1
|
Li C, Liu Y, Mao H, Yang W, Liu S, Shan Y. Oncosis is the predominant type of cell death in rhabdomyolysis following exertional heat stroke. PLoS One 2025; 20:e0308586. [PMID: 40131898 PMCID: PMC11936275 DOI: 10.1371/journal.pone.0308586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Rhabdomyolysis (RM), particularly heat exhaustion-associated rhabdomyolysis (ehsRM), is a significant clinical issue associated with high mortality and healthcare costs. However, the cellular death mechanisms remain incompletely understood. Oncosis, a form of passive cell death distinct from apoptosis, is characterized by cell swelling and triggered by ATP depletion. Additionally, porimin, a specific biomarker, can uniquely identify oncosis. This study aims to investigate the role and mechanisms of oncosis in both in vitro and in vivo models of ehsRM. OBJECTIVE This study aims to investigate the role and mechanisms of oncosis in both in vitro and in vivo models of ehsRM. METHODS In the in vitro study, 6-8-week-old male rats were subjected to treadmill exercise at an ambient temperature of (39.5 ± 0.5)°C and relative humidity of 50%-60%, at a speed of 15 meters per minute until their core body temperature (Tc) reached 43.0°C to establish a heatstroke animal model. Skeletal muscle and blood samples from the gastrocnemius were collected for cytokine, biochemical, and histopathological analyses. Pathological findings revealed decreased muscle fiber density, structural disarray, swelling, degeneration, and hemorrhage. Ultrastructural analysis showed cell swelling, structural disarray, cytoplasmic vacuolation, mitochondrial swelling and degeneration, loss of cristae, and nuclear degeneration, indicating myocyte swelling and necrosis. Porimin, CytC, Bax, and caspase-1 expression increased, while Bcl-2 expression decreased. JC-1 staining indicated a decline in mitochondrial membrane potential and dysfunction. ATP levels decreased, and reactive oxygen species (ROS) production increased. In the in vivo study, HSKMC cells were subjected to 4 hours of heat shock at 43°C to establish a heatstroke-induced rhabdomyolysis cell model. Electron microscopy revealed cell swelling, cytoplasmic vacuolation, mitochondrial swelling and degeneration, and nuclear swelling; late-stage (necrotic-like death) was characterized by nucleolar dissolution, nuclear fragmentation, chromatin condensation, and collapse of cytoplasmic structures. After 24 hours post-modeling, the proportion of double-positive cells (porimin + /PI+) and ROS levels significantly increased, as did porimin expression, while mitochondrial membrane potential and ATP levels significantly decreased. The proportion of Annexin V + /PI + double-positive cells and caspase-3 levels showed no significant changes. RESULTS In both in vitro and in vivo studies, oncosis played a crucial role in ehsRM. Pathological and ultrastructural analyses demonstrated cell swelling, structural disarray, mitochondrial damage, and nuclear degeneration. Porimin, CytC, Bax, and caspase-1 expression increased, while Bcl-2 expression decreased. ATP levels decreased, and ROS production increased. In the in vivo study, the proportion of porimin + /PI + double-positive cells and ROS levels significantly increased, while mitochondrial membrane potential and ATP levels significantly decreased. The proportion of Annexin V + /PI + double-positive cells and caspase-3 levels showed no significant changes. CONCLUSION Oncosis is predominant in ehsRM, involving mitochondrial dysfunction, ATP depletion, and oxidative stress.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
- Department of Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University,
| | - Yang Liu
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
- School of Medicine, South China University of Technology
| | - Handing Mao
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
| | - Wenjun Yang
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
| | - Shuyuan Liu
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
| | - Yi Shan
- Department of Emergency Medicine, The Sixth Medical Center of PLA General Hospital of Beijing,
| |
Collapse
|
2
|
