1
|
Sarray S, Lamine LB, Dallel M, Ezzidi I, Sellami N, Turki A, Moustafa AEEA, Mtiraoui N. Association of matrix metalloproteinase-2 gene variants with diabetic nephropathy risk. J Gene Med 2023; 25:e3553. [PMID: 37312425 DOI: 10.1002/jgm.3553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Diabetic nephropathy is a highly destructive microvascular complication of diabetes. Genetic predisposition is involved in the pathogenesis of diabetic nephropathy, with multiple allelic polymorphisms associated with the development and progression of the disease, thereby increasing the overall risk. To date, no study is available that shows the association of matrix metalloproteinase-2 (MMP-2) gene polymorphisms with diabetic nephropathy risk. Thus, we investigated the potential genetic influence of MMP-2 promoter variants in the development of diabetic nephropathy in type 2 diabetic patients. METHODS In total, 726 type 2 diabetic patients and 310 healthy controls were included in the study and genotyped for MMP-2, -1306C/T, -790T/G, -1575G/T and -735C/T by real-time PCR. The analysis of the outcomes was performed assuming three genetic models. The threshold for statistical significance was set at 0.05. RESULTS The results showed that the minor allele frequency of the -790T/G variant was significantly higher in patients with and without nephropathy compared to controls. Furthermore, the distribution analysis revealed a significant association of the -790T/G variant, in all genetic models, with increased risk of diabetic nephropathy that persisted after adjusting for key covariates. No significant associations between MMP-2, -1306C/T, -1575G/T, -735C/T and the risk of diabetic nephropathy were detected. Haplotype analysis identified two risk haplotypes GCGC and GTAC associated with diabetic nephropathy. CONCLUSIONS The present study is the first to demonstrate the allelic and genotypic association of the MMP-2-790T/G variant and two haplotypes with an increased risk of diabetic nephropathy in a Tunisian population with type 2 diabetes.
Collapse
Affiliation(s)
- Sameh Sarray
- Arabian Gulf University, Manama, Bahrain
- Faculty of Sciences, University Tunis EL Manar, Tunis, Tunisia
| | - Laila Ben Lamine
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Meriem Dallel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Intissar Ezzidi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Nejla Sellami
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Amira Turki
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Nabil Mtiraoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
3
|
Herrera GA, del Pozo-Yauner L, Teng J, Zeng C, Shen X, Moriyama T, Ramirez Alcantara V, Liu B, Turbat-Herrera EA. Glomerulopathic Light Chain-Mesangial Cell Interactions: Sortilin-Related Receptor (SORL1) and Signaling. Kidney Int Rep 2021; 6:1379-1396. [PMID: 34013116 PMCID: PMC8116754 DOI: 10.1016/j.ekir.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Deciphering the intricacies of the interactions of glomerulopathic Ig light chains with mesangial cells is key to delineate signaling events responsible for the mesangial pathologic alterations that ensue. METHODS Human mesangial cells, caveolin 1 (CAV1), wild type (WT) ,and knockout (KO), were incubated with glomerulopathic light chains purified from the urine of patients with light chain-associated (AL) amyloidosis or light chain deposition disease. Associated signaling events induced by surface interactions of glomerulopathic light chains with caveolins and other membrane proteins, as well as the effect of epigallocatechin-3-gallate (EGCG) on the capacity of mesangial cells to intracellularly process AL light chains were investigated using a variety of techniques, including chemical crosslinking with mass spectroscopy, immunofluorescence, and ultrastructural immunolabeling. RESULTS Crosslinking experiments provide evidence suggesting that sortilin-related receptor (SORL1), a transmembrane sorting receptor that regulates cellular trafficking of proteins, is a component of the receptor on mesangial cells for glomerulopathic light chains. Colocalization of glomerulopathic light chains with SORL1 in caveolae and also in lysosomes when light chain internalization occurred, was documented using double immunofluorescence and immunogold labeling ultrastructural techniques. It was found that EGCG directly blocks c-Fos cytoplasmic to nuclei signal translocation after interactions of AL light chains with mesangial cells, resulting in a decrease in amyloid formation. CONCLUSION Our findings document for the first time a role for SORL1 linked to glomerular pathology and signaling events that take place when certain monoclonal light chains interact with mesangial cells. This finding may lead to novel therapies for treating renal injury caused by glomerulopathic light chains.
