1
|
Deng H, Wang Y, Dai Y, Wang Q, Lu H, Wang Q. Unraveling the genetic mysteries of sarcopenia: A bioinformatics approach. Technol Health Care 2025; 33:1140-1153. [PMID: 40105173 DOI: 10.1177/09287329241291323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Background As life expectancy increases and the global population ages, the incidence of sarcopenia is also increasing, highlighting the need for better diagnosis and treatment methods.ObjectiveTo study the genetic expression of sarcopenia using bioinformatics methods.MethodsA Weighted Gene Coexpression Network Analysis (WGCNA) was conducted to construct coexpression networks, along with protein-protein interaction networks. Diagnostic biomarker potential was evaluated using receiver operating characteristic curves. An analysis of Single-Sample Gene Set Enrichment Analysis (ssGSEA) was performed in order to determine the amount of immune cell infiltration. We analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) enrichment using the KEGG.ResultsWGCNA identified modules linked to bone metabolism, ssGSEA showed unique gene enrichment patterns, and 268 genes were found to be differentially expressed in sarcopenia. Fourteen co-expression modules related to bone metabolism were identified, with one showing a strong positive correlation. KEGG pathway analysis indicated downregulation of the renin-angiotensin system and Alzheimer's disease pathways. The differentially expressed genes were primarily involved in adipocyte differentiation.ConclusionThis study analyzes genetic changes and immune cell patterns in sarcopenia, providing insights into its causes and potential diagnostic markers for future research on treatments.
Collapse
Affiliation(s)
- Hui Deng
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuming Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Dai
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Lu
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
3
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Li J, Shen Z, Lin Y, Wang Z, Li M, Sun H, Wang Q, Zhao C, Xu J, Lu X, Gao W. DNA methylation of skeletal muscle function-related secretary factors identifies FGF2 as a potential biomarker for sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1209-1217. [PMID: 38641928 PMCID: PMC11154778 DOI: 10.1002/jcsm.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by progressive loss of muscle mass and function due to aging. DNA methylation has been identified to play important roles in the dysfunction of skeletal muscle. The aim of our present study was to explore the whole blood sample-based methylation changes of skeletal muscle function-related factors in patients with sarcopenia. METHODS The overall DNA methylation levels were analysed by using MethlTarget™ DNA Methylation Analysis platform in a discovery set consistent of 50 sarcopenic older adults (aged ≥65 years) and 50 age- and sex-matched non-sarcopenic individuals. The candidate differentially methylated regions (DMRs) were further validated by Methylation-specific PCR (MSP) in another two independent larger sets and confirmed by pyrosequencing. Receiver operating characteristic (ROC) curve analysis was used to determine the optimum cut-off levels of fibroblast growth factor 2 (FGF2)_30 methylation best predicting sarcopenia and area under the ROC curve (AUC) was measured. The correlation between candidate DMRs and the risk of sarcopenia was investigated by univariate analysis and multivariate logistic regression analysis. RESULTS Among 1149 cytosine-phosphate-guanine (CpG) sites of 27 skeletal muscle function-related secretary factors, 17 differentially methylated CpG sites and 7 differentially methylated regions (DMRs) were detected between patients with sarcopenia and control subjects in the discovery set. Further methylation-specific PCR identified that methylation of fibroblast growth factor 2 (FGF2)_30 was lower in patients with sarcopenia and the level was decreased as the severity of sarcopenia increased, which was confirmed by pyrosequencing. Correlation analysis demonstrated that the methylation level of FGF2_30 was positively correlated to ASMI (r = 0.372, P < 0.001), grip strength (r = 0.334, P < 0.001), and gait speed (r = 0.411, P < 0.001). ROC curve analysis indicated that the optimal cut-off value of FGF2_30 methylation level that predicted sarcopenia was 0.15 with a sensitivity of 84.6% and a specificity of 70.1% (AUC = 0.807, 95% CI = 0.756-0.858, P < 0.001). Multivariate logistic regression analyses showed that lower FGF2_30 methylation level (<0.15) was significantly associated with increased risk of sarcopenia even after adjustment for potential confounders including age, sex, and BMI (adjusted OR = 9.223, 95% CI: 6.614-12.861, P < 0.001). CONCLUSIONS Our results suggest that lower FGF2_30 methylation is correlated with the risk and severity of sarcopenia in the older adults, indicating that FGF2 methylation serve as a surrogate biomarker for the screening and evaluation of sarcopenia.