Li X, Wu C, Lu X, Wang L. Predictive models of sarcopenia based on inflammation and pyroptosis-related genes. Front Genet 2024; 15:1491577. [PMID: 39777262 PMCID: PMC11703911 DOI: 10.3389/fgene.2024.1491577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background Sarcopenia is a prevalent condition associated with aging. Inflammation and pyroptosis significantly contribute to sarcopenia. Methods Two sarcopenia-related datasets (GSE111016 and GSE167186) were obtained from the Gene Expression Omnibus (GEO), followed by batch effect removal post-merger. The "limma" R package was utilized to identify differentially expressed genes (DEGs). Subsequently, LASSO analysis was conducted on inflammation and pyroptosis-related genes (IPRGs), resulting in the identification of six hub IPRGs. A novel skeletal muscle aging model was developed and validated using an independent dataset. Additionally, Gene Ontology (GO) enrichment analysis was performed on DEGs, along with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA). ssGSEA was employed to assess differences in immune cell proportions between healthy muscle groups in older versus younger adults. The expression levels of the six core IPRGs were quantified via qRT-PCR. Results A total of 44 elderly samples and 68 young healthy samples were analyzed for DEGs. Compared to young healthy muscle tissue, T cell infiltration levels in aged muscle tissue were significantly reduced, while mast cell and monocyte infiltration levels were relatively elevated. A new diagnostic screening model for sarcopenia based on the six IPRGs demonstrated high predictive efficiency (AUC = 0.871). qRT-PCR results indicated that the expression trends of these six IPRGs aligned with those observed in the database. Conclusion Six biomarkers-BTG2, FOXO3, AQP9, GPC3, CYCS, and SCN1B-were identified alongside a diagnostic model that offers a novel approach for early diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
5
|
Ding Z, Han J, Huang Q, Liu X, Sun D, Sui X, Zhuang Q, Wu G. Phosphatidylethanolamine (18:2e/18:2) may inhibit adipose tissue wasting in patients with cancer cachexia by increasing lysophosphatidic acid receptor 6. Nutrition 2024; 120:112356. [PMID: 38354460 DOI: 10.1016/j.nut.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Cancer associated cachexia is characterized by the significant loss of adipose tissue, leading to devastating weight loss and muscle wasting in the majority of cancer patients. The effects and underlying mechanisms of degradation metabolites on adipocytes in cachectic patients remain poorly understood. To address this knowledge gap, we conducted a comprehensive study combining lipidomic analysis of subcutaneous and visceral adipose tissue with transcriptomics data from the database to investigate the mechanisms of lipid regulation in adipocytes. METHODS We collected subcutaneous and visceral adipose tissue samples from cachectic and noncachectic cancer patients. Lipidomic analysis was performed to identify differentially expressed lipids in both types of adipose tissue. Additionally, transcriptomics data from the GEO database were analyzed to explore gene expression patterns in adipocytes. Bioinformatics analysis was employed to determine the enrichment of differentially expressed genes in specific pathways. Furthermore, molecular docking studies were conducted to predict potential protein targets of specific lipids, with a focus on the PI3K-Akt signaling pathway. Western blot analysis was used to validate protein levels of the identified target gene, lysophosphatidic acid receptor 6 (LPAR6), in subcutaneous and visceral adipose tissue from cachectic and noncachectic patients. RESULTS Significant lipid differences in subcutaneous and visceral adipose tissue between cachectic and noncachectic patients were identified by multivariate statistical analysis. Cachectic patients exhibited elevated Ceramides levels and reduced CerG2GNAc1 levels (P < 0.05). A total of 10 shared lipids correlated with weight loss and IL-6 levels, enriched in Sphingolipid metabolism, GPI-anchor biosynthesis, and Glyceropholipid metabolism pathways. LPAR6 expression was significantly elevated in both adipose tissues of cachectic patients (P < 0.05). Molecular docking analysis indicated strong binding of Phosphatidylethanolamine (PE) (18:2e/18:2) to LPAR6. CONCLUSIONS Our findings suggest that specific lipids, including PE(18:2e/18:2), may mitigate adipose tissue wasting in cachexia by modulating the expression of LPAR6 through the PI3K-Akt signaling pathway. The identification of these potential targets and mechanisms provides a foundation for future investigations and therapeutic strategies to combat cachexia. By understanding the underlying lipid regulation in adipocytes, we aim to develop targeted interventions to ameliorate the devastating impact of cachexia on patient outcomes and quality of life. Nevertheless, further studies and validation are warranted to fully elucidate the intricate mechanisms involved and translate these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qiuyue Huang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Nursing, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangyu Sui