Collapse
Affiliation(s)
- Guillermo A. Herrera
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
- Correspondence: Guillermo A. Herrera, Department of Pathology, University of South Alabama, College of Medicine, 2451 USA Medical Center Drive, Mobile, Alabama 36617, USA.
| | - Luis del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Jiamin Teng
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Chun Zeng
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Xinggui Shen
- Louisiana State University, Health Sciences Center, Shreveport, Louisiana, USA
| | - Takahito Moriyama
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Bing Liu
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Elba A. Turbat-Herrera
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
4
|
Chebotareva N, Bobkova I, Lysenko L, Moiseev S. Urinary Markers of Podocyte Dysfunction in Chronic Glomerulonephritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:81-99. [PMID: 33959907 DOI: 10.1007/978-3-030-63908-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic glomerulonephritis (CGN) is a disease with a steady progressive course that involves the development of nephrosclerosis, which is especially evident in clinical courses with incidences of high proteinuria (PU). Currently, proteinuria is considered the main laboratory feature (sign) of CGN activity and progression because proteinuria is closely related to the process of tubulointerstitial fibrosis, which is correlated with the grade of renal insufficiency. The injury to podocytes, which are key components of the filtration barrier, plays a central role in proteinuria development. The detachment of podocytes from the glomerular basement membrane leading to podocytopenia is suggested to induce glomerulosclerosis and hyalinosis with obliteration of capillary loops and the progression of chronic kidney disease. Urinary markers of podocyte dysfunction could serve as useful tools while monitoring the activity and prognosis of CGN. In this chapter, the most important mechanisms of podocyte loss and urinary markers of this process are discussed.
Collapse
Affiliation(s)
- Natalia Chebotareva
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Irina Bobkova
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lidia Lysenko
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Moiseev
- Tareev Clinic, Department of Nephrology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Singh G, Jahan A, Gupta R, Soin N, Pant L, Sarin N, Singh S. Expression of matrix metalloproteinase-9 in skin lesions of leprosy patients: the difference between paucibacillary and multibacillary cases. LEPROSY REV 2020. [DOI: 10.47276/lr.91.4.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease. Kidney Int Rep 2020; 5:1870-1893. [PMID: 33163710 PMCID: PMC7609979 DOI: 10.1016/j.ekir.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with plasma cell dyscrasias produce free abnormal monoclonal Ig light chains that circulate in the blood stream. Some of them, termed glomerulopathic light chains, interact with the mesangial cells and trigger, in a manner dependent of their structural and physicochemical properties, a sequence of pathological events that results in either light chain–derived (AL) amyloidosis (AL-Am) or light chain deposition disease (LCDD). The mesangial cells play a key role in the pathogenesis of both diseases. The interaction with the pathogenic light chain elicits specific cellular processes, which include apoptosis, phenotype transformation, and secretion of extracellular matrix components and metalloproteinases. Monoclonal light chains associated with AL-Am but not those producing LCDD are avidly endocytosed by mesangial cells and delivered to the mature lysosomal compartment where amyloid fibrils are formed. Light chains from patients with LCDD exert their pathogenic signaling effect at the cell surface of mesangial cells. These events are generic mesangial responses to a variety of adverse stimuli, and they are similar to those characterizing other more frequent glomerulopathies responsible for many cases of end-stage renal disease. The pathophysiologic events that have been elucidated allow to propose future therapeutic approaches aimed at preventing, stopping, ameliorating, or reversing the adverse effects resulting from the interactions between glomerulopathic light chains and mesangium.