Collapse
Affiliation(s)
- Jia‐Wen Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Zheng‐Kai Shen
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Yu‐Shuang Lin
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Zhi‐Yue Wang
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Mei‐Lin Li
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Hui‐Xian Sun
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Quan Wang
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Can Zhao
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Jin‐Shui Xu
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
6
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
7
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
8
|
Kmiołek T, Filipowicz G, Bogucka D, Wajda A, Ejma-Multański A, Stypińska B, Modzelewska E, Kaliberda Y, Radkowski M, Targowski T, Wrona J, Paradowska-Gorycka A. Aging and the impact of global DNA methylation, telomere shortening, and total oxidative status on sarcopenia and frailty syndrome. Immun Ageing 2023; 20:61. [PMID: 37964387 PMCID: PMC10644469 DOI: 10.1186/s12979-023-00384-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Aging is a biological event that influences many organs and systems. Both sarcopenia and frailty syndrome refer to geriatric conditions with overlapping phenotypes. Many mechanisms are involved in the aging process such as DNA methylation telomeres which are susceptible to oxidative stress, and inflammations which result in telomere shortening, leading to chromosomal instability. The study aimed to determine the associations between these processes, frailty and sarcopenia syndrome. Global DNA methylation was analyzed using the ELISA method. Telomere length was analyzed using qPCR. Total oxidative status (TOS) was analyzed using a colorimetric method. The present study revealed that the main factor affecting methylation, telomeres length and level of total oxidant stress was age.
Collapse
Affiliation(s)
- Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland.
| | - Gabriela Filipowicz
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Diana Bogucka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Ewa Modzelewska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Yana Kaliberda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Marcin Radkowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Tomasz Targowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Julia Wrona
- Collegium Medicum University of Jan Kochanowski, 25-317, Kielce, Poland
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| |
Collapse
|
9
|
Xu JQ, Pan YK, Zhang JX, Dai SX, Xu LS. Sarcopenia in liver cirrhosis: perspectives from epigenetics and microbiota. Front Med (Lausanne) 2023; 10:1264205. [PMID: 37881635 PMCID: PMC10595017 DOI: 10.3389/fmed.2023.1264205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Sarcopenia is characterized by the loss of muscle mass and function. It is well known that sarcopenia is often associated with aging, while in recent years, sarcopenia comorbid with chronic diseases such as cirrhosis has attracted widespread attention, whose underlying molecular mechanisms remain unclear. Since cirrhosis and sarcopenia are assumed to be closely interrelated in terms of pathogenesis, this review innovatively discussed the role of epigenetic modifications and microecological dysregulation in sarcopenia in the context of liver cirrhosis. Here we illustrated the relationship between sarcopenia and cirrhosis in the aspect of epigenetics, dysbiosis, and the crosstalk between gene modifications and intestinal microecology. Furthermore, the alterations in cirrhosis patients with sarcopenia, such as inflammatory response and oxidative stress, are found to present synergistic effects in the pathways of epigenetics and dysbiosis leading to sarcopenia. This review proposes that microbiome-based therapies are promising to break the vicious cycle between epigenetic modification and dysbiosis, providing strong support for the use of intestinal microecological interventions to prevent sarcopenia in cirrhotic patients.
Collapse
Affiliation(s)
- Jia-qi Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu-ke Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-xin Zhang
- Department of Joint Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shi-xue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-shu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Meng X, Tian C, Xie C, Zhang H, Wang H, Zhang M, Lu Z, Li D, Chen L, Gao T. Punicalagin protects against impaired skeletal muscle function in high-fat-diet-induced obese mice by regulating TET2. Food Funct 2023; 14:3126-3138. [PMID: 36929898 DOI: 10.1039/d2fo03926e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The function of skeletal muscles can be markedly hampered by obesity. Ten-eleven translocation 2 (TET2) is an important therapeutic target for ameliorating skeletal muscle dysfunction. Our previous study revealed that punicalagin (PUN) regulated TET2 in obese mice; however, whether PUN can prevent obesity-induced skeletal muscle dysfunction by regulating TET2 remains unclear. In the present study, 40 male C57BL/6J mice were divided into four groups (n = 10 per group): the control (CON) group, the high-fat-diet (HFD, negative control) group, the resveratrol (positive control) group, and the PUN group. The ratio of gastrocnemius weight to body weight (0.0097 ± 0.0016 vs. 0.0080 ± 0.0011), the grip strength (120.04 g ± 11.10 vs. 98.89 g ± 2.79), and the muscle fiber count (314.56 per visual field ± 92.73 vs. 236.44 per visual field ± 50.58) in the PUN group were higher than those in the HFD group. Moreover, the levels of the TET2 protein, 5-hydroxymethylcytosine (5hmC), and 5-formylcytosine (5fC) in skeletal muscles were significantly lower in the HFD group than those in the CON group; these levels increased after PUN treatment. Compared with the HFD group, the phosphorylation level of AMP-activated protein kinase (AMPK) α in the PUN group was higher, which effectively enhanced the stability of the TET2 protein. Besides, the ratio of (succinic acid + fumaric acid)/α-ketoglutarate in the PUN group was lower than that in the HFD group (43.21 ± 12.42 vs. 99.19 ± 37.07), and a lower ratio led to a higher demethylase activity of TET2 in the PUN group than in the HFD group. This study highlights that PUN supplementation protects against obesity-induced impairment of the skeletal muscle function via regulating the protein stability of TET2 and the enzymatic activity of TET2 demethylation.
