1
|
Zhang Y, Liu Z, Chopp M, Millman M, Li Y, Cepparulo P, Kemper A, Li C, Zhang L, Zhang ZG. Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery. Neural Regen Res 2025; 20:224-233. [PMID: 38767487 PMCID: PMC11246145 DOI: 10.4103/nrr.nrr-d-22-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/14/2023] [Accepted: 01/22/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Michael Millman
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | |
Collapse
|
2
|
Cuomo O, Anzilotti S, Brancaccio P, Cepparulo P, Lombardi G, Viscardi V, Vinciguerra A, Annunziato L, Pignataro G. Systemic administration of blood-derived exosomes induced by remote ischemic post-conditioning, by delivering a specific cluster of miRNAs, ameliorates ischemic damage and neurological function. J Cereb Blood Flow Metab 2024; 44:1459-1471. [PMID: 39129187 PMCID: PMC11693698 DOI: 10.1177/0271678x241270284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/22/2024] [Indexed: 08/13/2024]
Abstract
MicroRNAs, contained in exosomes or freely circulating in the plasma, might play a pivotal role in the infarct-sparing effect exerted by remote limb ischemic postconditioning (RLIP). The aims of the present study were: (1) To evaluate the effect of pure exosomes isolated from plasma of animals subjected to RLIP systemically administered to ischemic rats; (2) To finely dissect exosomes content in terms of miRNAs; (3) To select those regulatory miRNAs specifically expressed in protective exosomes and to identify molecular pathways involved in their neurobeneficial effects. Circulating exosomes were isolated from blood of animals exposed to RLIP and administered to animals exposed to tMCAO by intracerebroventricular, intraperitoneal or intranasal routes. Exosomal miRNA signature was evaluated by microarray and FISH analysis. Plasmatic exosomes isolated from plasma of RLIP rats attenuated cerebral ischemia reperfusion injury and improved neurological functions until 3 days after ischemia induction. Interestingly, miR-702-3p and miR-423-5p seem to be mainly involved in exosome protective action by modulating NOD1 and NLRP3, two key triggers of neuroinflammation and neuronal death. Collectively, the results of the present work demonstrated that plasma-released exosomes after RLIP may transfer a neuroprotective signal to the brain of ischemic animals, thus representing a potentially translatable therapeutic strategy in stroke.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanna Lombardi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Viviana Viscardi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Healty, University “Politecnica delle Marche”, Ancona, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Yin P, Tang M, Zhao G. M2 macrophage exosome-derived Apoc1 promotes ferroptosis resistance in osteosarcoma by inhibiting ACSF2 deubiquitination. Mol Carcinog 2024; 63:2103-2118. [PMID: 39041949 DOI: 10.1002/mc.23796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. The aim of this study was to investigate the regulatory mechanisms of M2 macrophage exosomes (M2-Exos) in ferroptosis in OS. A mouse model was established to investigate the in vivo role of M2-Exos. We investigated their effects on ferroptosis in OS using erastin, a ferroptosis activator, and deferoxamine mesylate, an iron chelator. In vitro, we investigated whether the Apoc1/Acyl-CoA Synthetase Family Member 2 (ACSF2) axis mediates these effects, using shApoc1 and shACSF2. The mechanisms whereby Apoc1 regulates ACSF2 were examined using cyclohexanone, a protein synthesis inhibitor, and MG132, a proteasomal inhibitor. M2-Exos reversed the inhibitory effects of erastin on OS cells, thus enhancing their viability, migration, invasion, proliferation, and reducing ferroptosis. Apoc1 was highly expressed in M2-Exos, and interfering with this expression reversed the effects of M2-Exos on OS cells. ACSF2 mediated the effects of M2-Exos-derived Apoc1. Apoc1 interacted with ACSF2, which, in turn, interacted with USP40. Apoc1 overexpression increased ACSF2 ubiquitination, promoting its degradation, whereas USP40 overexpression inhibited ACSF2 ubiquitination and promoted its expression. Apoc1 overexpression inhibited ACSF2 binding to USP40. M2-Exos-derived Apoc1 promoted ferroptosis resistance by inhibiting USP40 binding to ACSF2 and promoting ACSF2 ubiquitination and degradation, thus enhancing OS development.