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qiulin Zhuang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ba Y, Liu S, Wei Z, Zhao N, Qiao T, Ren Y, Li L, Zhang Y, Weng S, Xu H, Li C, Ge X, Han X. Pyroptosis-Derived Long Noncoding RNA Profiles Reveal a Novel Signature for Evaluating the Prognosis of Patients With Lung Adenocarcinoma. JCO Precis Oncol 2024; 8:e2300405. [PMID: 38547420 PMCID: PMC10994429 DOI: 10.1200/po.23.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) were recently implicated in modifying pyroptosis. Nonetheless, pyroptosis-related lncRNAs and their possible clinical relevance persist largely uninvestigated in lung adenocarcinoma (LUAD). MATERIALS AND METHODS A sum of 921 samples were collected from three independent data sets. We obtained pyroptosis-related genes from both the Molecular Signatures Database and relevant literature sources and used four machine learning techniques, comprising stepwise Cox, ridge regression, least absolute shrinkage and selection operator, and random forest. Multiple bioinformatics approaches were used to further investigate the underlying mechanisms. RESULTS In total, 39 differentially expressed pyroptosis genes were identified by comparing normal and tumor samples. Correlation analysis revealed 933 pyroptosis-related lncRNAs. Furthermore, univariate Cox regression determined 11 lncRNAs that exhibited stable associations with prognosis in the three cohorts, which were used to construct the pyroptosis-derived lncRNA signature. After analyzing the optimal results from four machine learning algorithms, we ultimately selected random forest to develop the pyroptosis-derived lncRNA signature. This signature was proven to be an independent prognostic factor and exhibited robust performance in three cohorts. CONCLUSION We provided novel insight and established a pyroptosis-derived lncRNA signature for patients with LUAD, exhibiting strong predictive capabilities in both the training and validation sets.
Collapse
Affiliation(s)
- Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shutong Liu
- The Medical School of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengpan Wei
- The Medical School of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nannan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Qiao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunwei Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
7
|
Gan L, Li Y. Clinical Efficacy and Mechanism of Vitamin D2 in Treating Hashimoto's Thyroiditis. J Inflamm Res 2024; 17:1193-1210. [PMID: 38410421 PMCID: PMC10896103 DOI: 10.2147/jir.s441120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Hashimoto's thyroiditis (HT) is one of the most common autoimmune diseases, with the highest incidence rate among autoimmune thyroid disorders. Vitamin D2 may have therapeutic effects on HT. This study aimed to elucidate the molecular mechanisms underlying vitamin D2 therapy for HT. Methods Differentially expressed genes (DEGs) associated with vitamin D2-treated HT were identified, and the DEG-associated gene enrichment pathway was explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The correlation between the hub genes and infiltrating immune cells was investigated, and the interactions among the hub genes and target drug and competing endogenous RNA (ceRNA; long non-coding RNA [lncRNA]-microRNA [miRNA]-messenger RNA [mRNA]) regulatory networks were determined. Results GO and KEGG enrichment analyses identified a total of 102 DEGs (6 upregulated and 96 downregulated) in the vitamin D2-treated group samples. The area under the curve values of the identified 10 hub genes was as follows: CCR1(0.920), CXCL1 (0.960), CXCL8 (0.960), EGR1 (0.960), FCGR3B (0.920), FOS (1.000), FPR1 (0.840), MMP9 (0.720), PTGS2 (0.960), and TREM1 (1.000). The immune enrichment scores of the mast cell (P = 0.008), neutrophil (P = 0.016), and plasmacytoid dendritic cell (P = 0.016) were significantly decreased in the vitamin D2-treated group (P < 0.05). The hub gene/drug regulatory network included 8 hub genes, 108 molecular drugs, and 114 interaction relationship pairs. The ceRNA regulatory network included 129 lncRNAs, 145 miRNAs, mRNAs (hub genes), and 324 interaction relationship pairs. Conclusion Vitamin D2 may play an immunomodulatory role by regulating the aforementioned immune-related molecules and immune cells, thereby improving its therapeutic effects on HT.
