1
|
Bielanowicz A, Johnson RW, Goh H, Moody SC, Poulton IJ, Croce N, Loveland KL, Hedger MP, Sims NA, Itman C. Prepubertal Di-n-Butyl Phthalate Exposure Alters Sertoli and Leydig Cell Function and Lowers Bone Density in Adult Male Mice. Endocrinology 2016; 157:2595-603. [PMID: 27058814 DOI: 10.1210/en.2015-1936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phthalate exposure impairs testis development and function; however, whether phthalates affect nonreproductive functions is not well understood. To investigate this, C57BL/6J mice were fed 1-500 mg di-n-butyl phthalate (DBP) in corn oil, or vehicle only, daily from 4 to 14 days, after which tissues were collected (prepubertal study). Another group was fed 1-500 mg/kg·d DBP from 4 to 21 days and then maintained untreated until 8 weeks for determination of adult consequences of prepubertal exposure. Bones were assessed by microcomputed tomography and dual-energy X-ray absorptiometry and T by RIA. DBP exposure decreased prepubertal femur length, marrow volume, and mean moment of inertia. Adult animals exposed prepubertally to low DBP doses had lower bone mineral content and bone mineral density and less lean tissue mass than vehicle-treated animals. Altered dynamics of the emerging Leydig population were found in 14-day-old animals fed 100-500 mg/kg·d DBP. Adult mice had variable testicular T and serum T and LH concentrations after prepubertal exposure and a dose-dependent reduction in cytochrome p450, family 11, subfamily A, polypeptide 1. Insulin-like 3 was detected in Sertoli cells of adult mice administered the highest dose of 500 mg/kg·d DBP prepubertally, a finding supported by the induction of insulin-like 3 expression in TM4 cells exposed to 50 μM, but not 5 μM, DBP. We propose that low-dose DBP exposure is detrimental to bone but that normal bone mineral density/bone mineral content after high-dose DBP exposure reflects changes in testicular somatic cells that confer protection to bones. These findings will fuel concerns that low-dose DBP exposure impacts health beyond the reproductive axis.
Collapse
Affiliation(s)
- Amanda Bielanowicz
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Rachelle W Johnson
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hoey Goh
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Sarah C Moody
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Ingrid J Poulton
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Nic Croce
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Kate L Loveland
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Mark P Hedger
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Natalie A Sims
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Catherine Itman
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|
6
|
SHENG X, ZHANG H, ZHANG M, ZHANG W, HU X, SONG M, ZHOU J, XU M, WENG Q, WATANABE G, TAYA K. Seasonal Changes in Immunoreactivity of Activin Signaling Component Proteins in Wild Ground Squirrel Testes. J Reprod Dev 2012; 58:126-31. [DOI: 10.1262/jrd.11-005s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xia SHENG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin ZHANG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengyuan ZHANG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei ZHANG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao HU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Moshi SONG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jiao ZHOU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiyu XU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang WENG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Gen WATANABE
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Basic Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kazuyoshi TAYA
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Basic Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
7
|
Gan H, Lin X, Zhang Z, Zhang W, Liao S, Wang L, Han C. piRNA profiling during specific stages of mouse spermatogenesis. RNA (NEW YORK, N.Y.) 2011; 17:1191-203. [PMID: 21602304 PMCID: PMC3138557 DOI: 10.1261/rna.2648411] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/01/2011] [Indexed: 05/19/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small RNAs abundantly expressed in animal gonads. piRNAs that map to retrotransposons are generated by a "ping-pong" amplification loop to suppress the activity of retrotransposons. However, the biogenesis and function of other categories of piRNAs have yet to be investigated. In this study, we first profiled the expression of small RNAs in type A spermatogonia, pachytene spermatocytes, and round spermatids by deep sequencing. We then focused on the computational analysis of the potential piRNAs generated in the present study as well as other published sets. piRNAs mapping to retrotransposons, mRNAs, and intergenic regions had different length distributions and were differentially regulated in spermatogenesis. piRNA-generating mRNAs (PRMRs), whose expression positively correlated with their piRNA products, constituted one-third of the protein-coding genes and were evolutionarily conserved and enriched with splicing isoforms and antisense transcripts. PRMRs with piRNAs preferentially mapped to CDSs and 3' UTRs partitioned into three clusters differentially expressed during spermatogenesis and enriched with unique sets of functional annotation terms related to housekeeping activities as well as spermatogenesis-specific processes. Intergenic piRNAs were divided into 2992 clusters probably representing novel transcriptional units that have not been reported. The transcripts of a large number of genes involved in spermatogenesis are the precursors of piRNAs, and these genes are intricately regulated by alternative splicing and antisense transcripts. piRNAs, whose regulatory role in gene expression awaits to be identified, are clearly products of a novel regulatory process that needs to be defined.
Collapse
Affiliation(s)
- Haiyun Gan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Lin
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangying Liao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixian Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
- Corresponding author.E-mail .
| |
Collapse
|