Collapse
|
7
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Zakiyanov O, Chocová Z, Hrušková Z, Hladinová Z, Kalousová M, Maličková K, Vachek J, Wurmová P, Kříha V, Zima T, Tesař V. Matrix Metalloproteinases and Their Tissue Inhibitors: an Evaluation of Novel Biomarkers in ANCA-Associated Vasculitis. Folia Biol (Praha) 2019; 65:227-236. [PMID: 32362306 DOI: 10.14712/fb2019065050227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) may play an important role in both inflammation with subsequent fibrosis and in repair and healing in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). We evaluated the circulating levels of MMPs, including pregnancy-associated plasma protein A (PAPP-A), and TIMPs in patients with AAV. PAPP-A, MMP-2, MMP-3, MMP-7, MMP-9, TIMP-1, TIMP-2 and selected parameters were measured in 100 AAV patients (36 patients with active disease and 64 patients in remission) and 34 healthy subjects. The levels of MMP-2, MMP-3, MMP-7, MMP-9, TIMP-1, TIMP-2, and PAPP-A in AAV were all found to be different to those of the controls. The MMP-7 and PAPP-A concentrations were increased in active disease in comparison to the controls (MMP-7: 13 ±.7 vs. 2 ± 0.6 ng/ml, PAPP-A: 14 ± 18 vs. 6.8 ± 2.6 ng/ml, both P < 0.005). The MMP-2 and TIMP-2 levels were increased in remission when compared to the controls (MMP-2: 242 ± 50 ng/ml vs. 212 ± 26 ng /ml, TIMP-2: 82 ± 14 ng/ml vs. 68 ± 93 ng/ml) and to the active AAV (MMP-2: 242 ± 50 vs. 219 ± 54 ng/ml, TIMP-2: 82 ± 14 ng/ml vs. 73 ± 15 ng/ml, all P < 0.005). MMP-3, MMP-7, TIMP-1, and PAPP-A correlated with serum creatinine. The serum levels of MMPs, TIMPs and PAPP-A are all altered in AAV. MMP-2, MMP-7 and TIMP-2 appear to be promising markers in distinguishing active AAV from remission. MMP-3, MMP-7, TIMP-1, and PAPP-A are associated with kidney function in AAV. Further studies are needed to delineate the exact roles of circulating MMPs, TIMPs and PAPP-A in patients with AAV.
Collapse
Affiliation(s)
- O Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Z Chocová
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Z Hrušková
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Z Hladinová
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - M Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - K Maličková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - J Vachek
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - P Wurmová
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - V Kříha
- Institute of Radiation Oncology, Bulovka Hospital, Prague, Czech Republic
| | - T Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - V Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Gantala SR, Kondapalli MS, Kummari R, Padala C, Tupurani MA, Kupsal K, Galimudi RK, Gundapaneni KK, Puranam K, Shyamala N, Guditi S, Rapur R, Hanumanth SR. Collagenase-1 (-1607 1G/2G), Gelatinase-A (-1306 C/T), Stromelysin-1 (-1171 5A/6A) functional promoter polymorphisms in risk prediction of type 2 diabetic nephropathy. Gene 2018; 673:22-31. [DOI: 10.1016/j.gene.2018.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022]
|
10
|
Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors. Stem Cell Rev Rep 2018; 13:513-531. [PMID: 28239758 PMCID: PMC5493730 DOI: 10.1007/s12015-016-9712-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Collapse
|
11
|
Herba Artemisiae Capillaris Extract Prevents the Development of Streptozotocin-Induced Diabetic Nephropathy of Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5180165. [PMID: 29636780 PMCID: PMC5832121 DOI: 10.1155/2018/5180165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/01/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world; until now there is no specific drug available. In this work, we use herba artemisiae capillaris extract (HACE) to alleviate renal fibrosis characterized by the excessive accumulation of extracellular matrix (ECM) in rats, aiming to investigate the protective effect of the HACE on DN. We found that the intragastric treatment of high-dose HACE could reverse the effect of streptozotocin not only to decrease the level of blood glucose and blood lipid in different degree but also further to improve renal functions. It is worth mentioning that the effect of HACE treatment was comparable to the positive drug benazepril. Moreover, we found that HACE treatment could on one hand inhibit oxidative stress in DN rats through regulating enzymatic activity for scavenging reactive oxygen species and on the other hand increase the ECM degradation through regulating the activity of metalloproteinase-2 (MMP-2) and the expression of tissue transglutaminase (tTG), which explained why HACE treatment inhibited ECM accumulation. On the basis of above experimental results, we conclude that HACE prevents DN development in a streptozotocin-induced DN rat model, and HACE is a promising candidate to cure DN in clinic.
