1
|
Johnson RA, Rutowski RL. Color, activity period, and eye structure in four lineages of ants: Pale, nocturnal species have evolved larger eyes and larger facets than their dark, diurnal congeners. PLoS One 2022; 17:e0257779. [PMID: 36137088 PMCID: PMC9499225 DOI: 10.1371/journal.pone.0257779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
The eyes of insects display an incredible diversity of adaptations to enhance vision across the gamut of light levels that they experience. One commonly studied contrast is the difference in eye structure between nocturnal and diurnal species, with nocturnal species typically having features that enhance eye sensitivity such as larger eyes, larger eye facets, and larger ocelli. In this study, we compared eye structure between workers of closely related nocturnal and diurnal above ground foraging ant species (Hymenoptera: Formicidae) in four genera (Myrmecocystus, Aphaenogaster, Temnothorax, Veromessor). In all four genera, nocturnal species tend to have little cuticular pigment (pale), while diurnal species are heavily pigmented (dark), hence we could use cuticle coloration as a surrogate for activity pattern. Across three genera (Myrmecocystus, Aphaenogaster, Temnothorax), pale species, as expected for nocturnally active animals, had larger eyes, larger facet diameters, and larger visual spans compared to their dark, more day active congeners. This same pattern occurred for one pale species of Veromessor, but not the other. There were no consistent differences between nocturnal and diurnal species in interommatidial angles and eye parameters both within and among genera. Hence, the evolution of eye features that enhance sensitivity in low light levels do not appear to have consistent correlated effects on features related to visual acuity. A survey across several additional ant genera found numerous other pale species with enlarged eyes, suggesting these traits evolved multiple times within and across genera. We also compared the size of the anterior ocellus in workers of pale versus dark species of Myrmecocystus. In species with larger workers, the anterior ocellus was smaller in pale than in dark species, but this difference mostly disappeared for species with smaller workers. Presence of the anterior ocellus also was size-dependent in the two largest pale species.
Collapse
Affiliation(s)
- Robert A. Johnson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ronald L. Rutowski
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
2
|
Baden T, Euler T, Weckström M, Lagnado L. Spikes and ribbon synapses in early vision. Trends Neurosci 2013; 36:480-8. [DOI: 10.1016/j.tins.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
|
3
|
Hung YS, van Kleef JP, Stange G, Ibbotson MR. Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee. J Neurophysiol 2012. [PMID: 23197452 DOI: 10.1152/jn.00830.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By measuring insect compensatory optomotor reflexes to visual motion, researchers have examined the computational mechanisms of the motion processing system. However, establishing the spectral sensitivity of the neural pathways that underlie this motion behavior has been difficult, and the contribution of the simple eyes (ocelli) has been rarely examined. In this study we investigate the spectral response properties and ocellar inputs of an anatomically identified descending neuron (DNII(2)) in the honeybee optomotor pathway. Using a panoramic stimulus, we show that it responds selectively to optic flow associated with pitch rotations. The neuron is also stimulated with a custom-built light-emitting diode array that presented moving bars that were either all-green (spectrum 500-600 nm, peak 530 nm) or all-short wavelength (spectrum 350-430 nm, peak 380 nm). Although the optomotor response is thought to be dominated by green-sensitive inputs, we show that DNII(2) is equally responsive to, and direction selective to, both green- and short-wavelength stimuli. The color of the background image also influences the spontaneous spiking behavior of the cell: a green background produces significantly higher spontaneous spiking rates. Stimulating the ocelli produces strong modulatory effects on DNII(2), significantly increasing the amplitude of its responses in the preferred motion direction and decreasing the response latency by adding a directional, short-latency response component. Our results suggest that the spectral sensitivity of the optomotor response in honeybees may be more complicated than previously thought and that ocelli play a significant role in shaping the timing of motion signals.
