1
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
2
|
Ortiz-Leal I, Torres MV, López-Beceiro A, Fidalgo L, Shin T, Sanchez-Quinteiro P. First Immunohistochemical Demonstration of the Expression of a Type-2 Vomeronasal Receptor, V2R2, in Wild Canids. Int J Mol Sci 2024; 25:7291. [PMID: 39000398 PMCID: PMC11241633 DOI: 10.3390/ijms25137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| |
Collapse
|
3
|
Ortiz‐Leal I, Torres MV, Barreiro‐Vázquez J, López‐Beceiro A, Fidalgo L, Shin T, Sanchez‐Quinteiro P. The vomeronasal system of the wolf (Canis lupus signatus): The singularities of a wild canid. J Anat 2024; 245:109-136. [PMID: 38366249 PMCID: PMC11161832 DOI: 10.1111/joa.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.
Collapse
Affiliation(s)
- Irene Ortiz‐Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - José‐Daniel Barreiro‐Vázquez
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ana López‐Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National UniversityJejuRepublic of Korea
| | - Pablo Sanchez‐Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| |
Collapse
|
4
|
Kondoh D, Tonomori W, Iwasaki R, Tomiyasu J, Kaneoya Y, Kawai YK, Ikuta S, Kobayashi H, Kobayashi M. The vomeronasal organ and incisive duct of harbor seals are modified to secrete acidic mucus into the nasal cavity. Sci Rep 2024; 14:11779. [PMID: 38783070 PMCID: PMC11116377 DOI: 10.1038/s41598-024-62711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | - Wataru Tonomori
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
- Ashoro Museum of Paleontology, Ashoro, Hokkaido, Japan
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jumpei Tomiyasu
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuka Kaneoya
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shun Ikuta
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Hokkaido, Japan
| | - Hayao Kobayashi
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Mari Kobayashi
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Hokkaido, Japan
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| |
Collapse
|
5
|
Archer C, McGlone J. Semiochemical 2-Methyl-2-butenal Reduced Signs of Stress in Cats during Transport. Animals (Basel) 2024; 14:341. [PMID: 38275804 PMCID: PMC10812570 DOI: 10.3390/ani14020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Some cats experience stress when they have novel experiences, such as infrequent transport. This study was a randomized, placebo-controlled, blinded study that sought to objectively evaluate the effects of a 2M2B collar on transported cat physiology and behavior. The statistical model included effects of cat treatment (2M2B vs. control), period (70 min), sex, and interactions. Cats wearing 2M2B collars had an 8% lower PR (p < 0.01), and they slept more and did not hide at the back of the kennel. While control cats vomited or showed excess salivation, cats with 2M2B collars did not show these signs of stress. Male cats were less active during transport than females. Male cats slept more with 2M2B collars compared with male cats with a control collar, but females showed similar sleeping overall regardless of which collar they wore. Female cats increased activity during transport when they had a 2M2B collar, while male activity did not differ with control or 2M2B collars. These data support the concept that the semiochemical 2M2B can reduce stress in transported cats based on objective physiological and behavioral measures.
Collapse
Affiliation(s)
| | - John McGlone
- Laboratory of Animal Behavior, Physiology and Welfare, Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
6
|
Ortiz-Leal I, Torres MV, Vargas-Barroso V, Fidalgo LE, López-Beceiro AM, Larriva-Sahd JA, Sánchez-Quinteiro P. The olfactory limbus of the red fox ( Vulpes vulpes). New insights regarding a noncanonical olfactory bulb pathway. Front Neuroanat 2023; 16:1097467. [PMID: 36704406 PMCID: PMC9871471 DOI: 10.3389/fnana.2022.1097467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: The olfactory system in most mammals is divided into several subsystems based on the anatomical locations of the neuroreceptor cells involved and the receptor families that are expressed. In addition to the main olfactory system and the vomeronasal system, a range of olfactory subsystems converge onto the transition zone located between the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), which has been termed the olfactory limbus (OL). The OL contains specialized glomeruli that receive noncanonical sensory afferences and which interact with the MOB and AOB. Little is known regarding the olfactory subsystems of mammals other than laboratory rodents. Methods: We have focused on characterizing the OL in the red fox by performing general and specific histological stainings on serial sections, using both single and double immunohistochemical and lectin-histochemical labeling techniques. Results: As a result, we have been able to determine that the OL of the red fox (Vulpes vulpes) displays an uncommonly high degree of development and complexity. Discussion: This makes this species a novel mammalian model, the study of which could improve our understanding of the noncanonical pathways involved in the processing of chemosensory cues.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V. Torres
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Víctor Vargas-Barroso
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Jorge A. Larriva-Sahd
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Pablo Sánchez-Quinteiro
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain,*Correspondence: Pablo Sanchez-Quinteiro
| |
Collapse
|
7
|
Tomiyasu J, Korzekwa A, Kawai YK, Robstad CA, Rosell F, Kondoh D. The vomeronasal system in semiaquatic beavers. J Anat 2022; 241:809-819. [PMID: 35437747 PMCID: PMC9358757 DOI: 10.1111/joa.13671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 01/15/2023] Open
Abstract