Collapse
Affiliation(s)
- Lu Gan
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| | - Yuqi Li
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| |
Collapse
|
8
|
Zhou Y, Gao W, Xu Y, Wang J, Wang X, Shan L, Du L, Sun Q, Li H, Liu F. Implications of different cell death patterns for prognosis and immunity in lung adenocarcinoma. NPJ Precis Oncol 2023; 7:121. [PMID: 37968457 PMCID: PMC10651893 DOI: 10.1038/s41698-023-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
In recent years, lung adenocarcinoma (LUAD) has become a focus of attention due to its low response to treatment, poor prognosis, and lack of reliable indicators to predict the progression or therapeutic effect of LUAD. Different cell death patterns play a crucial role in tumor development and are promising for predicting LUAD prognosis. From the TCGA and GEO databases, we obtained bulk transcriptomes, single-cell transcriptomes, and clinical information. Genes in 15 types of cell death were analyzed for cell death index (CDI) signature establishment. The CDI signature using necroptosis + immunologic cell death-related genes was established in the TCGA cohort with the 1-, 2-, 3-, 4- and 5-year AUC values were 0.772, 0.736, 0.723, 0.795, and 0.743, respectively. The prognosis was significantly better in the low CDI group than in the high CDI group. We also investigated the relationship between the CDI signature and clinical variables, published prognosis biomarkers, immune cell infiltration, functional enrichment pathways, and immunity biomarkers. In vitro assay showed that HNRNPF and FGF2 promoted lung cancer cell proliferation and migration and were also involved in cell death. Therefore, as a robust prognosis biomarker, CDI signatures can screen for patients who might benefit from immunotherapy and improve diagnostic accuracy and LUAD patient outcomes.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Yu Xu
- College of Resources and Environment, Northeast Agricultural University, 150030, Harbin, China
| | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Liying Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Qingyu Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Hongyan Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, China.
| |
Collapse
|
9
|
Seke Etet PF, Vecchio L, Nwabo Kamdje AH, Mimche PN, Njamnshi AK, Adem A. Physiological and environmental factors affecting cancer risk and prognosis in obesity. Semin Cancer Biol 2023; 94:50-61. [PMID: 37301450 DOI: 10.1016/j.semcancer.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Obesity results from a chronic excessive accumulation of adipose tissue due to a long-term imbalance between energy intake and expenditure. Available epidemiological and clinical data strongly support the links between obesity and certain cancers. Emerging clinical and experimental findings have improved our understanding of the roles of key players in obesity-associated carcinogenesis such as age, sex (menopause), genetic and epigenetic factors, gut microbiota and metabolic factors, body shape trajectory over life, dietary habits, and general lifestyle. It is now widely accepted that the cancer-obesity relationship depends on the site of cancer, the systemic inflammatory status, and micro environmental parameters such as levels of inflammation and oxidative stress in transforming tissues. We hereby review recent advances in our understanding of cancer risk and prognosis in obesity with respect to these players. We highlight how the lack of their consideration contributed to the controversy over the link between obesity and cancer in early epidemiological studies. Finally, the lessons and challenges of interventions for weight loss and better cancer prognosis, and the mechanisms of weight gain in survivors are also discussed.