Collapse
Affiliation(s)
- Y-S Hung
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
| | | | | | | |
Collapse
|
4
|
Leitinger G, Masich S, Neumüller J, Pabst MA, Pavelka M, Rind FC, Shupliakov O, Simmons PJ, Kolb D. Structural organization of the presynaptic density at identified synapses in the locust central nervous system. J Comp Neurol 2012; 520:384-400. [PMID: 21826661 PMCID: PMC3263340 DOI: 10.1002/cne.22744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli. Here, vesicles close to the active zone are organized in two rows on either side of the presynaptic density, a level of organization not previously reported in insect central synapses. The row of vesicles that is closest to the density's base includes vesicles docked with the presynaptic membrane and thus presumably ready for release, whereas the outer row of vesicles does not include any that are docked. We show that a locust ortholog of the Drosophila protein Bruchpilot is localized to the presynaptic density, both in the ocellar pathway and compound eye visual neurons. An antibody recognizing the C-terminus of the Bruchpilot ortholog selectively labels filamentous extensions of the presynaptic density that reach out toward vesicles. Previous studies on Bruchpilot have focused on its role in neuromuscular junctions in Drosophila, and our study shows it is also a major functional component of presynaptic densities in the central nervous system of an evolutionarily distant insect. Our study thus reveals Bruchpilot executes similar functions in synapses that can sustain transmission of small graded potentials as well as those relaying large, spike-evoked signals.
Collapse
Affiliation(s)
- Gerd Leitinger
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine (ZMM), Medical University of Graz, Austria. Gerd.Leitinger@medunigraz
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Berry RP, Wcislo WT, Warrant EJ. Ocellar adaptations for dim light vision in a nocturnal bee. J Exp Biol 2011; 214:1283-93. [DOI: 10.1242/jeb.050427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Growing evidence indicates that insect ocelli are strongly adapted to meet the specific functional requirements in the environment in which that insect lives. We investigated how the ocelli of the nocturnal bee Megalopta genalis are adapted to life in the dim understory of a tropical rainforest. Using a combination of light microscopy and three-dimensional reconstruction, we found that the retinae contain bar-shaped rhabdoms loosely arranged in a radial pattern around multi-layered lenses, and that both lenses and retinae form complex non-spherical shapes reminiscent of those described in other ocelli. Intracellular electrophysiology revealed that the photoreceptors have high absolute sensitivity, but that the threshold location varied widely between 109 and 1011 photons cm–2 s–1. Higher sensitivity and greater visual reliability may be obtained at the expense of temporal resolution: the corner frequencies of dark-adapted ocellar photoreceptors were just 4–11 Hz. Spectral sensitivity profiles consistently peaked at 500 nm. Unlike the ocelli of other flying insects, we did not detect UV-sensitive visual pigments in M. genalis, which may be attributable to a scarcity of UV photons under the rainforest canopy at night. In contrast to earlier predictions based on anatomy, the photoreceptors are not sensitive to the e-vector of polarised light. Megalopta genalis ocellar photoreceptors possess a number of unusual properties, including inherently high response variability and the ability to produce spike-like potentials. These properties bear similarities to photoreceptors in the compound eye of the cockroach, and we suggest that the two insects share physiological characteristics optimised for vision in dim light.