Collapse
|
12
|
Vora M, Kevil CG, Herrera GA. Contribution of human smooth muscle cells to amyloid angiopathy in AL (light-chain) amyloidosis. Ultrastruct Pathol 2017; 41:358-368. [PMID: 28796568 DOI: 10.1080/01913123.2017.1349852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Amyloid light-chain (AL) amyloidosis is a disease process that often compromises the peripheral vascular system and leads to systemic end-organ dysfunction. Although amyloid formation in vessel walls is a multifaceted process, the assembly of the native light chains (LCs) into amyloid fibrils is central to its pathogenesis. Recent evidence suggests that endocytosis and endolysosomal processing of immunoglobin LCs by host cells is essential to the formation of amyloid fibrils that are deposited in at least some tissues. The aim of this study was to elucidate the role of vascular smooth muscle in amyloid angiopathy. METHODS Human coronary artery smooth muscle cells (SMCs) were grown on coverslips, four chamber glass slides, and growth factor-reduced Matrigel matrix in the presence of 10 µg/ml of ALs (λ and κ isotypes), nonamyloidogenic LCs, and culture medium (negative control) for 48 and 72 hours. Thereafter, a detailed light microscopic, immunohistochemical, and ultrastructural evaluation was conducted to verify amyloid deposition and characterize the role of SMCs in the formation of amyloid deposits in the various experimental conditions. RESULTS Amyloid deposits were detected extracellulary as early as 48 hours after exposure of vascular smooth muscle cells (VSMCs) to AL-LCs (amyloidogenic light chains) as confirmed by affinity to Congo red dye, thioflavin T fluorescence, and transmission electron microscopy. No amyloid was present in the cultures of SMCs treated with medium alone or nonamyloidogenic LCs. SMCs associated with amyloid deposits exhibited CD68, lysosome-associated membrane protein 1-1, and intracellular lambda light chain expression and only focal smooth muscle actin and muscle-specific actin positivity. Electron microscopy revealed these cells to have an expanded mature lysosomal compartment closely associated with deposits of newly formed amyloid fibrils. CONCLUSIONS The interaction of amyloidogenic LCs with VSMCs is necessary for the formation of amyloid fibrils that are deposited in peripheral vessels. VSMCs participate in the formation of amyloid by the intracellular processing of AL-LCs, which is possible due to their transformation from a smooth muscle to a macrophage phenotype. The formation of amyloid fibrils occurs in the mature lysosomal compartment of transformed cells. The amyloid that is formed is then extruded into the extracellular matrix.
Collapse
Affiliation(s)
- Moiz Vora
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health , Shreveport , LA , USA
| | - Christopher G Kevil
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health , Shreveport , LA , USA.,b Department of Physiology , Louisiana State University Health , Shreveport , LA , USA
| | - Guillermo A Herrera
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health , Shreveport , LA , USA.,c Department of Anatomy and Cell Biology , Louisiana State University Health , Shreveport , LA , USA
| |
Collapse
|
13
|
Herrera GA, Zeng C, Turbat-Herrera EA, Teng J. Healing the damaged mesangium in nodular glomerulosclerosis using mesenchymal stem cells (MSCs): Expectations and challenges. Ultrastruct Pathol 2017; 40:61-70. [PMID: 27031175 DOI: 10.3109/01913123.2016.1145776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been shown experimentally that mesenchymal stem cells (MSCs) can be delivered to the mesangium in some conditions such as amyloidosis to clear debris and foreign material, and eventually transform into functional mesangial cells (MCs) and change the altered mesangial areas into normal collagen IV-rich matrix. A more challenging situation is when the matrix is rich in abnormal extracellular matrix proteins, especially those difficult to destroy such as tenascin, and, as a result, assumes a nodular appearance - what is known in pathology jargon as nodular glomerulosclerosis. MSCs find it difficult to dispose of the altered mesangial constituents, an initial step required for mesangial repair to occur successfully. The ability of MSCs to repair damaged mesangium represents a novel therapeutic intervention to reverse mesangial injury and is potentially a powerful and unique approach to prevent progression ending in end-stage renal disease (ESRD). This review will highlight progress that has been made in glomerular, and more specifically mesangial, repair, and will address future expectations and challenges to be confronted as the use of MSCs continues to be explored as a potential application for clinical practice.