Collapse
Affiliation(s)
- Ping Yin
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Tang
- Department of Blood Supply, Changsha Blood Center, Changsha, Hunan, China
| | - Guosheng Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
5
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
6
|
Yunusova NV, Kaigorodova EV, Panfilova PA, Popova NO, Udintseva IN, Kondakova IV, Svarovsky DA, Goldberg VE. Internalization of extracellular vesicles of cancer patients by peripheral blood mononuclear cells during polychemotherapy: connection with neurotoxicity. BIOMEDITSINSKAIA KHIMIIA 2024; 70:240-247. [PMID: 39239898 DOI: 10.18097/pbmc20247004240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Extracellular vesicles (EVs), exhibiting their functional activity after internalization by recipient cells, are involved in the pathogenesis of drug-induced polyneuropathy (DIPN), a common complication of antitumor therapy. In this work, the internalization of EVs obtained from colorectal cancer patients undergoing polychemotherapy and its relationship with neurotoxicity were assessed using a model system of mononuclear leukocytes. Circulating EVs were isolated from 8 colorectal cancer patients who received antitumor therapy according to the FOLFOX or XELOX regimens before the start of chemotherapy (point 1) and after 3-4 courses (point 2). Mononuclear leukocytes of a healthy donor served as a cellular model system for EV internalization in vitro. EV internalization was assessed using fluorescence microscopy. It was shown that internalization of EVs obtained from colorectal cancer patients with high neurotoxicity was higher than in the group with low neurotoxicity. The ability of CD11b-positive (CD11b⁺) and CD11b-negative (CD11b⁻) mononuclear leukocytes of a healthy donor to internalize EVs obtained from patients before and after chemotherapy did not reveal significant differences. A direct relationship was found between the relative number of CD11b⁻ cells with internalized EVs and the integral index of neurotoxicity according to the NRS scale at the peak of its manifestation (point 2) (r=0.675, p.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | | | - N O Popova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - I N Udintseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - D A Svarovsky
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - V E Goldberg
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Ji K, Schwenkel GJ, Mattingly RR, Sundararaghavan HG, Zhang ZG, Chopp M. A Fibroblast-Derived Secretome Stimulates the Growth and Invasiveness of 3D Plexiform Neurofibroma Spheroids. Cancers (Basel) 2024; 16:2498. [PMID: 39061138 PMCID: PMC11274591 DOI: 10.3390/cancers16142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Plexiform neurofibromas (PNs) occur in about a half of neurofibromatosis type 1 (NF1) patients and have garnered significant research attention due to their capacity for growth and potential for malignant transformation. NF1 plexiform neurofibroma (pNF1) is a complex tumor composed of Schwann cell-derived tumor cells (Nf1-/-) and the tumor microenvironment (TME). Although it has been widely demonstrated that the TME is involved in the formation of neurofibromas, little is known about the effects of the TME on the subsequent progression of human pNF1. Elucidating the molecular interactions between tumor cells and the TME may provide new therapeutic targets to reduce the progression of pNF1. In the present study, we focused on the contributions of fibroblasts, the most abundant cell types in the TME, to the growth of pNF1. To simulate the TME, we used a three-dimensional (3D) coculture model of immortalized pNF1 tumor cells (Nf1-/-) and primary fibroblasts (Nf1+/-) derived from pNF1 patients. We performed live-cell imaging of 3D/4D (3D in real-time) cultures through confocal microscopy followed by 3D quantitative analyses using advanced imaging software. The growth of pNF1 spheroids in 3D cocultures with fibroblasts was significantly greater than that of pNF1 spheroids in 3D monocultures. An increase in the growth of pNF1 spheroids also occurred when they were cultured with conditioned media (CM) from fibroblasts. Moreover, fibroblast-derived CM increased the invasive outgrowth and further local invasion of pNF1 spheroids. Interestingly, when small extracellular vesicles (sEVs) were depleted from the fibroblast-derived CM, the stimulation of the growth of pNF1 spheroids was lost. Our results suggest that fibroblast-derived sEVs are a therapeutic target for reducing the growth of pNF1.
