucleus pulposus cells by facilitating mitophagy through promoting MFN2 expression. Sci Rep 2025; 15:476. [PMID: 39747250 PMCID: PMC11697353 DOI: 10.1038/s41598-024-84167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a degenerative condition associated with impaired mitophagy. MANF has been shown to promote mitophagy in murine kidneys; however, its role in IDD remains unexplored. This study aimed to elucidate the mechanism by which MANF influences IDD development through the regulation of mitophagy. Human nucleus pulposus (NP) cells were exposed to tert-butyl hydroperoxide (TBHP) to establish an oxidative stress-induced cellular model. The expression levels of MANF in NP cells were quantified using quantitative real-time PCR (qPCR) and Western blotting. The impact of MANF on TBHP-induced NP cells was evaluated by assessing cell viability, apoptosis, and the levels of mitophagy-related proteins. The underlying mechanisms were further investigated using RNA-binding protein immunoprecipitation (RIP), dual-luciferase reporter assays, qPCR, and Western blotting. Results indicated that MANF expression was significantly downregulated in both IDD patients and TBHP-induced NP cells. Overexpression of MANF inhibited apoptosis, enhanced cell viability, and promoted mitophagy in TBHP-treated NP cells. MFN2 was identified as a downstream target of MANF, and MANF overexpression upregulated MFN2 expression in NP cells, whereas TBHP markedly suppressed MFN2 expression. Furthermore, knockdown of MFN2 partially reversed the effects of MANF overexpression on apoptosis, cell viability, and mitophagy in TBHP-treated NP cells. Collectively, these findings demonstrate that MANF overexpression enhances mitophagy by upregulating MFN2 expression, thereby mitigating oxidative stress-induced apoptosis in NP cells. These results provide novel insights into the pathogenesis of IDD.
Collapse
Affiliation(s)
- Liang Ma
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyu Mountain South Road, Urumqi City, 830054, Xinjiang Province, China
- Department of Minimally Invasive Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Xiangyu Meng
- Department of Minimally Invasive Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Tuerhongjiang Abudurexiti
- Department of Minimally Invasive Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Yuntao Liu
- Department of Minimally Invasive Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Jiang Gao
- Department of Minimally Invasive Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Weibin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyu Mountain South Road, Urumqi City, 830054, Xinjiang Province, China.
| |
Collapse
|
11
|
Zhan J, Cui Y, Zhang P, Du Y, Hecker P, Zhou S, Liang Y, Zhang W, Jin Z, Wang Y, Gao W, Moroz O, Zhu L, Zhang X, Zhao K. Cartilage Endplate-Targeted Engineered Exosome Releasing and Acid Neutralizing Hydrogel Reverses Intervertebral Disc Degeneration. Adv Healthc Mater 2025; 14:e2403315. [PMID: 39555665 DOI: 10.1002/adhm.202403315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ping Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuxuan Du
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Prisca Hecker
- Department of Cognitive Science, University of California, La Jolla, San Diego, California, 92093, USA
| | - Shuaiqi Zhou
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yupeng Liang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weiye Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Zhefeng Jin
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuan Wang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weihang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Oleksandr Moroz
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiaoguang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ke Zhao
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| |
Collapse
|
12
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
13
|
Huang Y, Sun J, Li S, Shi Y, Yu L, Wu A, Wang X. Isoliquiritigenin mitigates intervertebral disc degeneration induced by oxidative stress and mitochondrial impairment through a PPARγ-dependent pathway. Free Radic Biol Med 2024; 225:98-111. [PMID: 39366471 DOI: 10.1016/j.freeradbiomed.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Oxidative stress, mitochondrial dysfunction, and apoptosis play significant roles in the degradation of extracellular matrix (ECM) in nucleus pulposus cells (NPCs), ultimately contributing to intervertebral disc degeneration (IVDD). This study investigates the potential of isoliquiritigenin (ISL), a natural extract known for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties, to alleviate IVDD. METHODS The viability of NPCs treated with ISL and tert-butyl hydroperoxide (TBHP) was assessed using the CCK-8 assay. Various techniques, including Western blot, qRT-PCR, immunofluorescence (IF), and immunohistochemistry, were employed to measure the expression of ECM components, oxidative stress markers, and apoptosis-related proteins. Mitochondrial function was evaluated through Western blot and IF analyses. Network pharmacology predicted ISL targets, and the expression levels of PPARγ were assessed using the aforementioned methods. The role of PPARγ in the therapeutic effects of ISL on IVDD was examined through siRNA knockdown. The therapeutic impact of ISL on puncture-induced IVDD in rats was evaluated using X-ray, MRI, and histological staining techniques. RESULTS In vitro, ISL reduced oxidative stress in NPCs, restored mitochondrial function, inhibited apoptosis, and improved the ECM phenotype. In vivo, ISL slowed the progression of IVDD in a rat model. Further analysis revealed that ISL enhances PPARγ activity and promotes its expression by direct binding, contributing to the delay of IVDD progression. CONCLUSION This study demonstrates that ISL effectively treats puncture-induced IVDD in rats by inhibiting oxidative stress, restoring mitochondrial function, and reducing NPC apoptosis through a PPARγ-dependent mechanism. By balancing ECM synthesis and degradation, ISL presents a novel therapeutic approach for IVDD and identifies a promising target for treatment.