Collapse
Affiliation(s)
- Paul F Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Cameroon; Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon; Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.
| | - Lorella Vecchio
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon; Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Armel H Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Cameroon
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Gutowski Ł, Kanikowski S, Formanowicz D. Mast Cell Involvement in the Pathogenesis of Selected Musculoskeletal Diseases. Life (Basel) 2023; 13:1690. [PMID: 37629547 PMCID: PMC10455104 DOI: 10.3390/life13081690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been a noteworthy revival of interest in the function of mast cells (MCs) in the human body. It is now acknowledged that MCs impact a wide array of processes beyond just allergies, leading to a shift in research direction. Unfortunately, some earlier conclusions were drawn from animal models with flawed designs, particularly centered around the receptor tyrosine kinase (Kit) pathway. Consequently, several subsequent findings may have been unreliable. Thus, what is now required is a re-examination of these earlier findings. Nevertheless, the remaining data are fascinating and hold promise for a better comprehension of numerous diseases and the development of more effective therapies. As the field continues to progress, many intriguing issues warrant further investigation and analysis. For instance, exploring the bidirectional action of MCs in rheumatoid arthritis, understanding the extent of MCs' impact on symptoms associated with Ehlers-Danlos syndrome, and unraveling the exact role of the myofibroblast-mast cell-neuropeptides axis in the joint capsule during post-traumatic contractures are all captivating areas for exploration. Hence, in this review, we summarize current knowledge regarding the influence of MCs on the pathogenesis of selected musculoskeletal diseases, including rheumatoid arthritis, spondyloarthritis, psoriatic arthritis, gout, muscle and joint injuries, tendinopathy, heterotopic ossification, and Ehlers-Danlos syndrome. We believe that this review will provide in-depth information that can guide and inspire further research in this area.
Collapse
Affiliation(s)
- Łukasz Gutowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Szymon Kanikowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
| |
Collapse
|
11
|
Soule TG, Pontifex CS, Rosin N, Joel MM, Lee S, Nguyen MD, Chhibber S, Pfeffer G. A protocol for single nucleus RNA-seq from frozen skeletal muscle. Life Sci Alliance 2023; 6:e202201806. [PMID: 36914268 PMCID: PMC10011611 DOI: 10.26508/lsa.202201806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Single-cell technologies are a method of choice to obtain vast amounts of cell-specific transcriptional information under physiological and diseased states. Myogenic cells are resistant to single-cell RNA sequencing because of their large, multinucleated nature. Here, we report a novel, reliable, and cost-effective method to analyze frozen human skeletal muscle by single-nucleus RNA sequencing. This method yields all expected cell types for human skeletal muscle and works on tissue frozen for long periods of time and with significant pathological changes. Our method is ideal for studying banked samples with the intention of studying human muscle disease.
Collapse
Affiliation(s)
- Tyler Gb Soule
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Carly S Pontifex
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Nicole Rosin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Matthew M Joel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sameer Chhibber
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
13
|
Lin S, Huang H, Ling M, Zhang C, Yang F, Fan Y. Development and validation of a novel diagnostic model for musculoskeletal aging (sarcopenia) based on cuproptosis-related genes associated with immunity. Am J Transl Res 2022; 14:8523-8538. [PMID: 36628249 PMCID: PMC9827334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Sarcopenia is a geriatric disease characterized by accelerated skeletal muscle mass and function loss due to aging. Cell death plays a pivotal role in the onset and progress of sarcopenia. The purpose of this study was to investigate the role of cuproptosis-related genes (CRGs) and immune infiltration in sarcopenia development. METHODS Three microarray expression datasets from the Gene Expression Omnibus (GEO) database were merged and batch-corrected by R software to identify differentially expressed genes (DEGs) between old and young skeletal muscles. Subsequently, DEGs were subjected to functional enrichment and gene set enrichment analysis (GSEA) to investigate the roles of DEGs and immune infiltration in the pathogenesis of musculoskeletal aging. Then, ssGSEA was performed to calculate the proportion of immune cells and functions within each muscle sample to analyze the differences between the older and young healthy muscle groups. In order to select candidate CRGs, the correlation between CRGs and immune infiltration was analyzed. Finally, a novel nomogram model of musculoskeletal aging was constructed based on candidate CRGs associated with immunity. Additionally, the diagnostic model based on key CRGs was tested using a validation dataset, and its diagnostic performance was evaluated by the area under curve (AUC) value. RESULTS 141 DEGs were identified between 45 older samples and 50 young healthy samples. Compared to young healthy muscle tissues, significantly lower infiltration levels of T-regulatory cells were identified in older muscle tissues, while dendritic cells (DCs) and mast cells were relatively higher. Based on the CRGs from seven candidates, a novel model with high prediction efficiency (AUC = 0.856) was established to diagnose and screen for sarcopenia. CONCLUSION The CRGs associated with immunity may play a vital role in the development of musculoskeletal aging, providing a novel avenue for early diagnosis. Furthermore, immune cell infiltration is essential for the progression of musculoskeletal aging.