Collapse
Affiliation(s)
- Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Hao Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Haoyu Wang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Mai Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Zhenquan Lu
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Lei Chen
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
11
|
CPNE1 regulates myogenesis through the PERK-eIF2α pathway mediated by endoplasmic reticulum stress. Cell Tissue Res 2023; 391:545-560. [PMID: 36525128 PMCID: PMC9974702 DOI: 10.1007/s00441-022-03720-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Sarcopenia is characterized by a progressive reduction in muscle mass or muscle physiological function associated with aging, but the relevant molecular mechanisms are not clear. Here, we identify the role of the myogenesis modifier CPNE1 in sarcopenia. CPNE1 is upregulated in aged skeletal muscles and young skeletal muscle satellite cells with palmitate-induced atrophy. The overexpression of CPNE1 hinders proliferation and differentiation and increases muscle atrophy characteristics in young skeletal muscle-derived satellite cells. In addition, CPNE1 overexpression disrupts the balance of mitochondrial fusion and division and causes endoplasmic reticulum stress. We found that the effects of CPNE1 on mitochondrial function are dependent on the PERK/eIF2α/ATF4 pathway. The overexpression of CPNE1 in young muscles alters membrane lipid composition, reduces skeletal muscle fibrosis regeneration, and exercise capacity in mice. These effects were reversed by PERK inhibitor GSK2606414. Moreover, immunoprecipitation indicates that CPNE1 overexpression greatly increased the acetylation of PERK. Therefore, CPNE1 is an important modifier that drives mitochondrial homeostasis to regulate myogenic cell proliferation and differentiation via the PERK-eIF2α pathway, which could be a valuable target for age-related sarcopenia.
Collapse
|
12
|
Gómez-Carballa A, Pardo-Seco J, Pischedda S, Rivero-Calle I, Butler-Laporte G, Richards JB, Viz-Lasheras S, Martinón-Torres F, Salas A. Sex-biased expression of the TLR7 gene in severe COVID-19 patients: Insights from transcriptomics and epigenomics. ENVIRONMENTAL RESEARCH 2022; 215:114288. [PMID: 36152884 PMCID: PMC9508271 DOI: 10.1016/j.envres.2022.114288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
There is abundant epidemiological data indicating that the incidence of severe cases of coronavirus disease (COVID-19) is significantly higher in males than females worldwide. Moreover, genetic variation at the X-chromosome linked TLR7 gene has been associated with COVID-19 severity. It has been suggested that the sex-biased incidence of COVID-19 might be related to the fact that TLR7 escapes X-chromosome inactivation during early embryogenesis in females, thus encoding a doble dose of its gene product compared to males. We analyzed TLR7 expression in two acute phase cohorts of COVID-19 patients that used two different technological platforms, one of them in a multi-tissue context including saliva, nasal, and blood samples, and a third cohort that included different post-infection timepoints of long-COVID-19 patients. We additionally explored methylation patterns of TLR7 using epigenomic data from an independent cohort of COVID-19 patients stratified by severity and sex. In line with genome-wide association studies, we provide supportive evidence indicating that TLR7 has altered CpG methylation patterns and it is consistently downregulated in males compared to females in the most severe cases of COVID-19.