Collapse
Affiliation(s)
- Kyungmin Ji
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - George J. Schwenkel
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - Raymond R. Mattingly
- Department of Pharmacology and Toxicology, Brody Medical School at East Carolina University, Greenville, NC 27834, USA;
| | | | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
8
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
9
|
Yang QQ, Chen C, Yao D, Liu W, Liu B, Zhou J, Pan D, Peng C, Zhan G, Han B. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2024; 63:e202312663. [PMID: 38032817 DOI: 10.1002/anie.202312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518060, Guangdong, China
| | - Wei Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dabo Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
10
|
You M, Xing H, Yan M, Zhang J, Chen J, Chen Y, Liu X, Zhu J. Schwann Cell-Derived Exosomes Ameliorate Paclitaxel-Induced Peripheral Neuropathy Through the miR-21-Mediated PTEN Signaling Pathway. Mol Neurobiol 2023; 60:6840-6851. [PMID: 37498480 DOI: 10.1007/s12035-023-03488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is a neurological disorder resulting from paclitaxel (PTX) treatment for cancer patients. There are currently no drugs available that can definitively prevent or treat PIPN. Exosomes are cell-secreted nanoscale vesicles that mediate communication between neurons and glial cells. We found that Schwann cell-derived exosomes (SC-EXOs) robustly improved PIPN both in vitro and in vivo. In vivo studies showed that SC-EXOs were able to alleviate PTX-induced mechanical nociceptive sensitization in rats. Pathomorphological analysis showed that SC-EXOs ameliorated PTX-induced plantar intraepidermal nerve fiber loss and dorsal root ganglion (DRG) injury. Additionally, the results of in vitro studies showed that SC-EXOs had significant protective effects on the DRG cells damaged by PTX, and did not affect the antitumor effect of PTX against Hela cells. Further, mechanism research revealed that SC-EXOs promoted axonal regeneration and protected damaged neurons by upregulating miR-21 to repress the phosphatase and tensin homolog (PTEN) pathway, which could improve PIPN. Taken together, these findings suggest that SC-EXOs ameliorate PTX-induced peripheral neuropathy via the miR-21-mediated PTEN signaling pathway, which provides a novel strategy for the treatment of PIPN.
Collapse
Affiliation(s)
- Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jie Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yang Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. J Ovarian Res 2023; 16:233. [PMID: 38037081 PMCID: PMC10688490 DOI: 10.1186/s13048-023-01312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Michael Millman
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Zhenggang Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Michael Chopp
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Ayesha B Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566022. [PMID: 37986971 PMCID: PMC10659572 DOI: 10.1101/2023.11.07.566022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health, Detroit, MI
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | | | - Michael Chopp
- Neurology, Henry Ford Health, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
13
|
Wang X, Wang M, Cai M, Shao R, Xia G, Zhao W. Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication. Acta Pharm Sin B 2023; 13:4477-4501. [PMID: 37969736 PMCID: PMC10638513 DOI: 10.1016/j.apsb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 11/17/2023] Open
Abstract
Pancreatic cancer is a more aggressive and refractory malignancy. Resistance and toxicity limit drug efficacy. Herein, we report a lower toxic and higher effective miriplatin (MPt)-loaded liposome, LMPt, exhibiting totally different anti-cancer mechanism from previously reported platinum agents. Both in gemcitabine (GEM)-resistant/sensitive (GEM-R/S) pancreatic cancer cells, LMPt exhibits prominent anti-cancer activity, led by faster cellular entry-induced larger accumulation of MPt. The level of caveolin-1 (Cav-1) determines entry rate and switch of entry pathways of LMPt, indicating a novel role of Cav-1 in nanoparticle entry. After endosome-lysosome processing, in unchanged metabolite, MPt is released and targets mitochondria to enhance binding of mitochondria protease LONP1 with POLG and TFAM, to degrade POLG and TFAM. Then, via PINK1-Parkin axis, mitophagy is induced by POLG and TFAM degradation-initiated mitochondrial DNA (mtDNA) replication blocking. Additionally, POLG and TFAM are identified as novel prognostic markers of pancreatic cancer, and mtDNA replication-induced mitophagy blocking mediates their pro-cancer activity. Our findings reveal that the target of this liposomal platinum agent is mitochondria but not DNA (target of most platinum agents), and totally distinct mechanism of MPt and other formulations of MPt. Self-assembly offers LMPt special efficacy and mechanisms. Prominent action and characteristic mechanism make LMPt a promising cancer candidate.