Collapse
Affiliation(s)
- Yeheng Huang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jing Sun
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lianggao Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Aimin Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Yang X, Li Q, Wang L, Chen J, Quan Z. MUC1 and CREB3 are Hub Ferroptosis Suppressors for Nucleus Pulposus and Annulus Fibrosus Degeneration by Integrated Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:8965-8984. [PMID: 39583856 PMCID: PMC11584408 DOI: 10.2147/jir.s489052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Ferroptosis is an underlying mechanism for various degenerative diseases, but its role in intervertebral disc degeneration remains elusive. This study aims to explore the key ferroptosis-related genes and its role in nucleus pulposus (NP) and annulus fibrosus (AF) degeneration. Methods We analyzed the gene expression profiles of NP and AF from the Gene Expression Omnibus database. The ferroptosis-related differentially expressed genes (FRDEGs) in degenerated NP and AF were filtered, followed by GO and KEGG analysis. Feature FRDEGs were identified by the LASSO and SVM-RFE algorithms, and then Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted. Immune infiltration analysis was conducted by CIBERSORT algorithm. We established drug networks via the Drug-Gene Interaction Database and competitive endogenous RNA (ceRNA) networks via miRanda, miRDB, and TargetScan database. The expression levels of the feature FRDEGs were assessed by the validation sets, single-cell RNA-seq, and experimental verification. Results A total of 15 and 18 FRDEGs were obtained for NP and AF, respectively. GO and KEGG analysis revealed their implication in oxidative stress. Four (AKR1C1, AKR1C3, MUC1, ENPP2) and five (SCP2, ABCC1, KLF2, IDO1, CREB3) feature genes were identified for NP and AF, respectively. The GSEA and GSVA analysis showed that these feature genes were enriched in lots of biological functions, including immune response. CREB3 in degenerated AF was negatively correlated with Eosinophils via CIBERSORT algorithm. The drugs and ceRNAs targeting CREB3 and MUC1 were identified. Experimental verification and single-cell RNA-seq analysis revealed that MUC1 and CREB3 were downregulated in degenerated NP and AF, respectively. Conclusion MUC1 and CREB3 were considered novel biomarkers for NP and AF ferroptosis, respectively. Drug and ceRNA networks were constructed for future drug development and investigation of new mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qiaochu Li
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Jiaxing Chen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhengxue Quan
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
15
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
16
|
Ran R, Zhang SB, Shi YQ, Dong H, Song W, Dong YB, Zhou KS, Zhang HH. Spotlight on necroptosis: Role in pathogenesis and therapeutic potential of intervertebral disc degeneration. Int Immunopharmacol 2024; 138:112616. [PMID: 38959544 DOI: 10.1016/j.intimp.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hao Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Song
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yan-Bo Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Cazzanelli P, Lamoca M, Hasler J, Hausmann ON, Mesfin A, Puvanesarajah V, Hitzl W, Wuertz-Kozak K. The role of miR-155-5p in inflammation and mechanical loading during intervertebral disc degeneration. Cell Commun Signal 2024; 22:419. [PMID: 39192354 DOI: 10.1186/s12964-024-01803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a multifactorial pathological process resulting in the dysregulation of IVD cell activity. The catabolic shift observed in IVD cells during degeneration leads to increased inflammation, extracellular matrix (ECM) degradation, aberrant intracellular signaling and cell loss. Importantly, these pathological processes are known to be interconnected and to collectively contribute to the progression of the disease. MicroRNAs (miRNAs) are known as strong post-transcriptional regulators, targeting multiple genes simultaneously and regulating numerous intracellular pathways. Specifically, miR-155-5p has been of particular interest since it is known as a pro-inflammatory mediator and contributing factor to diseases like cancer and osteoarthritis. This study investigated the role of miR-155-5p in IVD degeneration with a specific focus on inflammation and mechanosensing. METHODS Gain- and loss-of-function studies were performed through transfection of human Nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from degenerated IVDs with miR-155-5p mimics, inhibitors or their corresponding non-targeting control. Transfected cells were then subjected to an inflammatory environment or mechanical loading. Conditioned media and cell lysates were collected for phosphorylation and cytokine secretion arrays as well as gene expression analysis. RESULTS Increased expression of miR-155-5p in AF cells resulted in significant upregulation of interleukin (IL)-8 cytokine secretion during cyclic stretching and a similar trend in IL-6 secretion during inflammation. Furthermore, miR-155-5p mimics increased the expression of the brain-derived neurotrophic factor (BDNF) in AF cells undergoing cyclic stretching. In NP cells, miR-155-5p gain-of-function resulted in the activation of the mitogen-activated protein kinase (MAPK) signaling pathway through increased phosphorylation of p38 and p53. Lastly, miR-155-5p inhibition caused a significant increase in the anti-inflammatory cytokine IL-10 in AF cells and the tissue inhibitor of metalloproteinases (TIMP)-4 in NP cells respectively. CONCLUSION Overall, these results show that miR-155-5p contributes to IVD degeneration by enhancing inflammation through pro-inflammatory cytokines and MAPK signaling, as well as by promoting the catabolic shift of AF cells during mechanical loading. The inhibition of miR-155-5p may constitute a potential therapeutic approach for IVD degeneration and low back pain.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Johannes Hasler
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Oliver Nic Hausmann
- Neuro- and Spine Center, Hirslanden Klinik St. Anna, Lucerne, Switzerland
- Neurosurgical Department, University of Berne, Berne, Switzerland
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, Washington, DC, USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany.