In contrast to the main olfactory system that detects volatile chemicals in the nasal air, the vomeronasal system can detect nonvolatile chemicals as well as volatiles. In the vomeronasal system, chemicals are perceived by the vomeronasal organ (VNO) projecting axons to the accessory olfactory bulb (AOB). Beavers (Castor spp.) are semiaquatic mammals that have developed chemical communication. It is possible that the beaver's anal gland secretions, nonvolatile and insoluble substances, may work as a messenger in the water and that beavers may detect the nonvolatile chemicals floating on the water surface via the VNO. The present study aimed to clarify the specificities of the beaver vomeronasal system by histologically and immunohistochemically analyzing the VNO and AOB of 12 Eurasian beavers (C. fiber). The VNO directly opened to the nasal cavity and was independent of a narrow nasopalatine duct connecting the oral and nasal cavities. The VNO comprised soft tissues including sensory and nonsensory epithelium, glands, a venous sinus, an artery, as well as cartilage inner, and bone outer enclosures. The AOB had distinct six layers, and anti-G protein α-i2 and α-o subunits were, respectively, immunoreactive in rostral and caudal glomeruli layers indicating expressions of V1Rs and V2Rs. According to gene repertories analysis, the beavers had 23 and six intact V1R and V2R genes respectively. These findings suggested that beavers recognize volatile odorants and nonvolatile substances using the vomeronasal system. The beaver VNO was developed as well as in other rodents, and it had two specific morphological features, namely, disadvantaged contact with the oral cavity because of a tiny nasopalatine duct, and a double bone and cartilage envelope. Our results highlight the importance of the vomeronasal system in beaver chemical communication and support the possibility that beavers can detect chemicals floating on the water surface via the VNO.
Collapse
Affiliation(s)
- Jumpei Tomiyasu
- Department of Biodiversity ProtectionInstitute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
| | - Anna Korzekwa
- Department of Biodiversity ProtectionInstitute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
| | - Yusuke K. Kawai
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| | - Christian A. Robstad
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South‐Eastern NorwayTelemarkNorway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South‐Eastern NorwayTelemarkNorway
| | - Daisuke Kondoh
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| |
Collapse
|
8
|
Kondoh D, Kawai YK, Watanabe K, Muranishi Y. Artiodactyl livestock species have a uniform vomeronasal system with a vomeronasal type 1 receptor (V1R) pathway. Tissue Cell 2022; 77:101863. [DOI: 10.1016/j.tice.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
9
|
Comparative Neuroanatomical Study of the Main Olfactory Bulb in Domestic and Wild Canids: Dog, Wolf and Red Fox. Animals (Basel) 2022; 12:ani12091079. [PMID: 35565506 PMCID: PMC9106054 DOI: 10.3390/ani12091079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The study of the morphological, physiological and molecular changes associated with the domestication process has been one of the most interesting unresolved neuroanatomical issues. The olfactory system deserves special attention since both wild and domestic canids are macrosmatic mammals with very high olfactory capacities. Nevertheless, the question remains open as to whether domestication involuted the sense of smell in domestic dogs. Further, there is a lack of comparative morphological information on the olfactory bulb, the first structure integrating olfactory sensory information in the brain. To provide comparative information on the domestication process, we studied the olfactory bulb of dogs and their two most important wild ancestors: the wolf and the fox. The study was carried out by macroscopic dissection and histological and immunohistochemical techniques and has allowed us to verify, first of all, that the three species present olfactory bulbs corresponding to a macrosmatic animal, but that there are noticeable differences not only in size, which was already known, but also in the cellularity and intensity of the immunohistochemical pattern characteristic of each species. These variations point to a reduction of the olfactory system as a consequence of the selection pressure associated with the domestication of animals. Abstract The sense of smell plays a fundamental role in mammalian survival. There is a considerable amount of information available on the vomeronasal system of both domestic and wild canids. However, much less information is available on the canid main olfactory system, particularly at the level of the main olfactory bulb. Comparative study of the neuroanatomy of wild and domestic canids provides an excellent model for understanding the effects of selection pressure associated with domestication. A comprehensive histological (hematoxylin–eosin, Nissl, Tolivia and Gallego’s Trichrome stains), lectin (UEA, LEA) and immunohistochemical (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2) study of the olfactory bulbs of the dog, fox and wolf was performed. Our study found greater macroscopic development of the olfactory bulb in both the wolf and fox compared to the dog. At the microscopic level, all three species show a well-developed pattern of lamination and cellularity typical of a macrosmatic animal. However, greater development of cellularity in the periglomerular and mitral layers of wild canids is characteristic. Likewise, the immunohistochemical study shows comparable results between the three species, but with a noticeably higher expression of markers in wild canids. These results suggest that the reduction in encephalization experienced in dogs due to domestication also corresponds to a lower degree of morphological and neurochemical differentiation of the olfactory bulb.