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Pharmaceutics Department, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Pharmaceutics Department, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Cheng Z, Shang J, Wang H, Yu L, Yuan Z, Zhang Y, Du Y, Tian J. Molecular imaging-guided extracellular vesicle-based drug delivery for precise cancer management: Current status and future perspectives. J Control Release 2023; 362:97-120. [PMID: 37625599 DOI: 10.1016/j.jconrel.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Extracellular vesicles (EVs), the mediators of intercellular communication, have attracted the attention of researchers for the important roles they play in cancer treatment. Compared with other inorganic nano-materials, EVs possess the advantages of higher biocompatibility, better physiochemical stability, easier surface modification, and excellent biosafety. They can be used as an advanced drug delivery system with an improved therapeutic index for various therapeutic agents. Engineered EV-based imaging and therapeutic agents (engineered EVs) have emerged as useful tools in targeted cancer diagnosis and therapy. Non-invasive tracing of engineered EVs contributes to a better evaluation of their functions in cancer progression, in vivo dynamic biodistribution, therapeutic response, and drug-loading efficiency. Recent advances in real-time molecular imaging (MI), and innovative EV labeling strategies have led to the development of novel tools that can evaluate the pharmacokinetics of engineered EVs in cancer management, which may accelerate further clinical translation of novel EV-based drug delivery platforms. Herein, we review the latest advances in EVs, their characteristics, and current examples of EV-based targeted drug delivery for cancer. Then, we discuss the prominent applications of MI for tracing both natural and engineered EVs. Finally, we discuss the current challenges and considerations of EVs in targeted cancer treatment and the limitations of different MI modalities. In the coming decades, EV-based therapeutic applications for cancer with improved drug loading and targeting abilities will be developed, and better anti-cancer effects of drug delivery nanoplatform will be achieved.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jihuan Shang
- School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Huarong Wang
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China
| | - Leyi Yu
- Beijing Haidian Hospital, Beijing 100080, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China.
| | - Yinlong Zhang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, China; Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
15
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
16
|
Yunusova NV, Popova NO, Udintseva IN, Klyushina TS, Kazantseva DV, Smirnova LP. The Role of Intravesicular Proteins and the Protein Corona of Extracellular Vesicles in the Development of Drug-Induced Polyneuropathy. Curr Issues Mol Biol 2023; 45:3302-3314. [PMID: 37185740 PMCID: PMC10136474 DOI: 10.3390/cimb45040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Extracellular vesicles (EVs) as membrane structures of cellular origin participating in intercellular communication are involved in the molecular mechanisms of the development of various variants of polyneuropathy. Taking into account the increasing role of the protein corona of EVs and protein-protein interactions on the surface of EVs in the pathogenesis of various diseases, we focused our attention in this review on the role of intravesicular proteins and the protein corona of EVs in the development of chemotherapy-induced polyneuropathy (CIPN). It has been shown that EVs are effectively internalized by the mechanisms of endocytosis and macropinocytosis by neurocytes and glial cells, carry markers of insulin resistance, functionally active proteins (receptors, cytokines, enzymes), and may be involved in the pathogenesis of CIPN. The mechanisms of CIPN associated with the EVs protein corona can be related with the accumulation of heavy chains of circulating IgG in it. G-class immunoglobulins in EVs are likely to have myelin hydrolyzing, superoxide dismutase, and oxidoreductase enzymatic activities. Moreover, circulating IgG-loaded EVs are a place for complement activation that can lead to membrane attack complex deposition in neuroglia and neurons. The mechanisms of CIPN development that are not associated with IgG in the EVs protein corona are somehow related to the fact that many anticancer drugs induce apoptosis of tumor cells, neurons, and neuroglial cells by various mechanisms. This process may be accompanied by the secretion of EVs with modified cargo (HSPs, 20S proteasomes, miRNAs).