Collapse
Affiliation(s)
- Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China,Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai 200040, China
| | - Hou Huang
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China,Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai 200040, China
| | - Ming Ling
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China,Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai 200040, China
| | - Chaobao Zhang
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai 200040, China
| | - Fengjian Yang
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China
| |
Collapse
|
14
|
He S, Li R, Peng Y, Wang Z, Huang J, Meng H, Min J, Wang F, Ma Q. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle 2022; 13:1717-1730. [PMID: 35243801 PMCID: PMC9178366 DOI: 10.1002/jcsm.12953] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rhabdomyolysis (RM) is a common complication of exertional heat stroke (EHS) and constitutes a direct cause of death. However, the mechanism underlying RM following EHS remains unclear. METHODS The murine EHS model was prepared by our previous protocol. RNA sequencing is applied to identify the pathological pathways that contribute to RM following EHS. Inhibition of the acyl-CoA synthetase long-chain family member 4 (ACSL4) was achieved by RNA silencing in vitro prior to ionomycin plus heat stress exposure or pharmacological inhibitors in vivo prior to heat and exertion exposure. The histological changes, the iron accumulation, oxidized phosphatidylethanolamines species, as well as histological evaluation and levels of lipid metabolites in skeletal muscle tissues were measured. RESULTS We demonstrated that ferroptosis contributes to RM development following EHS. Ferroptosis inhibitor ferrostatin-1 administration once EHS onset significantly ameliorated the survival rate of EHS mice from 35.357% to 52.288% within 24 h after EHS (P = 0.0028 compared with control) and markedly inhibited RM development induced by EHS. By comparing gene expression of between sham heat rest (SHR) (n = 3) and EHS (n = 3) mice in the gastrocnemius (Gas) muscle tissue, we identified that Acsl4 mRNA expression is elevated in Gas muscle tissue of EHS mice (P = 0.0038 compared with SHR), so as to its protein levels (P = 0.0001 compared with SHR). Followed by increase in creatine kinase (CK) and myoglobin (MB) levels, the labile iron accumulation, decrease in glutathione peroxidase 4 (GPX4) expression, and elevation of lipid peroxidation products. From in vivo and in vitro experiments, inhibition of Acsl4 significantly improves muscle cell death caused by EHS, thereby ameliorating RM development, followed by reduction in CK and MB levels by 30-40% (P < 0.0001; n = 8-10) and 40% (P < 0.0001; n = 8-10), restoration of GPX4 expression, and decrease in lipid peroxidation products. Mechanistically, ACSL4-mediated RM seems to be Yes-associated protein (YAP) dependent via TEA domain transcription factor1/TEA domain transcription factor4. CONCLUSIONS These findings demonstrate an important role of ACSL4 in mediating ferroptosis activation in the development of RM following EHS and suggest that targeting ACSL4 may represent a novel therapeutic strategy to limit the skeletal muscle cell death and prevent RM after EHS.
