1
|
Świerczek A, Batko D, Wyska E. The Role of Pharmacometrics in Advancing the Therapies for Autoimmune Diseases. Pharmaceutics 2024; 16:1559. [PMID: 39771538 PMCID: PMC11676367 DOI: 10.3390/pharmaceutics16121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine. The aim of this review is to explore the diverse roles that pharmacometrics has played in addressing the challenges associated with DDD and personalized therapies in the treatment of AIDs. Methods: This review synthesizes research from the past two decades on pharmacometric methodologies, including Physiologically Based Pharmacokinetic (PBPK) modeling, Pharmacokinetic/Pharmacodynamic (PK/PD) modeling, disease progression (DisP) modeling, population modeling, model-based meta-analysis (MBMA), and Quantitative Systems Pharmacology (QSP). The incorporation of artificial intelligence (AI) and machine learning (ML) into pharmacometrics is also discussed. Results: Pharmacometrics has demonstrated significant potential in optimizing dosing regimens, improving drug safety, and predicting patient-specific responses in AIDs. PBPK and PK/PD models have been instrumental in personalizing treatments, while DisP and QSP models provide insights into disease evolution and pathophysiological mechanisms in AIDs. AI/ML implementation has further enhanced the precision of these models. Conclusions: Pharmacometrics plays a crucial role in bridging pre-clinical findings and clinical applications, driving more personalized and effective treatments for AIDs. Its integration into DDD and translational science, in combination with AI and ML algorithms, holds promise for advancing therapeutic strategies and improving autoimmune patients' outcomes.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (D.B.); (E.W.)
| | | | | |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Liu Z, Song L, Yang J, Liu H, Zhang Y, Pi X, Yan Y, Chen H, Yu D, Yin C, Liu T, Li X, Zhang C, Li D, Wang Z, Xiao W. Discovery and preclinical evaluation of KYS202004A, a novel bispecific fusion protein targeting TNF-α and IL-17A, in autoimmune disease models. Int Immunopharmacol 2024; 136:112383. [PMID: 38843642 DOI: 10.1016/j.intimp.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
The treatment of autoimmune and inflammatory diseases often requires targeting multiple pathogenic pathways. KYS202004A is a novel bispecific fusion protein designed to antagonize TNF-α and IL-17A, pivotal in the pathophysiology of autoimmune and inflammatory diseases. Our initial efforts focused on screening for optimal structure by analyzing expression levels, purity, and binding capabilities. The binding affinity of KYS202004A to TNF-α and IL-17A was evaluated using SPR. In vitro, we assessed the inhibitory capacity of KYS202004A on cytokine-induced CXCL1 expression in HT29 cells. In vivo, its efficacy was tested using a Collagen-Induced Arthritis (CIA) model in transgenic human-IL-17A mice and an imiquimod-induced psoriasis model in cynomolgus monkeys. KYS202004A demonstrated significant inhibition of IL-17A and TNF-α signaling pathways, outperforming the efficacy of monotherapeutic agents ixekizumab and etanercept in reducing CXCL1 expression in vitro and ameliorating disease markers in vivo. In the CIA model, KYS202004A significantly reduced clinical symptoms, joint destruction, and serum IL-6 concentrations. The psoriasis model revealed that KYS202004A, particularly at a 2 mg/kg dose, was as effective as the combination of ixekizumab and etanercept. This discovery represents a significant advancement in treating autoimmune and inflammatory diseases, offering a dual-targeted therapeutic approach with enhanced efficacy over current monotherapies.
Collapse
Affiliation(s)
- Zhihang Liu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Liying Song
- Department of Oncology, The First People's Hospital of Lianyungang, No. 182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China
| | - Jiarui Yang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Han Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, China
| | - Yating Zhang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Xuelei Pi
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Yuanyuan Yan
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Hongna Chen
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Dan Yu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Chengkai Yin
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Tianyan Liu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Chenfeng Zhang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Deshan Li
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China.
| |
Collapse
|
4
|
Tsai WTK, Li Y, Yin Z, Tran P, Phung Q, Zhou Z, Peng K, Qin D, Tam S, Spiess C, Brumm J, Wong M, Ye Z, Wu P, Cohen S, Carter PJ. Nonclinical immunogenicity risk assessment for knobs-into-holes bispecific IgG 1 antibodies. MAbs 2024; 16:2362789. [PMID: 38845069 PMCID: PMC11164226 DOI: 10.1080/19420862.2024.2362789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.