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Natalia O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Irina N Udintseva
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Tatyana S Klyushina
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Daria V Kazantseva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Liudmila P Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| |
Collapse
|
17
|
Xie Y, Ren Z, Chen H, Tang H, Zhu M, Lv Z, Bao H, Zhang Y, Liu R, Shen Y, Zheng Y, Miao D, Guo X, Chen H, Wang S, Pei J. A novel estrogen-targeted PEGylated liposome co-delivery oxaliplatin and paclitaxel for the treatment of ovarian cancer. Biomed Pharmacother 2023; 160:114304. [PMID: 36724638 DOI: 10.1016/j.biopha.2023.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Ovarian cancer is the second cause of death among gynecological malignancies. In this study, we designed a novel estrogen-targeted PEGylated liposome loaded with oxaliplatin and paclitaxel (ES-SSL-OXA/PTX) which could target estrogen receptor (ER) highly expressed on the surface of SKOV-3 cells to enhance therapeutic efficacy and reduce the side effects for SKOV-3 tumor therapy. ES-SSL-OXA/PTX was prepared by thin film hydration method and exhibited a uniform spherical morphology. Encapsulation efficiency (EE) were determined by HPLC method with the results of 44.10% for OXA and 65.85% for PTX. The mean particle size and polydispersity index (PDI) were 168.46 nm and 0.145, respectively. In vivo and in vitro targeting study confirmed that ES-SSL-OXA/PTX has optimum specific targeting ability. Meanwhile, In vitro and in vivo antitumor results of ES-SSL-OXA/PTX exhibited a superior antiproliferative effect on SKOV-3 cells and a stronger anti-tumor efficacy with the tumor inhibition rate of 85.24%. The pharmacokinetics results of ES-SSL-OXA/PTX showed a prolonged half-life time and a slowed clearance rate. The preliminary safety study of acute toxicity and long-term toxicity demonstrated ES-SSL-OXA/PTX exhibited a reduced toxicity profile. Based on the above results, ES-SSL-OXA/PTX could be a promising novel formulation for the treatment of ovarian cancer in future clinic.
Collapse
Affiliation(s)
- Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhihui Ren
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhe Lv
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yan Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongli Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Zhang L, Li C, Huang R, Teng H, Zhang Y, Zhou M, Liu X, Fan B, Luo H, He A, Zhao A, Lu M, Chopp M, Zhang ZG. Cerebral endothelial cell derived small extracellular vesicles improve cognitive function in aged diabetic rats. Front Aging Neurosci 2022; 14:926485. [PMID: 35912073 PMCID: PMC9330338 DOI: 10.3389/fnagi.2022.926485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) mediate cell-cell communication by transferring their cargo biological materials into recipient cells. Diabetes mellitus (DM) induces cerebral vascular dysfunction and neurogenesis impairment, which are associated with cognitive decline and an increased risk of developing dementia. Whether the sEVs are involved in DM-induced cerebral vascular disease, is unknown. Therefore, we studied sEVs derived from cerebral endothelial cells (CEC-sEVs) of aged DM rats (DM-CEC-sEVs) and found that DM-CEC-sEVs robustly inhibited neural stem cell (NSC) generation of new neuroblasts and damaged cerebral endothelial function. Treatment of aged DM-rats with CEC-sEVs derived from adult healthy normal rats (N-CEC-sEVs) ameliorated cognitive deficits and improved cerebral vascular function and enhanced neurogenesis. Intravenously administered N-CEC-sEVs crossed the blood brain barrier and were internalized by neural stem cells in the neurogenic region, which were associated with augmentation of miR-1 and –146a and reduction of myeloid differentiation primary response gene 88 and thrombospondin 1 proteins. In addition, uptake of N-CEC-sEVs by the recipient cells was mediated by clathrin and caveolin dependent endocytosis signaling pathways. The present study provides ex vivo and in vivo evidence that DM-CEC-sEVs induce cerebral vascular dysfunction and neurogenesis impairment and that N-CEC-sEVs have a therapeutic effect on improvement of cognitive function by ameliorating dysfunction of cerebral vessels and increasing neurogenesis in aged DM rats, respectively.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Li Zhang,
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rui Huang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xiangshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Annie He
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Anna Zhao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
19
|
Liu M, Zhou X, Tang J. Non-Coding RNAs Delivery by Small Extracellular Vesicles and Their Applications in Ovarian Cancer. Front Bioeng Biotechnol 2022; 10:876151. [PMID: 35662846 PMCID: PMC9161355 DOI: 10.3389/fbioe.2022.876151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC) is the most fatal gynecological malignancy because of its early asymptomatic nature and acquired resistance to chemotherapy. Small extracellular vesicles (sEVs) are a heterogeneous group of biological vesicles with a diameter <200 nm released by cells under physiological or pathological conditions. sEVs-derived non-coding RNAs (ncRNAs) are the essential effectors in the biological environment. sEVs-ncRNAs have critical roles in tumor progression via regulating mRNA expression of target cells to affect cell signaling. In addition, the status of parental cells can be disclosed via analyzing the composition of sEVs-ncRNAs, and their “cargoes” with specific changes can be used as key biomarkers for the diagnosis and prognosis of OC. Accumulating evidence has demonstrated that sEVs-ncRNAs are involved in multiple key processes that mediate the development of metastasis and chemotherapeutic resistance in OC: epithelial–mesenchymal transition; tumorigenicity of mesenchymal stem cells; immune evasion; angiogenesis. The nanomedicine delivery system based on engineering sEVs is expected to be a novel therapeutic strategy for OC. Insights into the biological roles of sEVs-ncRNAs in the invasion, metastasis, immune regulation, and chemoresistance of OC will contribute to discovery of novel biomarkers and molecular targets for early detection and innovative therapy. In this review, we highlight recent advances and applications of sEVs-ncRNAs in OC diagnosis and treatment. We also outline current challenges and knowledge gaps.