Collapse
|
10
|
Neuroanatomical and Immunohistological Study of the Main and Accessory Olfactory Bulbs of the Meerkat ( Suricata suricatta). Animals (Basel) 2021; 12:ani12010091. [PMID: 35011198 PMCID: PMC8749820 DOI: 10.3390/ani12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In wild mammals, chemical senses are crucial to survival, but sensory system information is lacking for many species, including the meerkat (Suricata suricatta), an iconic mammal with a marked social hierarchy that has been ambiguously classified in both canid and felid families. We studied the neuroanatomical basis of the meerkat olfactory and accessory olfactory bulbs, aiming to provide information on the relevance of both systems to the behaviors of this species and contributing to improving its taxonomic classification. The accessory olfactory bulb serves as the integration center of vomeronasal information. When examined microscopically, the accessory olfactory bulb of the meerkat presents a lamination pattern more defined than observed in dogs and approaching the pattern described in cats. The degree of lamination and development in the meerkat main olfactory bulb is comparable to the general pattern observed in mammals but with numerous specific features. Our study supports the functionality of the olfactory and vomeronasal integrative centers in meerkats and places this species within the suborder Feliformia. Our study also confirms the importance of chemical signals in mediating the social behaviors of this species and provides essential neuroanatomical information for understanding the functioning of their chemical senses. Abstract We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog’s, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family.
Collapse
|
11
|
Ortiz-Leal I, Torres MV, Villamayor PR, Fidalgo LE, López-Beceiro A, Sanchez-Quinteiro P. Can domestication shape Canidae brain morphology? The accessory olfactory bulb of the red fox as a case in point. Ann Anat 2021; 240:151881. [PMID: 34896556 DOI: 10.1016/j.aanat.2021.151881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The accessory olfactory bulb (AOB) is the first integrative center of the vomeronasal system (VNS), and the general macroscopic, microscopic, and neurochemical organizational patterns of the AOB differ fundamentally among species. Therefore, the low degree of differentiation observed for the dog AOB is surprising. As the artificial selection pressure exerted on domestic dogs has been suggested to play a key role in the involution of the dog VNS, a wild canid, such as the fox, represents a useful model for studying the hypothetical effects of domestication on the AOB morphology. METHODS A comprehensive histological, lectin-histochemical, and immunohistochemical study of the fox AOB was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful, as they label the transduction cascade of the vomeronasal receptor types 1 (V1R) and 2 (V2R), respectively. Other employed antibodies included those against proteins such as microtubule-associated protein 2 (MAP-2), tubulin, glial fibrillary acidic protein, growth-associated protein 43 (GAP-43), olfactory marker protein (OMP), calbindin, and calretinin. RESULTS The cytoarchitecture of the fox AOB showed a clear lamination, with neatly differentiated layers; a highly developed glomerular layer, rich in periglomerular cells; and large inner cell and granular layers. The immunolabeling of Gαi2, OMP, and GAP-43 delineated the outer layers, whereas Gαo and MAP-2 immunolabeling defined the inner layers. MAP-2 characterized the somas of AOB principal cells and their dendritic trees. Anti-calbindin and anti-calretinin antibodies discriminated neural subpopulations in both the mitral-plexiform layer and the granular cell layer, and the lectin Ulex europeus agglutinin I (UEA-I) showed selectivity for the AOB and the vomeronasal nerves. CONCLUSION The fox AOB presents unique characteristics and a higher degree of morphological development compared with the dog AOB. The comparatively complex neural basis for semiochemical information processing in the fox compared with that observed in dogs suggests loss of AOB anatomical complexity during the evolutionary history of dogs and opens a new avenue of research for studying the effects of domestication on brain structures.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Luis Eusebio Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
12
|
Does a third intermediate model for the vomeronasal processing of information exist? Insights from the macropodid neuroanatomy. Brain Struct Funct 2021; 227:881-899. [PMID: 34800143 PMCID: PMC8930919 DOI: 10.1007/s00429-021-02425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior–posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.