Collapse
Affiliation(s)
- A Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - J Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - S Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - I Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - G Butler-Laporte
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - J B Richards
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - S Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - F Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain.
| |
Collapse
|
13
|
Identifying the Potential Roles of PBX4 in Human Cancers Based on Integrative Analysis. Biomolecules 2022; 12:biom12060822. [PMID: 35740947 PMCID: PMC9221482 DOI: 10.3390/biom12060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
PBX4 belongs to the pre-B-cell leukemia homeobox (PBX) transcription factors family and acts as a transcriptional cofactor of HOX proteins participating in several pathophysiological processes. Recent studies have revealed that the dysregulation of PBX4 is closely related to multiple diseases, especially cancers. However, the research on PBX4’s potential roles in 33 cancers from the Cancer Genome Atlas (TCGA) is still insufficient. Therefore, we performed a comprehensive pan-cancer analysis to explore the roles of PBX4with multiple public databases. Our results showed that PBX4 was differentially expressed in 17 types of human cancer and significantly correlated to the pathological stage, tumor grade, and immune and molecular subtypes. We used the Kaplan–Meier plotter and PrognoScan databases to find the significant associations between PBX4 expression and prognostic values of multiple cancers. It was also found that PBX4 expression was statistically related to mutation status, DNA methylation, immune infiltration, drug sensitivity, and immune checkpoint blockade (ICB) therapy. Additionally, we found that PBX4 was involved in different functional states of multiple cancers from the single-cell resolution perspective. Enrichment analysis results showed that PBX4-related genes were enriched in the cell cycle process, MAPK cascade, ncRNA metabolic process, positive regulation of GTPase activity, and regulation of lipase activity and mainly participated in the pathways of cholesterol metabolism, base excision repair, herpes simplex virus 1 infection, transcriptional misregulation in cancer, and Epstein–Barr virus infection. Altogether, our integrative analysis could help in better understanding the potential roles of PBX4 in different human cancers.
Collapse
|
14
|
Li L, He Y, Jin N, Li H, Liu X. Effects of protein supplementation and exercise on delaying sarcopenia in healthy older individuals in Asian and non-Asian countries: A systematic review and meta-analysis. Food Chem X 2022; 13:100210. [PMID: 35128383 PMCID: PMC8808080 DOI: 10.1016/j.fochx.2022.100210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
While there is growing research interest in the effects of nutrition and exercise on delaying sarcopenia, the results are inconclusive and there is scarce information on regional patterns. This review evaluated the effects of the combination of protein supplementation and exercise on muscle strength, mass and physical performance, compared to exercise alone or with a placebo, in healthy older adults in Asian and non-Asian countries. Fourteen studies were included in the analysis, involving a total of 888 healthy older adults (>60 years). A significant increase in the lower-extremity strength was observed in the combined intervention group compared to the exercise group in Asian countries (SMD: 0.24, 95% CI [0.00, 0.47], p = 0.048, I2 = 0.0%). No statistical differences were found relating to upper-extremity strength, muscle mass and physical performance. Protein supplementation combined with exercise provides additional benefit on lower-extremity strength in healthy older adults with sarcopenia in Asian countries.
Collapse
Affiliation(s)
| | | | - Nini Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Immediate Effects of Whole-Body Vibration Associated with Squatting Exercises on Hemodynamic Parameters in Sarcopenic Older People: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211852. [PMID: 34831608 PMCID: PMC8617886 DOI: 10.3390/ijerph182211852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
Whole-body vibration (WBV) exercises have recently been introduced as a nonpharmacological therapeutic strategy for sarcopenic older people. The present study aimed to evaluate the effect of WBV exercise on hemodynamic parameters in sarcopenic older people. Forty older people, divided into groups of nonsarcopenic (NSG = 20) and sarcopenic (SG = 20), participated in the study and were cross randomized into two interventions of eight sets of 40 s each, these being squatting with WBV and squatting without WBV. Heart rate (HR), peak heart rate (peak HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), double product (DP), mean arterial pressure (MAP), and subjective perception of effort (SPE), were assessed at baseline, during, and after a single WBV session. The HR, peak HR, and DP variables were similar at baseline between groups. WBV exercise increased all the hemodynamic parameters both during and immediately after the intervention, in both groups (SG and NSG). The MAP values were similar at baseline between groups; however, in the NSG there was a significant increase during and immediately after the squatting with WBV intervention (p < 0.05). The HR behavior, in both groups, showed that there was an increase in HR after the first set of exercises with vibration and this increase was maintained until the final set. The absence of adverse effects of WBV exercise on the cardiovascular system and fatigue suggests this exercise modality is adequate and safe for sarcopenic older people.