Collapse
Affiliation(s)
- Richard P. Berry
- Centre for Visual Sciences, School of Biology, Australian National University, Canberra 2600, Australia
| | - William T. Wcislo
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
| | - Eric J. Warrant
- Department of Cell and Organism Biology, University of Lund, Sölvegatan 35, Lund S-22350, Sweden
| |
Collapse
|
6
|
Schmeling F, Stange G, Homberg U. Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:199-211. [DOI: 10.1007/s00359-010-0505-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 01/05/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
7
|
Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 2008; 333:125-45. [DOI: 10.1007/s00441-008-0620-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/31/2008] [Indexed: 11/29/2022]
|
8
|
Stuart AE, Borycz J, Meinertzhagen IA. The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 2007; 82:202-27. [PMID: 17531368 DOI: 10.1016/j.pneurobio.2007.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/08/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Histamine, a ubiquitous aminergic messenger throughout the body, also serves as a neurotransmitter in both vertebrates and invertebrates. In particular, the photoreceptors of adult arthropods use histamine, modulating its release to signal increases and decreases in light intensity. Strong evidence from various arthropod species indicates that histamine is synthesized and stored in photoreceptors, undergoes Ca-dependent release, inhibits postsynaptic interneurons by gating Cl channels, and is then recycled. In Drosophila, the synthetic enzyme, histidine decarboxylase, and the subunits of the histamine-gated chloride channel have been cloned. Possible histamine transporters at synaptic vesicles and for reuptake remain elusive. Indeed, the mechanisms that remove histamine from the synaptic cleft, and that help terminate histamine's action, are unexpectedly complex, their details remaining unresolved. A major pathway in Drosophila, and possibly other arthropod species, is by conjugation of histamine to beta-alanine to form carcinine in adjacent glia. This conjugate then returns to the photoreceptors where it is hydrolysed to liberate histamine, which is then loaded into synaptic vesicles. Evidence from other species suggests that direct reuptake of histamine into the photoreceptors may also occur. Light depolarizes the photoreceptors, causing histamine release and postsynaptic inhibition; dimming hyperpolarizes the photoreceptors, causing a decrease in histamine release and an "off" response in the postsynaptic cell. Further pursuit of histamine's action at these highly specialized synapses should lead to an understanding of how they signal minute changes in presynaptic membrane potential, how they reliably extract signals from noise, and how they adapt to a wide range of presynaptic membrane potentials.
Collapse
Affiliation(s)
- Ann E Stuart
- University of North Carolina, Department of Cell and Molecular Physiology, MBRB Campus Box 7545, 103 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|
9
|
Parsons MM, Krapp HG, Laughlin SB. A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. ACTA ACUST UNITED AC 2007; 209:4464-74. [PMID: 17079717 DOI: 10.1242/jeb.02560] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the blowfly Calliphora vicina, lobula plate tangential cells (LPTCs) estimate self-motion by integrating local motion information from the compound eyes. Each LPTC is sensitive to a particular (preferred) rotation of the fly's head. The fly can also sense rotation using its three ocelli (simple eyes), by comparing the light intensities measured at each ocellus. We report that an individually identified tangential cell, V1, responds in an apparently rotation-specific manner to stimulation of the ocelli. This effect was seen with or without additional stimulation of the compound eye. We delivered stimuli to the ocelli which mimicked rotation of the fly's head close to that of the preferred axis of rotation of V1. Alternating between preferred and anti-preferred rotation elicited a strongly phasic response, the amplitude of which increased with the rate of change of light intensity at the ocelli. With combined stimulation of one compound eye and the ocelli, V1 displayed a robust response to ocellar stimuli over its entire response range. These findings provide the opportunity to study quantitatively the interactions of two different visual mechanisms which both encode the same variable--the animal's rotation in space.
Collapse
Affiliation(s)
- Matthew M Parsons
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | | | |
Collapse
|
10
|
Beckers U, Egelhaaf M, Kurtz R. Synapses in the fly motion-vision pathway: evidence for a broad range of signal amplitudes and dynamics. J Neurophysiol 2007; 97:2032-41. [PMID: 17215505 DOI: 10.1152/jn.01116.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses are generally considered to operate efficiently only when their signaling range matches the spectrum of prevailing presynaptic signals in terms of both amplitudes and dynamics. However, the prerequisites for optimally matching the signaling ranges may differ between spike-mediated and graded synaptic transmission. This poses a problem for synapses that convey both graded and spike signals at the same time. We addressed this issue by tracing transmission systematically in vivo in the blowfly's visual-motion pathway by recording from single neurons that receive mixed potential signals consisting of rather slow graded fluctuations superimposed with highly variable spikes from a small number of presynaptic elements. Both pre- and postsynaptic neurons were previously shown to represent preferred-direction motion velocity reliably and linearly at low fluctuation frequencies. To selectively assess the performance of individual synapses and to precisely control presynaptic signals, we voltage clamped one of the presynaptic neurons. Results showed that synapses can effectively convey signals over a much larger amplitude and frequency range than is normally used during graded transmission of visual signals. An explanation for this unexpected finding might lie in the transmission of the spike component that reaches larger amplitudes and contains higher frequencies than graded signals.