Collapse
|
13
|
Understanding the Role of Semiochemicals on the Reproductive Behaviour of Cheetahs ( Acinonyx jubatus)-A Review. Animals (Basel) 2021; 11:ani11113140. [PMID: 34827872 PMCID: PMC8614540 DOI: 10.3390/ani11113140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review aims to provide an in-depth overview of the reproductive physiology and behaviour of cheetahs (Acinonyx jubatus). Specifically, it focuses on the role that pheromones (a class of semiochemicals) play by directly affecting the reproductive (e.g., precopulatory and copulatory) behaviour. Furthermore, it aims to critically analyze current research and provide new insights on study areas needing further investigation. It is clear, for instance, that further research is necessary to investigate the role of semiochemicals in the reproductive behaviour of cheetahs in order to rectify the current behavioural difficulties experienced when breeding younger females. This, in turn, would aid in improving captive breeding and the prevention of asymmetric reproductive aging. Abstract The cheetah species (Acinonyx jubatus) is currently listed as vulnerable according to the International Union for Conservation of Nature (IUCN). Captive breeding has long since been used as a method of conservation of the species, with the aim to produce a healthy, strong population of cheetahs with an increased genetic variety when compared to their wild counterparts. This would then increase the likelihood of survivability once released into protected areas. Unfortunately, breeding females have been reported to be difficult due to the age of these animals. Older females are less fertile, have more difficult parturition, and are susceptible to asymmetric reproductive aging whereas younger females tend to show a significantly lower frequency of mating behaviour than that of older females, which negatively affects breeding introductions, and therefore mating. Nonetheless, the experience from breeding methods used in some breeding centres in South Africa and the Netherlands, which also rely on the role that semiochemicals play in breeding, proves that cheetahs can be bred successfully in captivity. This review aims to give the reader an in-depth overview of cheetahs’ reproductive physiology and behaviour, focusing on the role that pheromones play in this species. Furthermore, it aims to provide new insight into the use of semiochemicals to improve conservation strategies through captive breeding.
Collapse
|
14
|
Chengetanai S, Bhagwandin A, Bertelsen MF, Hård T, Hof PR, Spocter MA, Manger PR. The brain of the African wild dog. II. The olfactory system. J Comp Neurol 2020; 528:3285-3304. [PMID: 32798255 DOI: 10.1002/cne.25007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/10/2022]
Abstract
Employing a range of neuroanatomical stains, we detail the organization of the main and accessory olfactory systems of the African wild dog. The organization of both these systems follows that typically observed in mammals, but variations of interest were noted. Within the main olfactory bulb, the size of the glomeruli, at approximately 350 μm in diameter, are on the larger end of the range observed across mammals. In addition, we estimate that approximately 3,500 glomeruli are present in each main olfactory bulb. This larger main olfactory bulb glomerular size and number of glomeruli indicates that enhanced peripheral processing of a broad range of odorants is occurring in the main olfactory bulb of the African wild dog. Within the accessory olfactory bulb, the glomeruli did not appear distinct, rather forming a homogenous syncytia-like arrangement as seen in the domestic dog. In addition, the laminar organization of the deeper layers of the accessory olfactory bulb was indistinct, perhaps as a consequence of the altered architecture of the glomeruli. This arrangement of glomeruli indicates that rather than parcellating the processing of semiochemicals peripherally, these odorants may be processed in a more nuanced and combinatorial manner in the periphery, allowing for more rapid and precise behavioral responses as required in the highly social group structure observed in the African wild dog. While having a similar organization to that of other mammals, the olfactory system of the African wild dog has certain features that appear to correlate to their environmental niche.