Collapse
Affiliation(s)
- Sixiao He
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ru Li
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanmei Peng
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ziqing Wang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junhao Huang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongen Meng
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.,The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Bamba R, Okamura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Takakuwa H, Hamaguchi M, Fukui M. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice. J Cachexia Sarcopenia Muscle 2022; 13:574-588. [PMID: 34854254 PMCID: PMC8818690 DOI: 10.1002/jcsm.12814] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus increases the excretion of urinary glucose from the renal glomeruli due to elevated blood glucose levels. In the renal tubules, SGLT2 is expressed and reabsorbs the excreted urinary glucose. In the pathogenesis of diabetes mellitus, glucose reabsorption by SGLT2 is increased, and SGLT2 inhibitors improve hyperglycaemia by inhibiting this reabsorption. When urinary glucose excretion is enhanced, glucose supply to skeletal muscle may be insufficient and muscle protein catabolism may be accelerated. On the other hand, SGLT2 inhibitors not only ameliorate hyperglycaemia but also improve fatty acid metabolism in muscle, which may prevent muscle atrophy. METHODS Eight-week-old male db/m mice or db/db mice were fed a standard diet with or without the SGLT2i luseogliflozin (0.01% w/w in chow) for 8 weeks. Mice were sacrificed at 16 weeks of age, and skeletal muscle and serum lipidomes, as well as skeletal muscle transcriptome, were analysed. RESULTS Administration of SGLT2i led to not only decreased visceral fat accumulation (P = 0.004) but also increased soleus muscle weight (P = 0.010) and grip strength (P = 0.0001). The levels of saturated fatty acids, especially palmitic acid, decreased in both muscles (P = 0.017) and sera (P = 0.041) upon administration of SGLT2i, while the content of monosaturated fatty acids, especially oleic acid, increased in both muscle (P < 0.0001) and sera (P = 0.009). Finally, the accumulation of transcripts associated with fatty acid metabolism, such as Scd1, Fasn, and Elovl6, and of muscle atrophy-associated transcripts, such as Foxo1, Mstn, Trim63, and Fbxo32, decreased following SGLT2i administration. CONCLUSIONS Intramuscular fatty acid metabolism and gene expression were influenced by the extracellular lipidome, which was modified by SGLT2i. Hence, secondary effects, other than the hypoglycaemic effects of SGLT2i, might lead to the alleviation of sarcopenia.
Collapse
Affiliation(s)
- Ryo Bamba
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Takakuwa
- Agilent Technologies, Chromatography Mass Spectrometry Sales Department, Life Science and Applied Markets Group, Tokyo, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Sarcopenia Predicts Cancer Mortality in Male but Not in Female Patients Undergoing Surgery for Cholangiocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13215359. [PMID: 34771524 PMCID: PMC8582463 DOI: 10.3390/cancers13215359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Cholangiocellular adenocarcinoma is the second most common primary liver tumor. If resectable, this is the therapeutic method of choice. Unfortunately, there are insufficient prognostic markers to determine which patients benefit most from surgery and which do not. The general condition of the patient, especially their muscle mass and quality, has become more and more the focus of recent research as a possible marker for therapeutic outcome. In our study we investigated how the preoperative muscle mass of patients with cholangiocellular adenocarcinoma affects postoperative overall survival. We showed that patients with a higher preoperative muscle mass had a significantly longer survival than patients with reduced muscle mass. Furthermore, we were able to show that this is particularly relevant in men and that in women preoperative muscle mass plays a significantly less important role in postoperative survival than in men. Abstract Introduction: Surgery represents the only curative treatment option for patients with cholangiocarcinoma. However, complete tumor resection requires extensive surgery in many patients, and it is still debated which patients represent the ideal candidates for such therapy in terms of overall survival. Sarcopenia has been associated with an adverse outcome for various malignancies, but its role in the context of patients undergoing tumor resection for cholangiocellular adenocarcinoma (CCA) is only poorly understood. Here, we evaluated the role of sarcopenia in the outcome of CCA patients undergoing radical tumor resection. Methods: Pre-operative CT scans were used to assess the skeletal muscle index (L3SMI) as well as the psoas muscle index (L3PMI) in n = 76 patients receiving curative intended surgery for CCA. L3SMI and L3PMI were correlated with clinical and laboratory markers. Results: Patients with a skeletal muscle index or psoas muscle index above an established ideal cut-off (54.26 and 1.685 cm2/m2) showed a significantly better overall survival in Kaplan–Meier Curve analyses (L3SMI: 1814 days (95% CI: 520–3108) vs. 467 days (95% CI: 225–709) days; log rank X2(1) = 7.18, p = 0.007; L3PMI: 608 days (95% CI: 297–919) vs. 87 days (95% CI: 33–141), log rank X2(1) = 18.71; p < 0.001). Notably, these findings, especially for L3PMI, were confirmed in univariate (L3SMI: HR 0.962 (0.936–0.989); p = 0.006; L3PMI: HR 0.529 (0.366–0.766); p ≤ 0.001) and multivariate Cox regression analyses. Further analyses revealed that the prognostic value of both L3SMI and L3PMI was restricted to male patients, while in female patients survival was independent of the individual muscle mass. Conclusion: Measurement of muscle mass from preoperative CT scans represents an easily obtainable tool to estimate patient prognosis following curative surgery. The prognostic value was restricted to male patients, while in female patients these parameters did not reflect the patient outcome.