| |
Collapse
|
18
|
Ma M, Ma G, Zhang C, Wang Y, He X, Kang X. Identification of Autophagy-Related Genes Involved in Intervertebral Disc Degeneration by Microarray Data Analysis. World Neurosurg 2024; 188:e1-e17. [PMID: 38782255 DOI: 10.1016/j.wneu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Nucleus pulposus cells survive in a hypoxic, acidic, nutrient-poor, and hypotonic microenvironment. Consequently, they maintain low proliferation and undergo autophagy to protect themselves from cellular stress. Therefore, we aimed to identify autophagy-related biomarkers involved in intervertebral disc degeneration pathogenesis. METHODS Autophagy-related differentially expressed genes were derived from the intersection between the public GSE147383 microarray data set to identify differentially expressed genes and online databases to identify autophagy-related genes. Furthermore, we assessed their biological functions with gene annotation and enrichment analysis in the Metscape portal. Then, the STRING database and Cytoscape software allowed inferring a protein-protein interaction (PPI) network and identifying hub genes. In addition, to predict transcription factors that may regulate the hub genes, we used the GeneMANIA website. Finally, the competing endogenous RNA prediction tools and Cytoscape were also used to construct an mRNA-miRNA-lncRNA network. RESULTS A total of 123 autophagy-related differentially expressed genes were identified, they were mainly involved in phosphoinositide 3-kinase-Akt signaling, autophagy animal, and apoptosis pathways. Nine were identified as hub genes (PTEN, MYC, CTNNB1, JUN, BECN1, ERBB2, FOXO3, ATM, and FN1) and 36 transcription factors were associated with them. Finally, an autophagy-associated competing endogenous RNA network was constructed based on the 9 hub genes. CONCLUSIONS Nine hub genes were identified and a network of competing endogenous RNA associated with autophagy was established. They can be used as autophagy-related biomarkers of intervertebral disc degeneration and for further exploration.
Collapse
Affiliation(s)
- Miao Ma
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guifu Ma
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yajun Wang
- Breast Department, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
19
|
Bahar ME, Hwang JS, Lai TH, Byun JH, Kim DH, Kim DR. The Survival of Human Intervertebral Disc Nucleus Pulposus Cells under Oxidative Stress Relies on the Autophagy Triggered by Delphinidin. Antioxidants (Basel) 2024; 13:759. [PMID: 39061828 PMCID: PMC11273539 DOI: 10.3390/antiox13070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Delphinidin (Delp), a natural antioxidant, has shown promise in treating age-related ailments such as osteoarthritis (OA). This study investigates the impact of delphinidin on intervertebral disc degeneration (IVDD) using human nucleus pulposus cells (hNPCs) subjected to hydrogen peroxide. Various molecular and cellular assays were employed to assess senescence, extracellular matrix (ECM) degradation markers, and the activation of AMPK and autophagy pathways. Initially, oxidative stress (OS)-induced hNPCs exhibited notably elevated levels of senescence markers like p53 and p21, which were mitigated by Delp treatment. Additionally, Delp attenuated IVDD characteristics including apoptosis and ECM degradation markers in OS-induced senescence (OSIS) hNPCs by downregulating MMP-13 and ADAMTS-5 while upregulating COL2A1 and aggrecans. Furthermore, Delp reversed the increased ROS production and reduced autophagy activation observed in OSIS hNPCs. Interestingly, the ability of Delp to regulate cellular senescence and ECM balance in OSIS hNPCs was hindered by autophagy inhibition using CQ. Remarkably, Delp upregulated SIRT1 and phosphorylated AMPK expression while downregulating mTOR phosphorylation in the presence of AICAR (AMPK activator), and this effect was reversed by Compound C, AMPK inhibitor. In summary, our findings suggest that Delp can safeguard hNPCs from oxidative stress by promoting autophagy through the SIRT1/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Medical Science, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| |
Collapse
|
20
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
21
|
Ma M, Zhang C, Zhong Z, Wang Y, He X, Zhu D, Qian Z, Yu B, Kang X. siRNA incorporated in slow-release injectable hydrogel continuously silences DDIT4 and regulates nucleus pulposus cell pyroptosis through the ROS/TXNIP/NLRP3 axis to alleviate intervertebral disc degeneration. Bone Joint Res 2024; 13:247-260. [PMID: 38771134 PMCID: PMC11107476 DOI: 10.1302/2046-3758.135.bjr-2023-0320.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Aims In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel's mechanism in IVDD. Results A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD.
Collapse
Affiliation(s)
- Miao Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongjing Zhang
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, China
| | - Zeyuan Zhong
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yajun Wang
- Department of Oncology, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi Qian
- Department of Joint and Sports Medicine, Institute of Orthopaedic Diseases, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Baoqing Yu
- Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
22
|
Padrona M, Maroquenne M, El-Hafci H, Rossiaud L, Petite H, Potier E. Glucose depletion decreases cell viability without triggering degenerative changes in a physiological nucleus pulposus explant model. J Orthop Res 2024; 42:1111-1121. [PMID: 37975418 DOI: 10.1002/jor.25742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Although the etiology of intervertebral disc degeneration is still unresolved, the nutrient paucity resulting from its avascular nature is suspected of triggering degenerative processes in its core: the nucleus pulposus (NP). While severe hypoxia has no significant effects on NP cells, the impact of glucose depletion, such as found in degenerated discs (0.2-1 mM), is still uncertain. Using a pertinent ex-vivo model representative of the unique disc microenvironment, the present study aimed, therefore, at determining the effects of "degenerated" (0.3 mM) glucose levels on bovine NP explant homeostasis. The effects of glucose depletion were evaluated on NP cell viability, apoptosis, phenotype, metabolism, senescence, extracellular matrix anabolism and catabolism, and inflammatory mediator production using fluorescent staining, RT-qPCR, (immuno)histology, ELISA, biochemical, and enzymatic assays. Compared to the "healthy" (2 mM) glucose condition, exposure to the degenerated glucose condition led to a rapid and extensive decrease in NP cell viability associated with increased apoptosis. Although the aggrecan and collagen-II gene expression was also downregulated, NP cell phenotype, and senescence, matrix catabolism, and inflammatory mediator production were not, or only slightly, affected by glucose depletion. The present study provided evidence for glucose depletion as an essential player in NP cell viability but also suggested that other microenvironment factor(s) may be involved in triggering the typical shift of NP cell phenotype observed during disc degeneration. The present study contributes new information for better understanding disc degeneration at the cellular-molecular levels and thus helps to develop relevant therapeutical strategies to counteract it.