Collapse
Affiliation(s)
- Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Ortiz‐Leal I, Torres MV, Villamayor PR, López‐Beceiro A, Sanchez‐Quinteiro P. The vomeronasal organ of wild canids: the fox (Vulpes vulpes) as a model. J Anat 2020; 237:890-906. [PMID: 32584430 PMCID: PMC7542198 DOI: 10.1111/joa.13254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/30/2023] Open
Abstract
The vomeronasal system (VNS) has been extensively studied within specific animal families, such as Rodentia. However, the study of the VNS in other families, such as Canidae, has long been neglected. Among canids, the vomeronasal organ (VNO) has only been studied in detail in the dog, and no studies have examined the morphofunctional or immunohistochemical characteristics of the VNS in wild canids, which is surprising, given the well-known importance of chemical senses for the dog and fox and the likelihood that the VNS plays roles in the socio-reproductive physiology and behaviours of these species. In addition, characterising the fox VNS could contribute to a better understanding of the domestication process that occurred in the dog, as the fox would represent the first wild canid to be studied in depth. Therefore, the aim of this study was to analyze the morphological and immunohistochemical characteristics of the fox VNO. Tissue dissection and microdissection techniques were employed, followed by general and specific histological staining techniques, including with immunohistochemical and lectin-histochemical labelling strategies, using antibodies against olfactory marker protein (OMP), growth-associated protein 43 (GAP-43), calbindin (CB), calretinin (CR), α-tubulin, Gαo, and Gαi2 proteins, to highlight the specific features of the VNO in the fox. This study found significant differences in the VNS between the fox and the dog, particularly concerning the expression of Gαi2 and Gαo proteins, which were associated with the expression of the type 1 vomeronasal receptors (V1R) and type 2 vomeronasal receptors (V2R), respectively, in the vomeronasal epithelium. Both are immunopositive in foxes, as opposed to the dog, which only expresses Gαi2. This finding suggests that the fox possesses a well-developed VNO and supports the hypothesis that a profound transformation in the VNS is associated with domestication in the canid family. Furthermore, the unique features identified in the fox VNO confirm the necessity of studying the VNS system in different species to better comprehend specific phylogenetic aspects of the VNS.
Collapse
Affiliation(s)
- Irene Ortiz‐Leal
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Paula R. Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ana López‐Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Pablo Sanchez‐Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| |
Collapse
|
16
|
Structural, morphometric and immunohistochemical study of the rabbit accessory olfactory bulb. Brain Struct Funct 2019; 225:203-226. [PMID: 31802255 DOI: 10.1007/s00429-019-01997-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
Abstract
The accessory olfactory bulb (AOB) is the first neural integrative centre of the vomeronasal system (VNS), which is associated primarily with the detection of semiochemicals. Although the rabbit is used as a model for the study of chemocommunication, these studies are hampered by the lack of knowledge regarding the topography, lamination, and neurochemical properties of the rabbit AOB. To fill this gap, we have employed histological stainings: lectin labelling with Ulex europaeus (UEA-I), Bandeiraea simplicifolia (BSI-B4), and Lycopersicon esculentum (LEA) agglutinins, and a range of immunohistochemical markers. Anti-G proteins Gαi2/Gαo, not previously studied in the rabbit AOB, are expressed following an antero-posterior zonal pattern. This places Lagomorpha among the small groups of mammals that conserve a double-path vomeronasal reception. Antibodies against olfactory marker protein (OMP), growth-associated protein-43 (GAP-43), glutaminase (GLS), microtubule-associated protein-2 (MAP-2), glial fibrillary-acidic protein (GFAP), calbindin (CB), and calretinin (CR) characterise the strata and the principal components of the BOA, demonstrating several singular features of the rabbit AOB. This diversity is accentuated by the presence of a unique organisation: four neuronal clusters in the accessory bulbar white matter, two of them not previously characterised in any species (the γ and δ groups). Our morphometric study of the AOB has found significant differences between sexes in the numerical density of principal cells, with larger values in females, a pattern completely opposite to that found in rats. In summary, the rabbit possesses a highly developed AOB, with many specific features that highlight the significant role played by chemocommunication among this species.