Collapse
Affiliation(s)
- Guillermo A Herrera
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health Sciences Center , Shreveport , LA , USA.,b Department of Cellular Biology and Anatomy , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Chun Zeng
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Elba A Turbat-Herrera
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health Sciences Center , Shreveport , LA , USA.,b Department of Cellular Biology and Anatomy , Louisiana State University Health Sciences Center , Shreveport , LA , USA.,c Department of Medicine, Feist-Weiller Cancer Center , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Jiamin Teng
- a Department of Pathology and Translational Pathobiology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| |
Collapse
|
14
|
Muvva C, Patra S, Venkatesan S. MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors. PLoS One 2016; 11:e0159321. [PMID: 27509041 PMCID: PMC4979873 DOI: 10.1371/journal.pone.0159321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors. In this communication, we report the development of a new MMpI database which provides resourceful information for all researchers working in this field. It is a web-accessible, unique resource that contains detailed information on the inhibitors of MMP including small molecules, peptides and MMP Drug Leads. The database contains entries of ~3000 inhibitors including ~72 MMP Drug Leads and ~73 peptide based inhibitors. This database provides the detailed molecular and structural details which are necessary for the drug discovery and development. The MMpI database contains physical properties, 2D and 3D structures (mol2 and pdb format files) of inhibitors of MMP. Other data fields are hyperlinked to PubChem, ChEMBL, BindingDB, DrugBank, PDB, MEROPS and PubMed. The database has extensive searching facility with MMpI ID, IUPAC name, chemical structure and with the title of research article. The MMP inhibitors provided in MMpI database are optimized using Python-based Hierarchical Environment for Integrated Xtallography (Phenix) software. MMpI Database is unique and it is the only public database that contains and provides the complete information on the inhibitors of MMP. Database URL: http://clri.res.in/subramanian/databases/mmpi/index.php.
Collapse
Affiliation(s)
- Charuvaka Muvva
- Chemical Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sanjukta Patra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Subramanian Venkatesan
- Chemical Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
- * E-mail: ;
| |
Collapse
|
15
|
Rivera-Mancía S, Lozada-García MC, Pedraza-Chaverri J. Experimental evidence for curcumin and its analogs for management of diabetes mellitus and its associated complications. Eur J Pharmacol 2015; 756:30-7. [DOI: 10.1016/j.ejphar.2015.02.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
|
16
|
Teng J, Turbat-Herrera EA, Herrera GA. An animal model of glomerular light-chain-associated amyloidogenesis depicts the crucial role of lysosomes. Kidney Int 2014; 86:738-46. [DOI: 10.1038/ki.2014.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 11/09/2022]
|
17
|
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? FIBROGENESIS & TISSUE REPAIR 2014; 7:4. [PMID: 24678881 PMCID: PMC3986639 DOI: 10.1186/1755-1536-7-4] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
Collapse
|
18
|
Renal biopsy: use of biomarkers as a tool for the diagnosis of focal segmental glomerulosclerosis. DISEASE MARKERS 2014; 2014:192836. [PMID: 24719498 PMCID: PMC3955602 DOI: 10.1155/2014/192836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a glomerulopathy associated with nephrotic syndrome and podocyte injury. FSGS occurs both in children and adults and it is considered the main idiopathic nephrotic syndrome nowadays. It is extremely difficult to establish a morphological diagnosis, since some biopsies lack a considerable quantifiable number of sclerotic glomeruli, given their focal aspect and the fact that FSGS occurs in less than half of the glomeruli. Therefore, many biological molecules have been evaluated as potential markers that would enhance the diagnosis of FSGS. Some of these molecules and receptors are associated with the pathogenesis of FSGS and have potential use in diagnosis.
Collapse
|
19
|
Liu B, Li C, Liu Z, Dai Z, Tao Y. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease. BMC Nephrol 2012; 13:109. [PMID: 22963260 PMCID: PMC3487993 DOI: 10.1186/1471-2369-13-109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.
Collapse
Affiliation(s)
- Bin Liu
- Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin-angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.
Collapse
Affiliation(s)
- Hanna E Abboud
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Bondar' IA, Klimontov VV. The role of matrix metalloproteinases and their inhibitors in the development of renal fibrosis in the patients with diabetes mellitus. ACTA ACUST UNITED AC 2012. [DOI: 10.14341/probl201258139-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The accumulation of components of extracellular matrix in the glomerular and interstitial compartments of the kidneys is a characteristic feature of diabetic nephropathy. The leading role in the extracellular matrix catabolism is played by matrix metalloproteinases (MMP). The activity of these enzymes is regulated by a group of inhibitors including tissue metalloproteinase inhibitors, plasminogen activator inhibitor-1, etc. Both in vivo and in vitro studies have demonstrated that a reduction of MMP activities and/or an increase of expression of MMP tissue inhibitors in the glomerular and tubular cells result in the suppression of catabolism of the components of extracellular matrix under the hyperglycemic conditions. Both circulating and urinary MMP as well as their inhibitors are considered to be new potential markers of renal fibrosis associated with diabetes mellitus. It is concluded that the directed activation of MMP and neutralization of their inhibitors provide a promising tool for the treatment of diabetic nephropathy.