Collapse
Affiliation(s)
| | | | - Hanane El-Hafci
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | | | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| |
Collapse
|
23
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
24
|
Tao Y, Yu X, Li X, Xu Y, Wang H, Zhang L, Lin R, Wang Y, Fan P. M6A methylation-regulated autophagy may be a new therapeutic target for intervertebral disc degeneration. Cell Biol Int 2024; 48:389-403. [PMID: 38317355 DOI: 10.1002/cbin.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yuao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoyu Yu
- Department of Gynaecology and Obstetrics, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolong Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuzhu Xu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hui Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lele Zhang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
26
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
27
|
Kritschil R, Li V, Wang D, Dong Q, Silwal P, Finkel T, Lee J, Sowa G, Vo N. Impact of autophagy inhibition on intervertebral disc cells and extracellular matrix. JOR Spine 2024; 7:e1286. [PMID: 38234974 PMCID: PMC10792703 DOI: 10.1002/jsp2.1286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a leading contributor to low back pain (LBP). Autophagy, strongly activated by hypoxia and nutrient starvation, is a vital intracellular quality control process that removes damaged proteins and organelles to recycle them for cellular biosynthesis and energy production. While well-established as a major driver of many age-related diseases, autophagy dysregulation or deficiency has yet been confirmed to cause IDD. Methods In vitro, rat nucleus pulposus (NP) cells treated with bafilomycin A1 to inhibit autophagy were assessed for glycosaminoglycan (GAG) content, proteoglycan synthesis, and cell viability. In vivo, a transgenic strain (Col2a1-Cre; Atg7 fl/fl) mice were successfully generated to inhibit autophagy primarily in NP tissues. Col2a1-Cre; Atg7 fl/fl mouse intervertebral discs (IVDs) were evaluated for biomarkers for apoptosis and cellular senescence, aggrecan content, and histological changes up to 12 months of age. Results Here, we demonstrated inhibition of autophagy by bafilomycin produced IDD features in the rat NP cells, including increased apoptosis and cellular senescence (p21 CIP1) and decreased expression of disc matrix genes Col2a1 and Acan. H&E histologic staining showed significant but modest degenerative changes in NP tissue of Col2a1-Cre; Atg7 fl/fl mice compared to controls at 6 and 12 months of age. Intriguingly, 12-month-old Col2a1-Cre; Atg7 fl/fl mice did not display increased loss of NP proteoglycan. Moreover, markers of apoptosis (cleaved caspase-3, TUNEL), and cellular senescence (p53, p16 INK4a , IL-1β, TNF-α) were not affected in 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls. However, p21 CIP1and Mmp13 gene expression were upregulated in NP tissue of 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls, suggesting p21 CIP1-mediated cellular senescence resulted from NP-targeted Atg7 knockout might contribute to the observed histological changes. Conclusion The absence of overt IDD features from disrupting Atg7-mediated macroautophagy in NP tissue implicates other compensatory mechanisms, highlighting additional research needed to elucidate the complex biology of autophagy in regulating age-dependent IDD.
Collapse
Affiliation(s)
- Rebecca Kritschil
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Vivian Li
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Drexel School of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qing Dong
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Prashanta Silwal
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Joon Lee
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nam Vo
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
28
|
Tang X, Lin S, Luo H, Wang L, Zhong J, Xiong J, Lv H, Zhou F, Wan Z, Cao K. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 2024; 897:148084. [PMID: 38104954 DOI: 10.1016/j.gene.2023.148084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.