Collapse
|
17
|
Villamayor PR, Cifuentes JM, Fdz-de-Troconiz P, Sanchez-Quinteiro P. Morphological and immunohistochemical study of the rabbit vomeronasal organ. J Anat 2018; 233:814-827. [PMID: 30255591 DOI: 10.1111/joa.12884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 02/02/2023] Open
Abstract
The characterization of the rabbit mammary pheromone, which is sensed by the main olfactory system, has made this species a unique model for the study of pheromonal communication in mammals. This discovery has brought attention to the global understanding of chemosensory communication in this species. Chemocommunication is mediated by two distinct organs located in the nasal cavity, the main olfactory epithelium and the vomeronasal organ (VNO). However, there is a lack of knowledge about the vomeronasal system in rabbits. To understand the role of this system, an exhaustive anatomical and histological study of the rabbit VNO was performed. The rabbit VNO was studied macroscopically by light microscopy, and by histochemical and immunohistochemical techniques. We employed specific histological staining techniques (periodic acid-Schiff, Alcian blue, Gallego's trichrome), confocal autofluorescence, histochemical labelling with the lectin Ulex europaeus agglutinin (UEA-I), and immunohistochemical studies of the expression of the Gαi2 and Gαo proteins and olfactory marker protein. The opening of the vomeronasal duct into the nasal cavity and its indirect communication with the oral cavity through a functional nasopalatine duct was demonstrated by classical dissection and microdissection. In a series of transverse histological sections, special attention was paid to the general distribution of the various soft-tissue components of this organ (duct, glands, connective tissue, blood vessels and nerves) and to the nature of the capsule of the organ. Among the main morphological features that distinguish the rabbit VNO, the presence of a double envelope, which is bony externally and cartilaginous internally, and highly developed venous sinuses stand out. This observation indicates the crucial role played in this species by the pumping mechanism that introduces chemical signals into the vomeronasal duct. The functional properties of the organ are also confirmed by the presence of a well-developed neuroepithelium and profuse glandular tissue that is positive for neutral mucopolysaccharides. The role of glycoconjugates was assessed by the identification of the α1-2 fucose glycan system in the neuroepithelium of the VNO employing UEA-I lectin. The pattern of labelling, which was concentrated around the commissures of the sensory epithelium and more diffuse in the central segments, is different from that found in most mammals studied. According to the expression of G-proteins, two pathways have been described in the VNOs of mammals: neuroreceptor cells expressing the Gαi2 protein (associated with vomeronasal receptor type 1); and cells expressing Gαo (associated with vomeronasal receptor type 2). The latter pathway is absent in most mammals studied. The expression of both G-protein families in the rabbit VNO places Lagomorpha together with rodents and insectivores in a small group of mammals belonging to the two-path model. These findings support the notion that the rabbit possesses a highly developed VNO, with many specific morphological features, which highlights the significance of chemocommunication in this species.
Collapse
Affiliation(s)
- Paula R Villamayor
- Faculty of Veterinary, Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Jose Manuel Cifuentes
- Faculty of Veterinary, Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Patricia Fdz-de-Troconiz
- Faculty of Veterinary, Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Faculty of Veterinary, Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
18
|
Tomiyasu J, Kondoh D, Sakamoto H, Matsumoto N, Sasaki M, Kitamura N, Haneda S, Matsui M. Morphological and histological features of the vomeronasal organ in the brown bear. J Anat 2017; 231:749-757. [PMID: 28786107 PMCID: PMC5643918 DOI: 10.1111/joa.12673] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 11/28/2022] Open
Abstract
The vomeronasal organ (VNO) is a peripheral receptor structure that is involved in reproductive behavior and is part of the vomeronasal system. Male bears exhibit flehmen behavior that is regarded as the uptake of pheromones into the VNO to detect estrus in females. However, the morphological and histological features of the VNO in bears have not been comprehensively studied. The present study investigated the properties and degree of development of the VNO of the brown bear by histological, histochemical and ultrastructural methods. The VNO of bears was located at the same position as that of many other mammals, and it opened to the mouth like the VNO of most carnivores. The shape of the vomeronasal cartilages and the histological features of the sensory epithelium in the bear VNO were essentially similar to those of dogs. Receptor cells in the VNO of the bear possessed both cilia and microvilli like those of dogs. The dendritic knobs of receptor cells were positive for anti-G protein alpha-i2 subunit (Gαi2 ) but negative for anti-G protein alpha-o subunit, indicating preferential use of the V1R-Gαi2 pathway in the vomeronasal system of bears, as in other carnivores. The VNO of the bear possessed three types of secretory cells (secretory cells of the vomeronasal gland, multicellular intraepithelial gland cells and goblet cells), and the present findings showed that the secretory granules in these cells also had various properties. The vomeronasal lumen at the middle region of the VNO invaginated toward the ventral region, and this invagination contained tightly packed multicellular intraepithelial gland cells. To our knowledge, this invagination and intraepithelial gland masses in the VNO are unique features of brown bears. The VNO in the brown bear, especially the secretory system, is morphologically well-developed, suggesting that this organ is significant for information transmission in this species.