Collapse
Affiliation(s)
- Ulrich Beckers
- Department of Neurobiology, University Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany.
| | | | | |
Collapse
|
11
|
Simmons PJ, de Ruyter van Steveninck R. Reliability of signal transfer at a tonically transmitting, graded potential synapse of the locust ocellar pathway. J Neurosci 2006; 25:7529-37. [PMID: 16107640 PMCID: PMC6725398 DOI: 10.1523/jneurosci.1119-05.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We assessed the performance of a synapse that transmits small, sustained, graded potentials between two classes of second-order ocellar "L-neurons" of the locust. We characterized the transmission of both fixed levels of membrane potential and fluctuating signals by recording postsynaptic responses to changes in presynaptic potential. To ensure repeatability between stimuli, we controlled presynaptic signals with a voltage clamp. We found that the synapse introduces noise above the level of background activity in the postsynaptic neuron. By driving the presynaptic neuron with slow-ramp changes in potential, we found that the number of discrete signal levels the synapse transmits is approximately 20. It can also transmit approximately 20 discrete levels when the presynaptic signal is a graded rebound spike. Synaptic noise level is constant over the operating range of the synapse, which would not be expected if presynaptic potential set the probability for the release of individual quanta of neurotransmitter according to Poisson statistics. Responses to individual quanta of neurotransmission could not be resolved, which is consistent with a synapse that operates with large numbers of vesicles evoking small responses. When challenged with white noise stimuli, the synapse can transmit information at rates up to 450 bits/s, a performance that is sufficient to transmit natural signals about changes in illumination.
Collapse
Affiliation(s)
- Peter J Simmons
- School of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | | |
Collapse
|
12
|
Kurylas AE, Ott SR, Schachtner J, Elphick MR, Williams L, Homberg U. Localization of nitric oxide synthase in the central complex and surrounding midbrain neuropils of the locust Schistocerca gregaria. J Comp Neurol 2005; 484:206-23. [PMID: 15736229 DOI: 10.1002/cne.20467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO), generated enzymatically by NO synthase (NOS), acts as an important signaling molecule in the nervous systems of vertebrates and invertebrates. In insects, NO has been implicated in development and in various aspects of sensory processing. To understand better the contribution of NO signaling to higher level brain functions, we analyzed the distribution of NOS in the midbrain of a model insect species, the locust Schistocerca gregaria, by using NADPH diaphorase (NADPHd) histochemistry after methanol/formalin fixation; results were validated by NOS immunohistochemistry. NADPHd yielded much higher sensitivity and resolution, but otherwise the two techniques resulted in corresponding labeling patterns throughout the brain, except for intense immunostaining but only weak NADPHd staining in median neurosecretory cells. About 470 neuronal cell bodies in the locust midbrain were NADPHd-positive positive, and nearly all major neuropil centers contained dense, sharply stained arborizations. We report several novel types of NOS-expressing neurons, including small ocellar interneurons and antennal sensory neurons that bypass the antennal lobe. Highly prominent labeling occurred in the central complex, a brain area involved in sky-compass orientation, and was analyzed in detail. Innervation by NOS-expressing fibers was most notable in the central body upper and lower divisions, the lateral accessory lobes, and the noduli. About 170 NADPHd-positive neurons contributed to this innervation, including five classes of tangential neuron, two systems of pontine neuron, and a system of columnar neurons. The results provide new insights into the neurochemical architecture of the central complex and suggest a prominent role for NO signaling in this brain area.