Collapse
Affiliation(s)
- Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Sijian Lin
- The Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Zongmiao Wan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
29
|
Khaleque MA, Kim JH, Lee HH, Kim GH, You WY, Lee WJ, Kim YY. Comparative Analysis of Autophagy and Apoptosis in Disc Degeneration: Understanding the Dynamics of Temporary-Compression-Induced Early Autophagy and Sustained-Compression-Triggered Apoptosis. Int J Mol Sci 2024; 25:2352. [PMID: 38397026 PMCID: PMC10889391 DOI: 10.3390/ijms25042352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this study was to investigate the initiation of autophagy activation and apoptosis in nucleus pulposus cells under temporary compression (TC) and sustained compression (SC) to identify ideal research approaches in intervertebral disc degeneration. Various techniques were used: radiography (X-ray), magnetic resonance imaging (MRI), transmission electron microscope (TEM), H&E staining, Masson's trichrome staining, immunohistochemistry (IHC) (LC3, beclin-1, and cleaved caspase-3), and real-time polymerase chain reaction (RT-qPCR) for autophagy-related (beclin-1, LC3, and P62) and apoptosis-related (caspase-3 and PARP) gene expression analysis. X-ray and MRI revealed varying degrees of disc degeneration, ranging from moderate to severe in both groups. The severity was directly linked to compression duration, with SC resulting in notably severe central NP cell degeneration. Surprisingly, TC also caused similar, though less severe, degeneration. Elevated expression of LC3 and beclin-1 was identified after 6 weeks, but it notably declined after 12 weeks. Central NP cells in both groups exhibited increased expression of cleaved caspase-3 that was positively correlated with the duration of SC. TC showed fewer apoptotic markers compared to SC. LC3, beclin-1, and P62 mRNA expression peaked after 6 weeks and declined after 12 weeks in both groups. Cleaved caspase-3 and PARP expression peaked in SC, positively correlating with longer compression duration, while TC showed lower levels of apoptosis gene expression. Furthermore, TEM results revealed different events of the autophagic degradation process after 2 weeks of compression. TCmay be ideal for studying early triggered autophagy-mediated degeneration, while SC may be ideal for studying late or slower-triggered apoptosis-mediated degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.K.); (J.-H.K.); (H.-H.L.); (G.-H.K.); (W.-Y.Y.); (W.-J.L.)
| |
Collapse
|
30
|
Zhang H, Yang X, Huang Y, Li Y, Hu Q, Wei Q, Xu W, Ding W, Guo Y, Shen JW. Reviving Intervertebral Discs: Treating Degeneration Using Advanced Delivery Systems. Mol Pharm 2024; 21:373-392. [PMID: 38252032 DOI: 10.1021/acs.molpharmaceut.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weixing Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China
| | - Weiguo Ding
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
31
|
Wang Z, Li X, Yu P, Zhu Y, Dai F, Ma Z, Shen X, Jiang H, Liu J. Role of Autophagy and Pyroptosis in Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:91-100. [PMID: 38204989 PMCID: PMC10778915 DOI: 10.2147/jir.s434896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Intervertebral disc degeneration is a chronic degenerative disease caused by the interaction of genetic and environmental factors, mainly manifested as lower back pain. At present, the diagnosis of intervertebral disc degeneration mainly relies on imaging. However, early intervertebral disc degeneration is usually insidious, and there is currently a lack of relevant clinical biomarkers that can reliably reflect early disease progression. Pyroptosis is a regulatory form of cell death triggered by the activation of inflammatory bodies and caspase, which can induce the formation of plasma membrane pores and cell swelling or lysis. Previous studies have shown that during the progression of intervertebral disc degeneration, sustained activation of inflammasomes leads to nuclear cell pyroptosis, which can occur in the early stages of intervertebral disc degeneration. Moreover, intervertebral disc nucleus pulposus cells adapt to the external environment through autophagy and maintain cellular homeostasis and studying the mechanism of autophagy in IDD and intervening in its pathological and physiological processes can provide new ideas for the clinical treatment of IDD. This review analyzes the effects of pyroptosis and autophagy on IDD by reviewing relevant literature in recent years, in order to explore the relationship between pyroptosis, autophagy and IDD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xiaochun Li
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Pengfei Yu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Feng Dai
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Zhijia Ma
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xueqiang Shen
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Hong Jiang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Jintao Liu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| |
Collapse
|
32
|
Song H, Zhu Y, Hu C, Liu Q, Jin Y, Tang P, Xia J, Xie D, Jiang S, Yao G, Liu Z, Hu Z. Selective Autophagy Receptor NBR1 Retards Nucleus Pulposus Cell Senescence by Directing the Clearance of SRBD1. Int J Biol Sci 2024; 20:701-717. [PMID: 38169523 PMCID: PMC10758090 DOI: 10.7150/ijbs.90186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent degenerative disorder that closely linked to aging. Numerous studies have indicated the crucial involvement of autophagy in the development of IDD. However, the non-selective nature of autophagy substrates poses great limitations on the application of autophagy-related medications. This study aims to enhance our comprehension of autophagy in the development of IDD and investigate a novel therapeutic approach from the perspective of selective autophagy receptor NBR1. Proteomics and immunoprecipitation and mass spectrometry analysis, combined with in vivo and in vitro experimental verification were performed. NBR1 is found to be reduced in IDD, and NBR1 retards cellular senescence and senescence-associated secretory phenotype (SASP) of nucleus pulposus cells (NPCs), primarily through its autophagy-dependent function. Mechanistically, NBR1 knockdown leads to the accumulation of S1 RNA-binding domain-containing protein 1 (SRBD1), which triggers cellular senescence via AKT1/p53 and RB/p16 pathways, and promotes SASP via NF-κβ pathway in NPCs. Our findings reveal the function and mechanism of selective autophagy receptor NBR1 in regulating NPCs senescence and degeneration. Targeting NBR1 to facilitate the clearance of detrimental substances holds the potential to provide novel insights for IDD treatment.