Collapse
Affiliation(s)
- Jumpei Tomiyasu
- Laboratory of TheriogenologyDepartment of Applied Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
- The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
| | - Daisuke Kondoh
- Laboratory of Veterinary AnatomyDepartment of Basic Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | | | | | - Motoki Sasaki
- The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
- Laboratory of Veterinary AnatomyDepartment of Basic Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Nobuo Kitamura
- The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
- Laboratory of Veterinary AnatomyDepartment of Basic Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Shingo Haneda
- Laboratory of TheriogenologyDepartment of Applied Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Motozumi Matsui
- Laboratory of TheriogenologyDepartment of Applied Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
- The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
| |
Collapse
|
19
|
Elgayar SAM, Saad-Eldin HM, Haussein OA. Morphology of cat vomeronasal organ non-sensory epithelium during postnatal development. Anat Cell Biol 2017; 50:17-25. [PMID: 28417051 PMCID: PMC5386922 DOI: 10.5115/acb.2017.50.1.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/30/2022] Open
Abstract
The vomeronasal organ has an important role in mammal's social and sexual behaviours. In addition, it mediates defensive behavior through detection of protein pheromone homologues. In this work, a detailed morphological description of the postnatal development of the non-sensory epithelium (NSE) lining the vomeronasal duct (VND) of the female cat is provided using various histological techniques. The study focused on newborn, 2 weeks, 4 weeks, and 8 weeks of postnatal ages using four animals for each age. We report here for the first time that three types of NSE line the rostral segment of the VND; nonkeratinized stratified squamous epithelium, stratified cuboidal epithelium, and ciliated pseudo stratified columnar ciliated epithelium with goblet cells and that the VND undergoes 90° a change in its its axis from the vertical position caudally to the horizontal position rostral. The NSE which lines the lateral side of the VND middle segment is consists of cliated pseudostratified columnar epithelium without goblet cells. In addition to basal cells, the NSE contains ciliated and three types of nonciliated columnar epithelial cells (dark, light, and unstained). Mitotic figures were observed only in the basal cells layer during the first 2 weeks of postnatal development. Intraepithelial invading inflammatory cells were uncommon. Scanning electron microscopy revealed unevenly distributed long cilia intermingled with microvillar processes and intervening short microvillar processes. These projecting cilia and microvilli revealed a gradual increase in their height during development toward maturity.
Collapse
Affiliation(s)
- Sanaa A M Elgayar
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba M Saad-Eldin
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Haussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Silva L, Antunes A. Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu Rev Anim Biosci 2017; 5:353-370. [DOI: 10.1146/annurev-animal-022516-022801] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Steenkamp G, Boy SC, Staden PJ, Bester MN. How the cheetahs' specialized palate accommodates its abnormally large teeth. J Zool (1987) 2016. [DOI: 10.1111/jzo.12422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Steenkamp
- Department of Zoology and Entomology Mammal Research Institute Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria South Africa
- Department of Companion Animal Clinical Studies Faculty of Veterinary Science University of Pretoria Pretoria South Africa
| | - S. C. Boy
- Department of Oral Pathology School of Oral Health Sciences Sefako Makgatho Health Sciences University Ga‐Rankuwa Pretoria South Africa
| | - P. J. Staden
- Department of Statistics Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria South Africa
| | - M. N. Bester
- Department of Zoology and Entomology Mammal Research Institute Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria South Africa
| |
Collapse
|
22
|
Kupke A, Wenisch S, Failing K, Herden C. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium. Front Neuroanat 2016; 10:97. [PMID: 27790096 PMCID: PMC5061740 DOI: 10.3389/fnana.2016.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/28/2016] [Indexed: 01/12/2023] Open
Abstract
The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and revealed differences in its cytoarchitecture when compared to canine OE. Equine OE type a closely resembles rat OE. Whether the observed differences contribute to species-specific susceptibility to intranasal insults such as virus infections has to be further investigated.