Collapse
|
16
|
An L, Wang Y. Potential Roles of miRNA-1245a Regulatory Networks in Sarcopenia. Int J Gen Med 2021; 14:6807-6813. [PMID: 34703286 PMCID: PMC8523505 DOI: 10.2147/ijgm.s334501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Sarcopenia is a universal problem in elderly individuals. The molecular regulatory mechanisms in sarcopenia are not well understood. In the present study, we explored a possible molecular mechanism involved in the pathogenesis of sarcopenia. Methods Differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus (GEO) database. Signaling pathways related to these DEGs were identified by gene set enrichment analysis (GSEA). Pearson correlation was calculated for all the pairwise comparisons of gene expression values between coding genes and DEGs. Interactions between the proteins encoded by the DEGs were identified using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of the DEGs. Results Three differentially expressed miRNAs and 5 differentially expressed mRNAs were identified in association with DEGs. We found that miRNA-1245a expression in patients with sarcopenia was higher than that in healthy controls. The GSEA showed that many pathways, such as the JAK-STAT signaling pathway and pathways related to glioma, gap junctions, and regulation of the actin cytoskeleton, were enriched in the high-miRNA-1245a-expression group. A total of 127 miRNA-1245a-related mRNAs were identified. The GO and KEGG analyses revealed that miRNA-1245a had a strong effect on a number of fundamental biological processes, such as kinase activity, that are related to the development of sarcopenia. Conclusion Our analyses indicate that miRNA-1245a may be a potential key molecule in the diagnosis and treatment of sarcopenia, which provides a basis for the research of miRNA in sarcopenia.
Collapse
Affiliation(s)
- Li An
- Department of Geriatrics, Zhongda Hospital Southeast University,, Nanjing City, People's Republic of China
| | - Yao Wang
- Department of Endocrine, Zhongda Hospital Southeast University, Nanjing City, People's Republic of China
| |
Collapse
|
17
|
Gong H, Niu Q, Zhou Y, Wang YX, Xu XF, Hou KZ. Notum palmitoleoyl-protein carboxylesterase regulates Fas cell surface death receptor-mediated apoptosis via the Wnt signaling pathway in colon adenocarcinoma. Bioengineered 2021; 12:5241-5252. [PMID: 34402722 PMCID: PMC8806481 DOI: 10.1080/21655979.2021.1961657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common types of malignancy and accounts for >3 million deaths worldwide each year. The present study aimed to evaluate the role of notum palmitoleoyl-protein carboxylesterase (NOTUM) in in vivo and in vitro, and to identify the relationship between NOTUM and the apoptosis of COAD. Moreover, the present study aimed to investigate whether NOTUM regulated Fas cell surface death receptor (FAS)-mediated apoptosis was affected by the Wnt signaling pathway. Gene expression profiling interactive analysis (GEPIA) was used to predict the potential function of NOTUM. Western blotting and reverse transcription-quantitative PCR were conducted to detect the protein and mRNA expression levels of NOTUM in different tissues or cell lines. The occurrence and development of COAD was detected after NOTUM knockdown lentivirus administration. The apoptosis of COAD was also observed. SKL2001 was applied to examine whether the role of NOTUM was regulated by Wnt. GEPIA analysis demonstrated that NOTUM expression in COAD tumor tissue was higher compared with in normal tissues. Pair-wise gene correlation analysis identified a potential relationship between NOTUM and Wnt. NOTUM protein and mRNA expression levels in colon carcinoma tissues and RKO cells were increased. NOTUM knockdown lentivirus serves a role in inhibiting COAD development by reducing tumor proliferation, reducing tumor size, and increasing the level of apoptosis in vitro and in vivo. Moreover, NOTUM could increase apoptosis in COAD, which was regulated by FAS, and SKL2001 blocked the progress of apoptosis after NOTUM regulation by NOTUM knockdown lentivirus in vitro and in vivo. Collectively, the present results suggested that NOTUM may be able to regulate the apoptosis of COAD, and that Wnt may be the down-stream target signaling of NOTUM in apoptosis.