Collapse
|
22
|
Lindsey ML, Zamilpa R. Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 2012; 30:31-41. [PMID: 20645986 PMCID: PMC2972388 DOI: 10.1111/j.1755-5922.2010.00207.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following a myocardial infarction (MI), the homeostatic balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) is disrupted as part of the left ventricle (LV) response to injury. The full complement of responses to MI has been termed LV remodeling and includes changes in LV size, shape and function. The following events encompass the LV response to MI: (1) inflammation and LV wall thinning and dilation, (2) infarct expansion and necrotic myocyte resorption, (3) accumulation of fibroblasts and scar formation, and (4) endothelial cell activation and neovascularization. In this review, we will summarize MMP and TIMP roles during these events, focusing on the spatiotemporal localization and MMP and TIMP effects on cellular and tissue-level responses. We will review MMP and TIMP structure and function, and discuss specific MMP roles during both the acute and chronic phases post-MI, which may provide insight into novel therapeutic targets to limit adverse remodeling in the MI setting.
Collapse
Affiliation(s)
- Merry L Lindsey
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
23
|
Czech KA, Bennett M, Devarajan P. Distinct metalloproteinase excretion patterns in focal segmental glomerulosclerosis. Pediatr Nephrol 2011; 26:2179-84. [PMID: 21720805 DOI: 10.1007/s00467-011-1897-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 11/28/2022]
Abstract
Metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) degrade type IV collagen, and represent important tissue remodeling enzymes in several kidney disorders. In this study, we measured urinary levels of MMP-2, MMP-9, and the tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in patients with steroid-sensitive nephrotic syndrome (SSNS, n = 18, median age 5) and focal segmental glomerulosclerosis (FSGS, n = 16, median age 15). We found that urinary concentrations of MMP-2, MMP-9, TIMP-1, and TIMP-2 were significantly elevated in FSGS patients as compared to SSNS in both relapse and remission (p < 0.002). Furthermore, urinary levels of these enzymes are increased early on in the FSGS disease process (chronic kidney disease stages 1 and 2). The findings from this pilot study suggest that MMPs and TIMPs have the potential to represent candidate, early non-invasive biomarkers for diagnosis and/or response to therapy. In addition, they may represent therapeutic targets for preventing chronic kidney disease progression in FSGS.
Collapse
Affiliation(s)
- Kimberly A Czech
- Division of Nephrology & Hypertension, Cincinnati Children's Hospital and Medical Center, 3333 Burnet Ave, MLC 7022, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
24
|
Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest 2010; 120:3520-9. [PMID: 20811150 DOI: 10.1172/jci42028] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 07/14/2010] [Indexed: 02/06/2023] Open
Abstract
Mutations in sarcomere protein genes can cause hypertrophic cardiomyopathy (HCM), a disorder characterized by myocyte enlargement, fibrosis, and impaired ventricular relaxation. Here, we demonstrate that sarcomere protein gene mutations activate proliferative and profibrotic signals in non-myocyte cells to produce pathologic remodeling in HCM. Gene expression analyses of non-myocyte cells isolated from HCM mouse hearts showed increased levels of RNAs encoding cell-cycle proteins, Tgf-β, periostin, and other profibrotic proteins. Markedly increased BrdU labeling, Ki67 antigen expression, and periostin immunohistochemistry in the fibrotic regions of HCM hearts confirmed the transcriptional profiling data. Genetic ablation of periostin in HCM mice reduced but did not extinguish non-myocyte proliferation and fibrosis. In contrast, administration of Tgf-β-neutralizing antibodies abrogated non-myocyte proliferation and fibrosis. Chronic administration of the angiotensin II type 1 receptor antagonist losartan to mutation-positive, hypertrophy-negative (prehypertrophic) mice prevented the emergence of hypertrophy, non-myocyte proliferation, and fibrosis. Losartan treatment did not reverse pathologic remodeling of established HCM but did reduce non-myocyte proliferation. These data define non-myocyte activation of Tgf-β signaling as a pivotal mechanism for increased fibrosis in HCM and a potentially important factor contributing to diastolic dysfunction and heart failure. Preemptive pharmacologic inhibition of Tgf-β signals warrants study in human patients with sarcomere gene mutations.