Collapse
Affiliation(s)
- Wen-Ting K. Tsai
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Yinyin Li
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhaojun Yin
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Peter Tran
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Qui Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Zhenru Zhou
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Kun Peng
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Dan Qin
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Sien Tam
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, Inc, South San Francisco, CA, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Patrick Wu
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Sivan Cohen
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
5
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
6
|
Designing antibodies as therapeutics. Cell 2022; 185:2789-2805. [PMID: 35868279 DOI: 10.1016/j.cell.2022.05.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Antibody therapeutics are a large and rapidly expanding drug class providing major health benefits. We provide a snapshot of current antibody therapeutics including their formats, common targets, therapeutic areas, and routes of administration. Our focus is on selected emerging directions in antibody design where progress may provide a broad benefit. These topics include enhancing antibodies for cancer, antibody delivery to organs such as the brain, gastrointestinal tract, and lungs, plus antibody developability challenges including immunogenicity risk assessment and mitigation and subcutaneous delivery. Machine learning has the potential, albeit as yet largely unrealized, for a transformative future impact on antibody discovery and engineering.
Collapse
|
7
|
Nakada T, Mager DE. Systems model identifies baseline cytokine concentrations as potential predictors of rheumatoid arthritis inflammatory response to biologics. Br J Pharmacol 2022; 179:4063-4077. [PMID: 35355255 DOI: 10.1111/bph.15845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Circulating cytokines are central pathological mediators of inflammatory autoimmune diseases like rheumatoid arthritis (RA). Immunological diversity in patients might contribute to inadequate responses to biological drugs. To address this therapeutic challenge, we developed a mathematical model that simultaneously describes temporal patterns of drug disposition for several biologics and their corresponding targeted cytokines, which were linked to triggering inflammatory responses. EXPERIMENTAL APPROACH A modeling framework was applied to RA-relevant cytokines regulating C-reactive protein (CRP) as an inflammatory marker. Clinical data were extracted from the literature for anakinra, canakinumab, infliximab, secukinumab, and tocilizumab, along with their corresponding cytokines: interleukin-1 receptor antagonist, IL-1β, tumor necrosis factor α (TNFα), IL-17A, and IL-6 receptor (IL-6R). Based on prior knowledge of regulatory mechanisms, cytokines were integrated with CRP profiles. KEY RESULTS The model well captured all serum concentration-time profiles of cytokines and CRP ratios to respective baselines following drug treatment with good precision. On external validation, reasonable model-performance on CRP dynamics, including rebound effects, was confirmed with clinical data not used in model development. Model-based simulations demonstrated that serum infliximab concentrations were accurately recapitulated in both a dose- and baseline TNFα-dependent manner. Furthermore, high baseline profiles of both IL-1β and/or targeted cytokines could be predictors of poor responses to biologics targeting TNFα and IL-6R, although the impact of IL-1β must be carefully interpreted. CONCLUSIONS AND IMPLICATION Our model provides a quantitative platform to guide targeting and dosing strategies, including combination and/or sequential therapy, according to distinct baseline cytokine patterns in RA patients.
Collapse
Affiliation(s)
- Tomohisa Nakada
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.,Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.,Enhanced Pharmacodynamics, LLC, Buffalo, NY, USA
| |
Collapse
|
8
|
Kroenke MA, Barger TE, Hu J, Miller MJ, Kalenian K, He L, Hsu H, Bartley Y, Chow VFS, Teixeira Dos Santos MC, Sullivan BA, Cheng LE, Parnes JR, Padaki R, Kuhns S, Mytych DT. Immune Complex Formation Is Associated With Loss of Tolerance and an Antibody Response to Both Drug and Target. Front Immunol 2022; 12:782788. [PMID: 34970265 PMCID: PMC8712722 DOI: 10.3389/fimmu.2021.782788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
AMG 966 is a bi-specific, heteroimmunoglobulin molecule that binds both tumor necrosis factor alpha (TNFα) and TNF-like ligand 1A (TL1A). In a first-in-human clinical study in healthy volunteers, AMG 966 elicited anti-drug antibodies (ADA) in 53 of 54 subjects (98.1%), despite a paucity of T cell epitopes observed in T cell assays. ADA were neutralizing and bound to all domains of AMG 966. Development of ADA correlated with loss of exposure. In vitro studies demonstrated that at certain drug-to-target ratios, AMG 966 forms large immune complexes with TNFα and TL1A, partially restoring the ability of the aglycosylated Fc domain to bind FcγRIa and FcγRIIa, leading to the formation of ADA. In addition to ADA against AMG 966, antibodies to endogenous TNFα were also detected in the sera of subjects dosed with AMG 966. This suggests that the formation of immune complexes between a therapeutic and target can cause loss of tolerance and elicit an antibody response against the target.