Collapse
Affiliation(s)
- Hua Gong
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Qiang Niu
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Yi Zhou
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Yun-Xia Wang
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital, Shanghai, P.R. China
| | - Ke-Zhu Hou
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| |
Collapse
|
18
|
Kottorou A, Dimitrakopoulos FI, Tsezou A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl Oncol 2021; 14:101101. [PMID: 33915516 PMCID: PMC8100623 DOI: 10.1016/j.tranon.2021.101101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cachexia is a multifactorial syndrome characterized by skeletal muscle loss, with or without adipose atrophy, irreversible through nutritional support, in the context of systemic inflammation and metabolic disorders. It is mediated by inflammatory reaction and affects almost 50% of all cancer patients, due to prominent systemic inflammation associated with the disease. The comprehension of the molecular mechanisms that are implicated in cancer cachexia sheds light on its pathogenesis and lays the foundations for the discovery of new therapeutic targets and biomarkers. Recently, ncRNAs, like microRNAs as well as lncRNAs and circRNAs seem to regulate pathways that are implicated in cancer cachexia pathogenesis, as it has been observed in animal models and in cancer cachexia patients, highlighting their therapeutic potential. Moreover, increasing evidence highlights the involvement of circulating and exosomal ncRNAs in the activation and maintenance of systemic inflammation in cancer and cancer-associated cachexia. In that context, the present review focuses on the clinical significance of ncRNAs in cancer-associated cachexia.
Collapse
Affiliation(s)
- Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | | | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
19
|
Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021; 65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality. Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function. In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions.
Collapse
|
20
|
Chang KV, Chen YC, Wu WT, Shen HJ, Huang KC, Chu HP, Han DS. Expression of Telomeric Repeat-Containing RNA Decreases in Sarcopenia and Increases after Exercise and Nutrition Intervention. Nutrients 2020; 12:nu12123766. [PMID: 33302352 PMCID: PMC7762552 DOI: 10.3390/nu12123766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
Sarcopenia is defined as aging-related loss of muscle mass and function. Telomere length in chromosomes shortens with age and is modulated by telomeric repeat-containing RNA (TERRA). This study aimed to explore the impact of aging and sarcopenia on telomere length and TERRA expression, and changes following strengthening exercise and nutrition intervention (supplement of branched-chain amino acids, calcium and vitamin D3) for 12 weeks in the sarcopenic population. Older adults (≥65 years old) were divided into non-sarcopenic controls (n = 36) and sarcopenic individuals (n = 36) after measurement of grip strength and body composition. The relative telomere length of leukocytes in all research participants was evaluated using the T/S ratio (telomere/single copy gene), and relative TERRA expression of leukocytes was determined by reverse-transcription qPCR (RT-qPCR). Generalized estimating equation (GEE) was used to analyze the influence of sarcopenia and intervention on the outcomes. There was no significant difference in telomere length between control subjects and participants with sarcopenia. TERRA expression was lower in sarcopenic participants compared to that in non-sarcopenic controls (5.18 ± 2.98 vs. 2.51 ± 1.89; p < 0.001). In the sarcopenic group, intervention significantly increased TERRA expression, but not telomere length. The GEE analysis demonstrated that TERRA expression was negatively associated with sarcopenia (β coefficient = −2.705, p < 0.001) but positively associated with intervention (β coefficient = 1.599, p = 0.023). Sarcopenia is associated with a decrease in TERRA expression in leukocytes. Rebound TERRA expression (returning to the level similar to the non-sarcopenic controls) was observed in the sarcopenic group after exercise and nutrition intervention. Future studies are warranted to examine the potential of TERRA as a biomarker for sarcopenia and its subsequent responses to intervention.
Collapse
Affiliation(s)
- Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan; (K.-V.C.); (W.-T.W.)
- Community and Geriatric Medicine Research Center, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-Chen Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; (Y.-C.C.); (H.-J.S.)
| | - Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan; (K.-V.C.); (W.-T.W.)
| | - Hong-Jhin Shen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; (Y.-C.C.); (H.-J.S.)
| | - Kuo-Chin Huang
- Community and Geriatric Medicine Research Center, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan;
- Department of Family Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsueh-Ping Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; (Y.-C.C.); (H.-J.S.)
- Correspondence: (H.-P.C.); (D.-S.H.); Tel.: +886-233-662487 (H.-P.C.); +886-223-717101(ext. 5001) (D.-S.H.)
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan; (K.-V.C.); (W.-T.W.)