Collapse
Affiliation(s)
- Alexandra Kupke
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Justus Liebig University GiessenGiessen, Germany; Institute of Virology, Philipps University MarburgMarburg, Germany
| | - Sabine Wenisch
- Small Animal Clinic c/o Institute of Veterinary Anatomy, Histology and Embryology, Department of Veterinary Clinical Sciences, Justus Liebig University Giessen Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Justus Liebig University Giessen Giessen, Germany
| |
Collapse
|
23
|
Nakamuta S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Immunohistochemical analysis for G protein in the olfactory organs of soft-shelled turtle, Pelodiscus sinensis. J Vet Med Sci 2015; 78:245-50. [PMID: 26440778 PMCID: PMC4785113 DOI: 10.1292/jvms.15-0359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In turtles, the epithelia lining the upper and lower chambers of the nasal cavity project axons to the ventral and dorsal parts of the olfactory bulbs, respectively. In a semi-aquatic soft-shelled turtle, Pelodiscus sinensis, more than 1,000 odorant receptor genes have been found, but it is not known where they are expressed. In this study, we aimed to clarify the distribution of cells expressing these genes in the olfactory organs of soft-shelled turtles. Immunoreactions for the Gαolf, the α subunit of G protein coupled to the odorant receptors, were detected on the surface of epithelia lining both the upper and lower chambers of the nasal cavity. The receptor cells in the epithelium of both chambers possessed cilia on the tip of their dendrites, whereas microvillous, non-ciliated, receptor cells were not found. These data suggest that the odorant receptor genes are expressed by the ciliated receptor cells in the upper and lower chamber epithelia. Precise location of the vomeronasal epithelium is not known at present.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
24
|
Park HS, Shin DS, Cho DH, Jung YW, Park JS. Improved sectioned images and surface models of the whole dog body. Ann Anat 2014; 196:352-9. [PMID: 24986152 DOI: 10.1016/j.aanat.2014.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
Abstract
The objective of this research was to produce high-quality sectioned images of a whole dog which can be used to create sectional anatomy atlases and three-dimensional (3D) models. A year old female beagle was sacrificed by potassium chloride injection and frozen. The frozen dog was then serially ground using a cryomacrotome. Sectioned surfaces were photographed using a digital camera to create 3555 sectioned images of whole dog body (intervals, 0.2 mm; pixel size, 0.1 mm; 48 bit color). In a sectioned image, structures of dimension greater than 0.1mm could be identified in detail. Photoshop was used to make segmented images of 16 structures. Sectioned and segmented images were stored in browsing software to allow easy access. Segmented images were reconstructed to make surface models of 16 structures using Mimics software and stored in portable document format (PDF) using Adobe 3D Reviewer software. In this research, state-of-art sectioned images and surface models were produced for the dog. The authors hope that the sectioned images produced will become a useful source of software for basic and clinical veterinary medicine, and therefore, are distributing the sectioned images and surface models through browsing software and PDF file available free of charge.
Collapse
Affiliation(s)
- Hyo Seok Park
- Department of Anatomy, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Daegu 704-701, Republic of Korea.
| | - Dong Sun Shin
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-749, Republic of Korea.
| | - Dai Hai Cho
- Department of Emergency Medicine, Dongguk University School of Medicine, Gyeongju 780-350, Republic of Korea.
| | - Yong Wook Jung
- Department of Anatomy, Dongguk University School of Medicine, 87 Dongdae-ro, Gyeongju 780-350, Republic of Korea.
| | - Jin Seo Park
- Department of Anatomy, Dongguk University School of Medicine, 87 Dongdae-ro, Gyeongju 780-350, Republic of Korea.
| |
Collapse
|
25
|
Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 2014; 522:3501-19. [PMID: 24771457 DOI: 10.1002/cne.23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
Abstract
We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Park C, Ahn M, Lee JY, Lee S, Yun Y, Lim YK, Taniguchi K, Shin T. A morphological study of the vomeronasal organ and the accessory olfactory bulb in the Korean roe deer, Capreolus pygargus. Acta Histochem 2014; 116:258-64. [PMID: 24055195 DOI: 10.1016/j.acthis.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
The vomeronasal organ (VNO) and accessory olfactory bulb (AOB) of the Korean roe deer (Capreolus pygargus) were studied histologically to evaluate their morphological characteristics. Grossly, the VNO, encased by cartilage, has a paired tubular structure with a caudal blind end and a rostral connection through incisive ducts on the hard palate. In the VNO, the vomeronasal sensory epithelium (VSE) consists of galectin-3-positive supporting cells, protein gene product (PGP) 9.5-positive receptor cells, and basal cells. The vomeronasal respiratory epithelium (VRE) consists of a pseudostratified epithelium. The AOB strata included a vomeronasal nerve layer (VNL), a glomerular layer (GL), a mitral/tufted cell layer, and a granular cell layer. All lectins used in this study, including Bandeiraea simplicifolia agglutinin isolectin B4 (BSI-B4), soybean agglutinin (SBA), Ulex europaeus agglutinin I (UEA-I), and Triticum vulgaris wheat germ agglutinin (WGA), labeled the VSE with varying intensity. In the AOB, both the VNL and the GL reacted with BSI-B4, SBA, and WGA with varying intensity, but not with UEA-I. This is the first morphological study of the VNO and AOB of the Korean roe deer, which are similar to those of goats.
Collapse
|
27
|
Salazar I, Cifuentes JM, Sánchez-Quinteiro P. Morphological and Immunohistochemical Features of the Vomeronasal System in Dogs. Anat Rec (Hoboken) 2012; 296:146-55. [DOI: 10.1002/ar.22617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/18/2012] [Indexed: 01/12/2023]
|