Collapse
Affiliation(s)
- Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Department of Orthopaedics, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Sicheng Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Geliang Yao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
33
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
34
|
Wang Y, Wang Z, Tang Y, Chen Y, Fang C, Li Z, Jiao G, Chen X. Diagnostic model based on key autophagy-related genes in intervertebral disc degeneration. BMC Musculoskelet Disord 2023; 24:927. [PMID: 38041088 PMCID: PMC10691083 DOI: 10.1186/s12891-023-06886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Current research on autophagy is mainly focused on intervertebral disc tissues and cells, while there is few on human peripheral blood sample. therefore, this study constructed a diagnostic model to identify autophagy-related markers of intervertebral disc degeneration (IVDD). METHODS GSE150408 and GSE124272 datasets were acquired from the Gene Expression Omnibus database, and differential expression analysis was performed. The IVDD-autophagy genes were obtained using Weighted Gene Coexpression Network Analysis, and a diagnostic model was constructed and validated, followed by Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Meanwhile, miRNA-gene and transcription factor-gene interaction networks were constructed. In addition, drug-gene interactions and target genes of methylprednisolone and glucosamine were analyzed. RESULTS A total of 1,776 differentially expressed genes were identified between IVDD and control samples, and the composition of the four immune cell types was significantly different between the IVDD and control samples. The Meturquoise and Mebrown modules were significantly related to immune cells, with significant differences between the control and IVDD samples. A diagnostic model was constructed using five key IVDD-autophagy genes. The area under the curve values of the model in the training and validation datasets were 0.907 and 0.984, respectively. The enrichment scores of the two pathways were significantly different between the IVDD and healthy groups. Eight pathways in the IVDD and healthy groups had significant differences. A total of 16 miRNAs and 3 transcription factors were predicted to be of great value. In total, 84 significantly related drugs were screened for five key IVDD-autophagy genes in the diagnostic model, and three common autophagy-related target genes of methylprednisolone and glucosamine were predicted. CONCLUSION This study constructs a reliable autophagy-related diagnostic model that is strongly related to the immune microenvironment of IVD. Autophagy-related genes, including PHF23, RAB24, STAT3, TOMM5, and DNAJB9, may participate in IVDD pathogenesis. In addition, methylprednisolone and glucosamine may exert therapeutic effects on IVDD by targeting CTSD, VEGFA, and BAX genes through apoptosis, as well as the sphingolipid and AGE-RAGE signaling pathways in diabetic complications.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Zhiwei Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Chuanyuan Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Zhihui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Genlong Jiao
- Department of Spine Surgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong, 523570, P.R. China.
| | - Xiongsheng Chen
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China.
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China.
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, P.R. China.
| |
Collapse
|
35
|
Song C, Xu Y, Peng Q, Chen R, Zhou D, Cheng K, Cai W, Liu T, Huang C, Fu Z, Wei C, Liu Z. Mitochondrial dysfunction: a new molecular mechanism of intervertebral disc degeneration. Inflamm Res 2023; 72:2249-2260. [PMID: 37925665 DOI: 10.1007/s00011-023-01813-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) is a chronic degenerative orthopedic illness that causes lower back pain as a typical clinical symptom, severely reducing patients' quality of life and work efficiency, and imposing a significant economic burden on society. IVDD is defined by rapid extracellular matrix breakdown, nucleus pulposus cell loss, and an inflammatory response. It is intimately related to the malfunction or loss of myeloid cells among them. Many mechanisms have been implicated in the development of IVDD, including inflammatory factors, oxidative stress, apoptosis, cellular autophagy, and mitochondrial dysfunction. In recent years, mitochondrial dysfunction has become a hot research topic in age-related diseases. As the main source of adenosine triphosphate (ATP) in myeloid cells, mitochondria are essential for maintaining myeloid cell survival and physiological functions. METHODS We searched the PUBMED database with the search term "intervertebral disc degeneration and mitochondrial dysfunction" and obtained 82 articles, and after reading the abstracts and eliminating 30 irrelevant articles, we finally obtained 52 usable articles. RESULTS Through a review of the literature, it was discovered that IVDD and cellular mitochondrial dysfunction are also linked. Mitochondrial dysfunction contributes to the advancement of IVDD by influencing a number of pathophysiologic processes such as mitochondrial fission/fusion, mitochondrial autophagy, cellular senescence, and cell death. CONCLUSION We examine the molecular mechanisms of IVDD-associated mitochondrial dysfunction and present novel directions for quality management of mitochondrial dysfunction as a treatment approach to IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Yulin Xu
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qinghua Peng
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Chenyi Huang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Cong Wei
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
36
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
37
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
39
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Chen D, Jiang X, Zou H. hASCs-derived exosomal miR-155-5p targeting TGFβR2 promotes autophagy and reduces pyroptosis to alleviate intervertebral disc degeneration. J Orthop Translat 2023; 39:163-176. [PMID: 36950198 PMCID: PMC10025964 DOI: 10.1016/j.jot.2023.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a complex chronic disease involving nucleus pulposus cells (NPCs) senescence, apoptosis, autophagy and extracellular matrix (ECM) degradation. In this study, we aimed to investigate the role of human adipose tissue stem cells (hASCs)-derived exosomal miR-155-5p targeting TGFβR2 in IDD and the mechanisms involved. Then miRNA sequencing was performed, and hASCs-derived Exo (hASCs-Exo) was extracted and characterized. METHODS First, NPCs were treated with different concentrations of LPS. Then miRNA sequencing was performed, and hASCs-Exo was extracted and characterized. NPCs were treated with PBS or autophagy inhibitor 3-MA. NPCs were transfected with miR-155-5p mimic, si-TGFβR2 and negative control. Cell viability, apoptosis, ROS, caspase-1+PI, pyroptosis markers, inflammatory cytokines, autophagy markers, Aggrecan, MMP13, and Akt/mTOR pathway-related factors were measured. Bioinformatics prediction and dual-luciferase were performed to verify the binding sites of miR-155-5p to TGFβR2. Finally, we validated the role of hASCs-derived exosomal miR-155-5p on IDD in vivo. RESULTS LPS promoted pyroptosis of NPCs, and inhibited autophagy and ECM synthesis. MiR-155-5p was characterized as an inflammation-related miRNA in NPCs. HASCs-derived exosomal miR-155-5p inhibited pyroptosis of NPCs and promoted autophagy and ECM synthesis. After bioinformatics prediction and verification, it was found that miR-155-5p targeted TGFβR2. Moreover, miR-155-5p targeted TGFβR2 to promote autophagy and inhibit pyroptosis in NPCs. In vivo experiments revealed that hASCs-derived exosomal miR-155-5p alleviated IDD in rats. CONCLUSIONS HASCs-derived exosomal miR-155-5p alleviated IDD by targeting TGFβR2 to promote autophagy and reduce pyroptosis. Our study may provide a new therapeutic target for IDD. TRANSLATIONAL POTENTIAL OF THIS ARTICLE HASCs-derived exosomal miR-155-5p is expected to be a biomarker for clinical treatment of IDD. Our study may provide a new therapeutic target for IDD.