Collapse
Affiliation(s)
- Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Gynecologic Oncology, Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Jie Tang,
| |
Collapse
|
20
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
21
|
Culmone L, Powell B, Landschoot-Ward J, Zacharek A, Gao H, Findeis EL, Malik A, Lu M, Chopp M, Venkat P. Treatment With an Angiopoietin-1 Mimetic Peptide Improves Cognitive Outcome in Rats With Vascular Dementia. Front Cell Neurosci 2022; 16:869710. [PMID: 35602559 PMCID: PMC9120946 DOI: 10.3389/fncel.2022.869710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Vascular dementia (VaD) is a complex neurodegenerative disease affecting cognition and memory. There is a lack of approved pharmacological treatments specifically for VaD. In this study, we investigate the therapeutic effects of AV-001, a Tie2 receptor agonist, in middle-aged rats subjected to a multiple microinfarct (MMI) model of VaD. Methods Male, 10-12 month-old, Wistar rats were employed. The following experimental groups were used: Sham, MMI, MMI+1 μg/Kg AV-001, MMI+3 μg/Kg AV-001, MMI+6 μg/Kg AV-001. AV-001 treatment was initiated at 1 day after MMI and administered once daily via intraperitoneal injection. An investigator blinded to the experimental groups conducted a battery of neuro-cognitive tests including modified neurological severity score (mNSS) test, novel object recognition test, novel odor recognition test, three chamber social interaction test, and Morris water maze test. Rats were sacrificed at 6 weeks after MMI. Results There was no mortality observed after 1, 3, or 6 μg/Kg AV-001 treatment in middle-aged rats subjected to MMI. AV-001 treatment (1, 3, or 6 μg/Kg) does not significantly alter blood pressure or heart rate at 6 weeks after MMI compared to baseline values or the MMI control group. Treatment of MMI with 1 or 3 μg/Kg AV-001 treatment does not significantly alter body weight compared to Sham or MMI control group. While 6 μg/Kg AV-001 treated group exhibit significantly lower body weight compared to Sham and MMI control group, the weight loss is evident starting at 1 day after MMI when treatment was initiated and is not significantly different compared to its baseline values at day 0 or day 1 after MMI. AV-001 treatment significantly decreases serum alanine aminotransferase, serum creatinine, and serum troponin I levels compared to the MMI control group; however, all values are within normal range. MMI induces mild neurological deficits in middle-aged rats indicated by low mNSS scores (<6 on a scale of 0-18). Compared to control MMI group, 1 μg/Kg AV-001 treatment group did not exhibit significantly different mNSS scores, while 3 and 6 μg/Kg AV-001 treatment induced significantly worse mNSS scores on days 21-42 and 14-42 after MMI, respectively. MMI in middle-aged rats induces significant cognitive impairment including short-term memory loss, long-term memory loss, reduced preference for social novelty and impaired spatial learning and memory compared to sham control rats. Rats treated with 1 μg/Kg AV-001 exhibit significantly improved short-term and long-term memory, increased preference for social novelty, and improved spatial learning and memory compared to MMI rats. Treatment with 3 μg/Kg AV-001 improves short-term memory and preference for social novelty but does not improve long-term memory or spatial learning and memory compared to MMI rats. Treatment with 6 μg/Kg AV-001 improves only long-term memory compared to MMI rats. Thus, 1 μg/Kg AV-001 treatment was selected as an optimal dose. Treatment of middle-aged rats subjected to MMI with 1 μg/Kg AV-001 significantly increases axon density, myelin density and myelin thickness in the corpus callosum, as well as increases synaptic protein expression, neuronal branching and dendritic spine density in the cortex, oligodendrocytes and oligodendrocyte progenitor cell number in the cortex and striatum and promotes neurogenesis in the subventricular zone compared to control MMI rats. Conclusions In this study, we present AV-001 as a novel therapeutic agent to improve cognitive function and reduce white matter injury in middle aged-rats subjected to a MMI model of VaD. Treatment of MMI with 1 μg/Kg AV-001 significantly improves cognitive function, and increases axon density, remyelination and neuroplasticity in the brain of middle-aged rats.