Collapse
|
17
|
Widner DB, Liu C, Zhao Q, Sharp S, Eber MR, Park SH, Files DC, Shiozawa Y. Activated mast cells in skeletal muscle can be a potential mediator for cancer-associated cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1079-1097. [PMID: 34008339 PMCID: PMC8350201 DOI: 10.1002/jcsm.12714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eighty per cent of United States advanced cancer patients faces a worsened prognosis due to cancer-associated cachexia. Inflammation is one driver of muscle atrophy in cachexia, and skeletal muscle-resident immune cells could be a source of inflammation. This study explores the efficacy of cancer activated skeletal muscle-resident mast cells as a biomarker and mediator of cachexia. METHODS Individual gene markers for immune cells were assessed in a publicly available colon carcinoma cohort of normal (n = 3), moderate cachexia (n = 3), and severe cachexia (n = 4) mice. Lewis lung carcinoma (LL/2) cells induced cachexia in C57BL/6 mice, and a combination of toluidine blue staining, immunofluorescence, quantitative polymerase chain reaction, and western blots measured innate immune cell expression in hind limb muscles. In vitro measurements included C2C12 myotube diameter before and after treatment with media from primary murine mast cells activated with LL/2 conditioned media. To assess translational potential in human samples, innate immune cell signatures were assessed for correlation with skeletal muscle atrophy and apoptosis, dietary excess, and cachexia signatures in normal skeletal muscle tissue. Gene set enrichment analysis was performed with innate immune cell signatures in publicly available cohorts for upper gastrointestinal (GI) cancer and pancreatic ductal adenocarcinoma (PDAC) patients (accession: GSE34111 and GSE130563, respectively). RESULTS Individual innate immunity genes (TPSAB1 and CD68) showed significant increases in severe cachexia (weight loss > 15%) mice in a C26 cohort (GSE24112). Induction of cachexia in C57BL/6 mice with LL/2 subcutaneous injection significantly increased the number of activated skeletal muscle-resident degranulating mast cells. Murine mast cells activated with LL/2 conditioned media decreased C2C12 myotube diameter (P ≤ 0.05). Normal human skeletal muscle showed significant positive correlations between innate immune cell signatures and muscle apoptosis and atrophy, dietary excess, and cachexia signatures. The mast cell signature was up-regulated (positive normalized enrichment score and false discovery rate ≤ 0.1) in upper GI cachectic patients (n = 12) compared with control (n = 6), as well as in cachectic PDAC patients (n = 17) compared with control patients (n = 16). CONCLUSIONS Activated skeletal muscle-resident mast cells are enriched in cachectic muscles, suggesting skeletal-muscle resident mast cells may serve as a biomarker and mediator for cachexia development to improve patient diagnosis and prognosis.
Collapse
Affiliation(s)
- D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Chun Liu
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Qingxia Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sarah Sharp
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.,Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - D Clark Files
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|