Collapse
|
41
|
Kuang W, Jiang C, Yu C, Hu J, Duan Y, Chen Z. A microarray data analysis investigating the pathogenesis and potential biomarkers of autophagy and ferroptosis in intervertebral disc degeneration. Front Genet 2023; 13:1090467. [PMID: 36685932 PMCID: PMC9846041 DOI: 10.3389/fgene.2022.1090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Intervertebral disc degeneration (IDD) entails complex pathological changes and causes lower back pain (LBP). However, there is still a lack of understanding of the mechanisms involved in IDD, particularly regarding the roles of autophagy and ferroptosis. The current study used microarray data to investigate the pathogenesis of IDD and potential biomarkers related to autophagy and ferroptosis in IDD. Methods: Differentially expressed genes (DEGs) were identified by analyzing the mRNA and miRNA expression profiles of IDD patients from the Gene Expression Omnibus (GEO). The protein-protein interaction network, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were utilized. The Human Autophagy Database (HADb) and Ferroptosis Database were used in conjunction with hub genes to identify autophagy- and ferroptosis-related genes. The Transcription Factor -hub gene-miRNA network was constructed. Lastly, the expression of DEGs in normal and degenerated nucleus pulposus cells (NPCs) was investigated via the quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: A total of 362 DEGs associated with IDD were identified. GO and KEGG analyses indicated that oxidative stress, extracellular matrix, PI3K-AKT signaling pathway, and ferroptosis were key factors in IDD occurrence. GSEA indicated that IDD was associated with changes in autophagy, iron ion homeostasis, extracellular matrix, and oxidative stress. Eighty-nine hub genes were obtained, including five that were autophagy-related and three that were ferroptosis-related. Of these, TP53 and SESN2 were the intersections of autophagy- and ferroptosis-related genes. In qRT-PCR analysis, CANX, SLC38A1, and TP53 were downregulated in degenerative NPCs, whereas GNAI3, SESN2, and VAMP3 were upregulated. Conclusion: The current study revealed aspects of autophagy- and ferroptosis-related genes involved in IDD pathogenesis, warranting further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Chen
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
43
|
Mesenchymal Stem Cells May Alleviate the Intervertebral Disc Degeneration by Reducing the Oxidative Stress in Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:6082377. [PMID: 36238530 PMCID: PMC9551678 DOI: 10.1155/2022/6082377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.
Collapse
|
44
|
Chen H, Zhou J, Zhang G, Luo Z, Li L, Kang X. Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration. Cell Prolif 2022; 56:e13338. [PMID: 36193577 PMCID: PMC9816935 DOI: 10.1111/cpr.13338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.
Collapse
Affiliation(s)
- Hai‐Wei Chen
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Jian‐Wei Zhou
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| | - Guang‐Zhi Zhang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Zhang‐Bin Luo
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Lei Li
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Xue‐Wen Kang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| |
Collapse
|
45
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
46
|
Lv B, Gan W, Cheng Z, Wu J, Chen Y, Zhao K, Zhang Y. Current Insights Into the Maintenance of Structure and Function of Intervertebral Disc: A Review of the Regulatory Role of Growth and Differentiation Factor-5. Front Pharmacol 2022; 13:842525. [PMID: 35754493 PMCID: PMC9213660 DOI: 10.3389/fphar.2022.842525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IDD), characterized by conversion of genotypic and phenotypic, is a major etiology of low back pain and disability. In general, this process starts with alteration of metabolic homeostasis leading to ongoing inflammatory process, extracellular matrix degradation and fibrosis, diminished tissue hydration, and impaired structural and mechanical functionality. During the past decades, extensive studies have focused on elucidating the molecular mechanisms of degeneration and shed light on the protective roles of various factors that may have the ability to halt and even reverse the IDD. Mutations of GDF-5 are associated with several human and animal diseases that are characterized by skeletal deformity such as short digits and short limbs. Growth and differentiation factor-5 (GDF-5) has been shown to be a promise biological therapy for IDD. Substantial literature has revealed that GDF-5 can decelerate the progression of IDD on the molecular, cellular, and organ level by altering prolonged imbalance between anabolism and catabolism. GDF family members are the central signaling moleculars in homeostasis of IVD and upregulation of their gene promotes the expression of healthy nucleus pulposus (NP) cell marker genes. In addition, GDF signaling is able to induce mesenchymal stem cells (MSCs) to differentiate into NPCs and mobilize resident cell populations as chemotactic signals. This review will discuss the promising critical role of GDF-5 in maintenance of structure and function of IVDs, and its therapeutic role in IDD endogenous repair.