Collapse
Affiliation(s)
- Polakit Teekakirikul
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Villemure I, Stokes IAF. Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech 2009; 42:1793-803. [PMID: 19540500 PMCID: PMC2739053 DOI: 10.1016/j.jbiomech.2009.05.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/14/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
The longitudinal growth of long bones occurs in growth plates where chondrocytes synthesize cartilage that is subsequently ossified. Altered growth and subsequent deformity resulting from abnormal mechanical loading is often referred to as mechanical modulation of bone growth. This phenomenon has key implications in the progression of infant and juvenile musculoskeletal deformities, such as adolescent idiopathic scoliosis, hyperkyphosis, genu varus/valgus and tibia vara/valga, as well as neuromuscular diseases. Clinical management of these deformities is often directed at modifying the mechanical environment of affected bones. However, there is limited quantitative and physiological understanding of how bone growth is regulated in response to mechanical loading. This review of published work addresses the state of knowledge concerning key questions about mechanisms underlying biomechanical modulation of bone growth. The longitudinal growth of bones is apparently controlled by modifying the numbers of growth plate chondrocytes in the proliferative zone, their rate of proliferation, the amount of chondrocytic hypertrophy and the controlled synthesis and degradation of matrix throughout the growth plate. These variables may be modulated to produce a change in growth rate in the presence of sustained or cyclic mechanical load. Tissue and cellular deformations involved in the transduction of mechanical stimuli depend on the growth plate tissue material properties that are highly anisotropic, time-dependent, and that differ in different zones of the growth plate and with developmental stages. There is little information about the effects of time-varying changes in volume, water content, osmolarity of matrix, etc. on differentiation, maturation and metabolic activity of chondrocytes. Also, the effects of shear forces and torsion on the growth plate are incompletely characterized. Future work on growth plate mechanobiology should distinguish between changes in the regulation of bone growth resulting from different processes, such as direct stimulation of the cell nuclei, physico-chemical stimuli, mechanical degradation of matrix or cellular components and possible alterations of local blood supply.
Collapse
Affiliation(s)
- Isabelle Villemure
- Department of Mechanical Engineering, Ecole Polytechnique of Montreal, Station Centre-Ville, Montréal, Québec, Canada.
| | | |
Collapse
|
26
|
Cancel M, Grimard G, Thuillard-Crisinel D, Moldovan F, Villemure I. Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone 2009; 44:306-15. [PMID: 18849019 DOI: 10.1016/j.bone.2008.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022]
Abstract
Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In addition, growth plate extracellular matrix remodelling is essential to regulate the normal longitudinal bone growth process and to ensure physiological bone mineralization. In order to investigate the effects of static compression on growth plate extracellular matrix using an in vivo animal model, a loading device was used to precisely apply a compressive stress of 0.2 MPa for two weeks on the seventh caudal vertebra (Cd7) of rats during the pubertal growth spurt. Control, sham and loaded groups were studied. Growth modulation was quantified based on calcein labelling, and three matrix components (type II and X collagens, and aggrecan) were assessed using immunohistochemistry/safranin-O staining. As well, extracellular matrix components and enzymes (MMP-3 and -13, ADAMTS-4 and -5) were studied by qRT-PCR. Loading reduced Cd7 growth by 29% (p<0.05) and 15% (p=0.07) when compared to controls and shams respectively. No significant change could be observed in the mRNA expression of collagens and the proteolytic enzyme MMP-13. However, MMP-3 was significantly increased in the loaded group as compared to the control group (p<0.05). No change was observed in aggrecan and ADAMTS-4 and -5 expression. Low immunostaining for type II and X collagens was observed in 83% of the loaded rats as compared to the control rats. This in vivo study shows that, during pubertal growth spurt, two-week static compression reduced caudal vertebrae growth rates; this mechanical growth modulation occurred with decreased type II and X collagen proteins in the growth plate.
Collapse
Affiliation(s)
- Mathilde Cancel
- Department of Mechanical Engineering, Ecole Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec, Canada H3C 3A7.
| | | | | | | | | |
Collapse
|