- Community and Geriatric Medicine Research Center, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Health Science and Wellness Center, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (H.-P.C.); (D.-S.H.); Tel.: +886-233-662487 (H.-P.C.); +886-223-717101(ext. 5001) (D.-S.H.)
| |
Collapse
|
21
|
Khanal P, He L, Herbert AJ, Stebbings GK, Onambele-Pearson GL, Degens H, Morse CI, Thomis M, Williams AG. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women. Genes (Basel) 2020; 11:genes11121459. [PMID: 33291384 PMCID: PMC7762041 DOI: 10.3390/genes11121459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
There is a scarcity of studies that have investigated the role of multiple single nucleotide polymorphisms (SNPs) on a range of muscle phenotypes in an elderly population. The present study investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307 elderly Caucasian women (aged 60–91 years, 66.3 ± 11.3 kg). Skeletal muscle phenotypes included biceps brachii thickness, vastus lateralis cross-sectional areas, maximal hand grip strength, isometric knee extension and elbow flexion torque. Genotyping for 24 SNPs, chosen on their skeletal muscle structural or functional links, was conducted on DNA extracted from blood or saliva. Of the 24 SNPs, 10 were associated with at least one skeletal muscle phenotype. HIF1A rs11549465 was associated with three skeletal muscle phenotypes and PTK2 rs7460 and ACVR1B rs10783485 were each associated with two phenotypes. PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983, MSTN rs1805086, TRHR rs7832552 and FTO rs9939609 were each associated with one. Elderly women possessing favourable genotypes were 3.6–13.2% stronger and had 4.6–14.7% larger muscle than those with less favourable genotypes. These associations, together with future work involving a broader range of SNPs, may help identify individuals at particular risk of an age-associated loss of independence.
Collapse
Affiliation(s)
- Praval Khanal
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
- Correspondence: ; Tel.: +977-9841528705
| | - Lingxiao He
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Adam J. Herbert
- Department of Sport and Exercise, Birmingham City University, Birmingham B5 5JU, UK;
| | - Georgina K. Stebbings
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Gladys L. Onambele-Pearson
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunsas, Lithuania
- Pharmacy of Targu Mures, University of Medicine, 540142 Targu Mures, Romania
| | - Christopher I. Morse
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Alun G. Williams
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| |
Collapse
|
22
|
He L, Khanal P, Morse CI, Williams A, Thomis M. Associations of combined genetic and epigenetic scores with muscle size and muscle strength: a pilot study in older women. J Cachexia Sarcopenia Muscle 2020; 11:1548-1561. [PMID: 33058541 PMCID: PMC7749602 DOI: 10.1002/jcsm.12585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Inter-individual variance in skeletal muscle is closely related to genetic architecture and epigenetic regulation. Studies have examined genetic and epigenetic relationships with characteristics of ageing muscle separately, while no study has combined both genetic and epigenetic profiles in ageing muscle research. The aim of this study was to evaluate the association between combined genetic and methylation scores and skeletal muscle phenotypes in older women. METHODS Forty-eight older Caucasian women (aged 65-79 years) were included in this study. Biceps brachii thickness and vastus lateralis anatomical cross-sectional area (ACSAVL ) were measured by ultrasonography. Maximum isometric elbow flexion (MVCEF ) and knee extension (MVCKE ) torques were measured by a customized dynamometer. The muscle-driven genetic predisposition score (GPSSNP ) was calculated based on seven muscle-related single nucleotide polymorphisms (SNPs). DNA methylation levels of whole blood samples were analysed using Infinium MethylationEPIC BeadChip arrays. The DNA methylation score was calculated as a weighted sum of methylation levels of sarcopenia-driven CpG sites (MSSAR ) or an overall gene-wise methylation score (MSSNP , the mean methylation level of CpG sites located in muscle-related genes). Linear regression models were built to study genetic and epigenetic associations with muscle size and strength. Three models were built with both genetic and methylation scores: (1) MSSAR + GPSSNP , (2) MSSNP + GPSSNP , and (3) gene-wise combined scores which were calculated as the ratio of the SNP score to the mean methylation level of promoters in the corresponding gene. Additional models with only a genetic or methylation score were also built. All models were adjusted for age and BMI. RESULTS MSSAR was negatively associated with ACSAVL , MVCEF , and MVCKE and explained 10.1%, 35.5%, and 40.1% of the variance, respectively. MSSAR explained more variance in these muscular phenotypes than GPSSNP , MSSNP , and models including both genetic and methylation scores. MSSNP and GPSSNP accounted for less than 8% and 5% of the variance in all muscular phenotypes, respectively. The genotype and methylation level of CNTF was positively related to MVCKE (P = 0.03) and explained 12.2% of the variance. The adjusted R2 and Akaike information criterion showed that models with only a MSSAR performed the best in explaining inter-individual variance in muscular phenotypes. CONCLUSIONS Our results improve the understanding of inter-individual variance in muscular characteristics of older women and suggest a possible application of a sarcopenia-driven methylation score to muscle strength estimation in older women while the combination with a genetic score still needs to be further studied.