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Gan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Zheng Y, Mei L, Li S, Ma T, Xia B, Hao Y, Gao X, Wei B, Wei Y, Jing D, Luo Z, Huang J. Pulsed Electromagnetic Field Alleviates Intervertebral Disc Degeneration by Activating Sirt1-Autophagy Signaling Network. Front Bioeng Biotechnol 2022; 10:853872. [PMID: 35387300 PMCID: PMC8978825 DOI: 10.3389/fbioe.2022.853872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is regarded as a major contributor to low back pain (LBP), causing serious economic burden on individuals and society. Unfortunately, there are limited effective treatment for IVD degeneration. Pulsed electromagnetic field (PEMF) is an economical and effective physical therapy method, with reduced side-effects. It offers certain protection to a number of degenerative diseases. Therefore, understanding the underlying mechanism of PEMF on IVD is important for improving the PEMF therapeutic efficiency. In this study, PEMF up-regulated extracellular matrix (ECM) related genes in degenerated nucleus pulposus (NP) cells. It also increased SIRT1 expression and promoted autophagy in degenerated NP cells. In contrast, the autophagy suppressor 3-methyladenine (3-MA) reversed the beneficial effect of PEMF on ECM production. Similarly, the SIRT1 enzyme activity suppressor EX 527 also inhibited the effect of PEMF on autophagy and ECM production in NP cells, thereby suggesting that PEMF regulated ECM related genes expression through SIRT1-autophagy signaling pathway. Lastly, PEMF significantly reduced IVD degeneration in a rat model of IVD degeneration in vivo. In summary, our study uncovers a critical role of SIRT1-dependent autophagy signaling pathway in ECM protection and thus in the establishment of therapeutic effect of PEMF on IVD degeneration.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Xia
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yiming Hao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue Gao
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Bin Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yitao Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Oxidative Stress in Intervertebral Disc Degeneration: New Insights from Bioinformatic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2239770. [PMID: 35401932 PMCID: PMC8991415 DOI: 10.1155/2022/2239770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress has been proved to play important roles in the development of intervertebral disc degeneration (IDD); however, the underlying mechanism remains obscure to date. The aim of this study was to elucidate the vital roles of oxidative stress-related genes in the development of IDD using strict bioinformatic algorithms. The microarray data relevant to the IDD was downloaded from Gene Expression Omnibus database for further analysis. A series of bioinformatic strategies were used to determine the oxidative stress-related and IDD-related genes (OSIDDRGs), perform the function enrichment analysis and protein-protein interaction analysis, construct the lncRNA-miRNA-mRNA regulatory network, and investigate the potential relationship of oxidative stress to immunity abnormality and autophagy in IDD. We observed a significantly different status of oxidative stress between normal intervertebral disc tissues and IDD tissues. A total of 72 OSIDDRGs were screened out for the further function enrichment analysis, and 10 hub OSIDDRGs were selected to construct the lncRNA-miRNA-mRNA regulatory network. There was a very close association of oxidative stress with immunity abnormality and autophagy in IDD. Taken together, our findings can provide new insights into the mechanism research of oxidative stress in the development of IDD and offer new potential targets for the treatment strategies.
Collapse
|
49
|
Zhang JM, Wang ZG, He ZY, Qin L, Wang J, Zhu WT, Qi J. Cyclic mechanical strain with high-tensile triggers autophagy in growth plate chondrocytes. J Orthop Surg Res 2022; 17:191. [PMID: 35346257 PMCID: PMC8962562 DOI: 10.1186/s13018-022-03081-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Mechanical loading has been widely considered to be essential for growth plate to maintain metabolism and development. Cyclic mechanical strain has been demonstrated to induce autophagy, whereas the relationship between cyclic tensile strain (CTS) and autophagy in growth plate chondrocytes (GPCs) is not clear. The objective of this study was to investigate whether CTS can regulate autophagy in GPCs in vitro and explore the potential mechanisms of this regulation.
Methods
The 2-week-old Sprague–Dawley rat GPCs were subjected to CTS of varying magnitude and duration at a frequency of 2.0 Hz. The mRNA levels of autophagy-related genes were measured by RT-qPCR. The autophagy in GPCs was verified by transmission electron microscopy (TME), immunofluorescence and Western blotting. The fluorescence-activated cell sorting (FACS) was employed to detect the percentage of apoptotic and necrotic cells.
Results
In GPCs, CTS significantly increased the mRNA and protein levels of autophagy-related genes, such as LC3, ULK1, ATG5 and BECN1 in a magnitude- and time-dependent manner. There was no significant difference in the proportion of apoptotic and necrotic cells between control group and CTS group. The autophagy inhibitors, 3-methyladenine (3MA) and chloroquine (CQ) reversed the CTS-induced autophagy via promoting the formation of autophagosomes. Cytochalasin D (cytoD), an inhibitor of G-actin polymerization into F-actin, could effectively block the CTS-induced autophagy in GPCs.
Conclusion
Cyclic mechanical strain with high-tensile triggers autophagy in GPCs, which can be suppressed by 3MA and CQ, and cytoskeletal F-actin microfilaments organization plays a key role in chondrocytes’ response to mechanical loading.
Collapse
|