Collapse
Affiliation(s)
- Angela E Kurylas
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Leitinger G, Pabst MA, Rind FC, Simmons PJ. Differential expression of synapsin in visual neurons of the locustSchistocerca gregaria. J Comp Neurol 2004; 480:89-100. [PMID: 15514920 DOI: 10.1002/cne.20333] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In many taxa, photoreceptors and their second-order neurons operate with graded changes in membrane potential and can release neurotransmitter tonically. A common feature of such neurons in vertebrates is that they have not been found to contain synapsins, a family of proteins that indicate the presence of a reserve pool of synaptic vesicles at synaptic sites. Here, we provide a detailed analysis of synapsin-like immunoreactivity in the compound eye and ocellar photoreceptor cells of the locust Schistocerca gregaria and in some of the second-order neurons. By combining confocal laser scanning microscopy with electron microscopy, we found that photoreceptor cells of both the compound eye and the ocellus lacked synapsin-like immunostaining. In contrast, lamina monopolar cells and large ocellar L interneurons of the lateral ocellus were immunopositive to synapsin. We also identified the output synapses of the photoreceptors and of the L interneurons, and, whereas the photoreceptor synapses lacked immunolabeling, the outputs of the L interneurons were clearly labeled for synapsin. These findings suggest that the photoreceptors and the large second-order neurons of the locust differ in the chemical architecture of their synapses, and we propose that differences in the time course of neurotransmission are the reason for this.
Collapse
Affiliation(s)
- Gerd Leitinger
- Institut für Zellbiologie, Histologie und Embryologie, Medizinische Universität Graz, 8010 Graz, Austria.
| | | | | | | |
Collapse
|
15
|
Warzecha AK, Kurtz R, Egelhaaf M. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience 2003; 119:1103-12. [PMID: 12831867 DOI: 10.1016/s0306-4522(03)00204-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synaptic transmission is usually studied in vitro with electrical stimulation replacing the natural input of the system. In contrast, we analyzed in vivo transfer of visual motion information from graded-potential presynaptic to spiking postsynaptic neurons in the fly. Motion in the null direction leads to hyperpolarization of the presynaptic neuron but does not much influence the postsynaptic cell, because its firing rate is already low during rest, giving only little scope for further reductions. In contrast, preferred-direction motion leads to presynaptic depolarizations and increases the postsynaptic spike rate. Signal transfer to the postsynaptic cell is linear and reliable for presynaptic graded membrane potential fluctuations of up to approximately 10 Hz. This frequency range covers the dynamic range of velocities that is encoded with a high gain by visual motion-sensitive neurons. Hence, information about preferred-direction motion is transmitted largely undistorted ensuring a consistent dependency of neuronal signals on stimulus parameters, such as motion velocity. Postsynaptic spikes are often elicited by rapid presynaptic spike-like depolarizations which superimpose the graded membrane potential. Although the timing of most of these spike-like depolarizations is set by noise and not by the motion stimulus, it is preserved at the synapse with millisecond precision.
Collapse
Affiliation(s)
- A-K Warzecha
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Postfach 10 01 31, D-33501, Bielefeld, Germany.
| | | | | |
Collapse
|
16
|
Abstract
Second-order neurons L1-3 of the locust ocellar pathway make inhibitory synapses with each other. Although the synapses transmit graded potentials, transmission depresses rapidly and completely so that a synapse only transmits when the presynaptic terminal depolarizes rapidly. The rate at which a presynaptic neuron depolarizes determines the rate at which a postsynaptic neuron hyperpolarizes, and neurotransmitter is only released during a fixed 2 ms long period. Consequently, the amplitude of a postsynaptic potential depends on the rate rather than the amplitude of a presynaptic depolarization. Following a postsynaptic potential, a synapse recovers from depression over about a second. The synapse recovers from depression even if the presynaptic terminal is held depolarized.
Collapse
Affiliation(s)
- Peter J Simmons
- School of Biology and School of Neurosciences and Psychiatry, University of Newcastle Upon Tyne, Framlington Place, Upon Tyne NE2 4HH, Newcastle, United Kingdom.
| |
Collapse
|
17
|
Abstract
Graded and prolonged presynaptic depolarizations trigger the tonic release of neurotransmitters from sensory neurons. In this issue of Neuron, Simmons reports that postsynaptic responses of locust interneuron synpapses are determined by the rate rather than the amplitude of presynaptic depolarization, suggesting a mechanism for increasing the signaling capabilities of this synapse with respect to visual processing.
Collapse
Affiliation(s)
- Mary J Palmer
- The Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | |
Collapse
|