Collapse
Affiliation(s)
- Lingxiao He
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Praval Khanal
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Christopher I Morse
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alun Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Muscle Wasting and Sarcopenia in Heart Failure-The Current State of Science. Int J Mol Sci 2020; 21:ijms21186549. [PMID: 32911600 PMCID: PMC7555939 DOI: 10.3390/ijms21186549] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is primarily characterized by skeletal muscle disturbances such as loss of muscle mass, quality, strength, and physical performance. It is commonly seen in elderly patients with chronic diseases. The prevalence of sarcopenia in chronic heart failure (HF) patients amounts to up to 20% and may progress into cardiac cachexia. Muscle wasting is a strong predictor of frailty and reduced survival in HF patients. Despite many different techniques and clinical tests, there is still no broadly available gold standard for the diagnosis of sarcopenia. Resistance exercise and nutritional supplementation represent the currently most used strategies against wasting disorders. Ongoing research is investigating skeletal muscle mitochondrial dysfunction as a new possible target for pharmacological compounds. Novel agents such as synthetic ghrelin and selective androgen receptor modulators (SARMs) seem promising in counteracting muscle abnormalities but their effectiveness in HF patients has not been assessed yet. In the last decades, many advances have been accomplished but sarcopenia remains an underdiagnosed pathology and more efforts are needed to find an efficacious therapeutic plan. The purpose of this review is to illustrate the current knowledge in terms of pathogenesis, diagnosis, and treatment of sarcopenia in order to provide a better understanding of wasting disorders occurring in chronic heart failure.
Collapse
|
24
|
He L, Khanal P, Morse CI, Williams A, Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle 2019; 10:1295-1306. [PMID: 31508907 PMCID: PMC6903450 DOI: 10.1002/jcsm.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcopenia is characterized by progressive decreases in muscle mass, muscle strength, and muscle function with ageing. Although many studies have investigated the mechanisms of sarcopenia, its connection with epigenetic factors, such as DNA methylation, still remains poorly understood. The aim of this study was to explore sarcopenia-related DNA methylation differences in blood samples between age-matched sarcopenic and non-sarcopenic older women. METHODS A sarcopenic group (n = 24) was identified and selected from a set of 247 older Caucasian women (aged 65-80 years) based on cut-off points of skeletal muscle index at 6.75 kg/m2 and grip strength at 26 kg (the lower quintile of grip strength in the set). A non-sarcopenic group (n = 24) was created with a similar age distribution as that of the sarcopenic group. DNA methylation patterns of whole blood samples from both groups were analysed using Infinium MethylationEPIC BeadChip arrays. Differentially methylated cytosin-phosphate-guanine sites (dmCpGs) were identified at a P value threshold of 0.01 by comparing methylation levels between the sarcopenic and non-sarcopenic groups at each CpG site. dmCpG-related genes were annotated based on Homo sapiens hg19 genome build. The functions of these genes were further examined by GO and KEGG pathway enrichment analysis. RESULTS The global methylation level of all analysed CpG sites (n = 788 074) showed no significant difference between the sarcopenic and non-sarcopenic groups (0.812), while the average methylation level of dmCpGs (n = 6258) was significantly lower in the sarcopenic group (0.004). The sarcopenic group had significantly higher methylation levels in TSS200 (the region from transcription start site to 200 nucleotides upstream of the site) and lower methylation levels in gene body and 3'UTR regions. In respect of CpG regions, CpG islands in promoters and some intragenic regions showed greater levels of methylation in the sarcopenic group. dmCpG-related KEGG pathways were mainly associated with muscle function, actin cytoskeleton regulation, and energy metabolism. Seven genes (HSPB1, PBX4, CNKSR3, ORMDL3, MIR10A, ZNF619, and CRADD) were found with the same methylation direction as previous studies of blood sample methylation during ageing. Fifty-four genes were shared with previous studies of resistance training. CONCLUSIONS Our results improve understanding of epigenetic mechanisms of sarcopenia by identifying sarcopenia-related DNA methylation differences in blood samples of older women. These methylation differences suggest underlying alterations of gene expression and pathway function, which can partially explain sarcopenia-related muscular changes.
Collapse
Affiliation(s)
- Lingxiao He
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Praval Khanal
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Christopher I. Morse
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Alun Williams
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
- Institute of Sport, Exercise and HealthUniversity College LondonLondonUK
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
| |
Collapse
|