Collapse
Affiliation(s)
- Mark A Kroenke
- Clinical Immunology, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| | - Troy E Barger
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Jenny Hu
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Mieke Jill Miller
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Kevin Kalenian
- Process Development, Attribute Sciences, Amgen, Thousand Oaks, CA, United States
| | - Lidong He
- Process Development, Attribute Sciences, Amgen, Thousand Oaks, CA, United States
| | - Hailing Hsu
- Inflammation Research, Amgen, Thousand Oaks, CA, United States
| | | | - Vincent Fung-Sing Chow
- Clinical Pharmacology, Modeling and Simulation, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| | | | - Barbara A Sullivan
- Clinical Biomarkers and Diagnostics, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| | - Laurence E Cheng
- Early Development, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| | - Jane R Parnes
- Early Development, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| | - Rupa Padaki
- Process Development, Attribute Sciences, Amgen, Thousand Oaks, CA, United States
| | - Scott Kuhns
- Process Development, Attribute Sciences, Amgen, Thousand Oaks, CA, United States
| | - Daniel T Mytych
- Clinical Immunology, Translational Medicine, Amgen, Thousand Oaks, CA, United States
| |
Collapse
|
9
|
Kroenke MA, Milton MN, Kumar S, Bame E, White JT. Immunogenicity Risk Assessment for Multi-specific Therapeutics. AAPS JOURNAL 2021; 23:115. [PMID: 34741215 PMCID: PMC8571146 DOI: 10.1208/s12248-021-00642-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The objective of this manuscript is to provide the reader with a hypothetical case study to present an immunogenicity risk assessment for a multi-specific therapeutic as part of Investigational New Drug (IND) application. In order to provide context for the bioanalytical strategies used to support the multi-specific therapeutic presented herein, the introduction focuses on known immunogenicity risk factors. The subsequent hypothetical case study applies these principles to a specific example HC-12, based loosely on anti-TNFα and anti-IL-17A bispecific molecules previously in development, structured as an example immunogenicity risk assessment for submission to health authorities. The risk of higher incidence and safety impact of anti-drug antibodies (ADA) due to large protein complexes is explored in the context of multi-specificity and multi-valency of the therapeutic in combination with the oligomeric forms of the targets.
Collapse
Affiliation(s)
| | - Mark N Milton
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Seema Kumar
- EMD Serono Research & Development Institute, Inc, Billerica, Massachusetts, USA
| | - Eris Bame
- Biogen, Cambridge, Massachusetts, USA
| | - Joleen T White
- Bill & Melinda Gates Medical Research Institute, One Kendall Square, Building 600, Suite 6-301, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
10
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
11
|
Zheng S, Shen F, Jones B, Fink D, Geist B, Nnane I, Zhou Z, Hall J, Malaviya R, Ort T, Wang W. Characterization of concurrent target suppression by JNJ-61178104, a bispecific antibody against human tumor necrosis factor and interleukin-17A. MAbs 2020; 12:1770018. [PMID: 32544369 PMCID: PMC7531573 DOI: 10.1080/19420862.2020.1770018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor (TNF) and interleukin (IL)-17A are pleiotropic cytokines implicated in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA) and psoriatic arthritis (PsA). JNJ-61178104 is a novel human anti-TNF and anti-IL-17A monovalent, bispecific antibody that binds to both human TNF and human IL-17A with high affinities and blocks the binding of TNF and IL-17A to their receptors in vitro. JNJ-61178104 also potently neutralizes TNF and IL-17A-mediated downstream effects in multiple cell-based assays. In vivo, treatment with JNJ-61178104 resulted in dose-dependent inhibition of cellular influx in a human IL-17A/TNF-induced murine lung neutrophilia model and the inhibitory effects of JNJ-61178104 were more potent than the treatment with bivalent parental anti-TNF or anti-IL-17A antibodies. JNJ-61178104 was shown to engage its targets, TNF and IL-17A, in systemic circulation measured as drug/target complex formation in normal cynomolgus monkeys (cyno). Surprisingly, quantitative target engagement assessment suggested lower apparent in vivo target-binding affinities for JNJ-61178104 compared to its bivalent parental antibodies, despite their similar in vitro target-binding affinities. The target engagement profiles of JNJ-61178104 in humans were in general agreement with the predicted profiles based on cyno data, suggesting similar differences in the apparent in vivo target-binding affinities. These findings show that in vivo target engagement of monovalent bispecific antibody does not necessarily recapitulate that of the molar-equivalent dose of its bivalent parental antibody. Our results also offer valuable insights into the understanding of the pharmacokinetics/pharmacodynamics and target engagement of other bispecific biologics against dimeric and/or trimeric soluble targets in vivo.
Collapse
Affiliation(s)
- Songmao Zheng
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen R&D , Spring House, PA, USA
| | - Fang Shen
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Brian Jones
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Damien Fink
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen R&D , Spring House, PA, USA
| | - Brian Geist
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen R&D , Spring House, PA, USA
| | - Ivo Nnane
- Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Zhao Zhou
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Jeff Hall
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Ravi Malaviya
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Tatiana Ort
- Immunology Discovery, Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Janssen R&D , Spring House, PA, USA
| |
Collapse
|