Collapse
Affiliation(s)
- Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Ayesha Malik
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
22
|
Ding G, Li L, Zhang L, Chopp M, Davoodi-Bojd E, Li Q, Li C, Wei M, Zhang Z, Jiang Q. MRI Metrics of Cerebral Endothelial Cell-Derived Exosomes for the Treatment of Cognitive Dysfunction Induced in Aging Rats Subjected to Type 2 Diabetes. Diabetes 2022; 71:873-880. [PMID: 35175337 PMCID: PMC9044132 DOI: 10.2337/db21-0754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
Ongoing neurovascular dysfunction contributes to type 2 diabetes mellitus (T2DM)-induced cognitive deficits. However, it is not known whether early post onset of T2DM interventions may reduce evolving neurovascular dysfunction and thereby lead to diminution of T2DM-induced cognitive deficits. Using multiple MRI metrics, we evaluated neurovascular changes in T2DM rats treated with exosomes derived from cerebral endothelial cells (CEC-Exos). Two months after induction of T2DM in middle-aged male rats by administration of streptozotocin nicotinamide, rats were randomly treated with CEC-Exos twice weekly or saline for 4 consecutive weeks (n = 10/group). MRI measurements were performed at the end of the treatment, which included cerebral blood flow (CBF), contrast-enhanced T1-weighted imaging, and relaxation time constants T1 and T2. MRI analysis showed that compared with controls, the CEC-Exo-treated T2DM rats exhibited significant elevation of T2 and CBF in white matter and significant augmentation of T1 and reduction of blood-brain barrier permeability in gray matter. In the hippocampus, CEC-Exo treatment significantly increased T1 and CBF. Furthermore, CEC-Exo treatment significantly reduced T2DM-induced cognitive deficits measured by the Morris water maze and odor recognition tests. Collectively, our corresponding MRI data demonstrate that treatment of T2DM rats with CEC-Exos robustly reduced neurovascular dysfunction in gray and white matter and the hippocampus.
Collapse
Affiliation(s)
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| |
Collapse
|
23
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Egashira N. Pathological Mechanisms and Preventive Strategies of Oxaliplatin-Induced Peripheral Neuropathy. FRONTIERS IN PAIN RESEARCH 2021; 2:804260. [PMID: 35295491 PMCID: PMC8915546 DOI: 10.3389/fpain.2021.804260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Oxaliplatin, which is widely used in treating cancers such as colorectal cancer, frequently causes peripheral neuropathy. It not only significantly reduces the patient's quality of life due to physical distress but may also result in a change or discontinuation of cancer treatment. Oxaliplatin-induced peripheral neuropathy (OIPN) is classified as acute or chronic depending on the onset time of side effects; however, the prevention and treatment of OIPN has not been established. As these peripheral neuropathies are side effects that occur due to treatment, the administration of effective prophylaxis can effectively prevent their onset. Although transient relief of symptoms such as pain and numbness enable the continuation of cancer treatment, it may result in the worsening of peripheral neuropathy. Thus, understanding the pathological mechanisms of OIPN and finding better preventative measures are important. This review focuses on animal models to address these issues, clarifies the pathological mechanisms of OIPN, and summarizes various approaches to solving OIPN, including targets for preventing OIPN.
Collapse
|
25
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|