1
|
Guo R, Wang P. Tumor-derived extracellular vesicles: Hijacking T cell function through exhaustion. Pathol Res Pract 2025; 269:155948. [PMID: 40168777 DOI: 10.1016/j.prp.2025.155948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Extracellular vesicles (EVs) play a vital role in intercellular communication within the tumor microenvironment (TME). These vesicles, secreted by tumor cells, contain proteins, lipids, and nucleic acids that significantly influence immune responses, particularly impacting T-cell function. In cancer, T cell dysfunction and exhaustion-marked by reduced proliferation, diminished cytokine production, and impaired cytotoxic activity-are key barriers to effective immune responses. Tumor-derived extracellular vesicles (TEVs) contribute to this dysfunction by carrying immunosuppressive molecules, such as transforming growth factor-beta (TGF-β) and various microRNAs (miRNAs). These TEV-mediated mechanisms promote T cell exhaustion and foster a broader immunosuppressive environment, enabling tumor progression and immune evasion. Furthermore, TEVs have been implicated in resistance to cancer immunotherapies, including immune checkpoint inhibitors and T cell therapies. Understanding the molecular pathways and cargoes within TEVs that drive T cell dysfunction is crucial for developing novel therapeutic strategies aimed at reinvigorating exhausted T cells, enhancing anti-tumor immunity, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong 264003, China.
| |
Collapse
|
2
|
Liu X, To KK, Zeng Q, Fu L. Effect of Extracellular Vesicles Derived From Tumor Cells on Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417357. [PMID: 39899680 PMCID: PMC11948033 DOI: 10.1002/advs.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/05/2025]
Abstract
The crosstalk between immunity and cancer in the regulation of tumor growth is considered a hallmark of cancer. Antitumor immunity refers to the innate and adaptive immune responses that regulate cancer development and proliferation. Tumor immune evasion represents a major hindrance to effective anticancer treatment. Extracellular vesicles (EVs) are nano-sized and lipid-bilayer-enclosed particles that are secreted to the extracellular space by all cell types. They are critically involved in numerous biological functions including intercellular communication. Tumor-derived extracellular vesicles (TEVs) can transport a variety of cargo to modulate immune cells in the tumor microenvironment (TME). This review provides the latest update about how tumor cells evade immune surveillance by exploiting TEVs. First, the biogenesis of EVs and the cargo-sorting machinery are discussed. Second, how tumor cells modulate immune cell differentiation, activation, and function via TEVs to evade immune surveillance is illustrated. Last but not least, the novel antitumor strategies that can reverse immune escape are summarized.
Collapse
Affiliation(s)
- Xuanfan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Kenneth K.W. To
- School of PharmacyThe Chinese University of Hong KongHong Kong999077P. R. China
| | - Qinsong Zeng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanning530025P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
3
|
Li G, Chen K, Dong S, Wei X, Zhou L, Wang B. Immunogenic cell death-related genes predict prognosis and response to immunotherapy in lung squamous cell carcinoma. Biotechnol Appl Biochem 2025; 72:138-149. [PMID: 39168830 DOI: 10.1002/bab.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is a malignancy with limited therapeutic options. Immunogenic cell death (ICD) has the potential to enhance the efficacy of cancer therapy by triggering immune responses. We aimed to explore the potential of ICD-based classification in predicting prognosis and response to immunotherapy for LUSC. RNA-seq information and clinical data of LUSC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. ICD-related gene expressions in LUSC samples were analyzed by consensus clustering. Subsequently, differentially expressed genes (DEGs) between different ICD-related subsets were analyzed. Tumor mutation burden, immune cell infiltration, and survival analyses were conducted between different ICD subsets. Finally, an ICD-related risk signature was constructed and evaluated in LUSC patients, and the immunotherapy responses based on the gene expressions were also forecasted. ICD-high and ICD-low groups were defined, and 1466 DEGs were identified between the two subtypes. These DEGs were mainly enriched in collagen-containing extracellular matrix, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, and neuroactive ligand-receptor interaction. Furthermore, the ICD-low group exhibited a favorable prognosis, enhanced TTN and MUC16 mutation frequencies, increased infiltrating immune cells, and downregulated immune checkpoint expressions. Furthermore, we demonstrated that an ICD-related model (based on CD4, NLRP3, NT5E, and TLR4 genes) could forecast the prognosis of LUSC, and ICD risk scores were lower in the responder group. In summary, the predicted values of ICD-related genes (CD4, NLRP3, NT5E, and TLR4) for the prognosis and response to immunotherapy in LUSC were verified in the study, which benefits immunotherapy-based interventions for LUSC patients.
Collapse
Affiliation(s)
- Guoping Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Kai Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Shunli Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Xiang Wei
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Lingyan Zhou
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Liao Y, Chen J, Yao H, Zheng T, Tu J, Chen W, Guo Z, Zou Y, Wen L, Xie X. Single-cell profiling of SLC family transporters: uncovering the role of SLC7A1 in osteosarcoma. J Transl Med 2025; 23:103. [PMID: 39844299 PMCID: PMC11752724 DOI: 10.1186/s12967-025-06086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood. METHODS The single-cell sequencing data from GSE152048 and GSE162454, along with RNA-seq from the TARGET and GSE21257 cohorts, were utilized for the analysis in this study. LASSO regression analysis was conducted to identify prognostic genes and construct an SLC-related prognostic signature. Survival analysis and ROC analysis evaluated the validity of the prognostic signature. The ESTIMATE and CIBERSORT Packages were utilized to assess the immune infiltration status. Pseudotime and CellChat analyses were performed to investigate the relationship between SLC7A1, malignant phenotypes, and the immune microenvironment. CCK8 assays, EdU staining, colony formation assays, Transwell assays, and co-culture systems were used to assess the effects of SLC7A1 on cell proliferation, metastasis, and macrophage polarization. Finally, virtual docking identified potential drugs targeting SLC7A1. RESULTS SLCs displayed distinct expression patterns across various cell types within the osteosarcoma microenvironment, with myeloid cells exhibiting a preference for amino acid uptake. A prognostic model comprising nine genes was constructed via LASSO regression, with SLC7A1 showing the highest hazard ratio. Multiple analytical algorithms indicated that SLCs were associated with immune cell infiltration and immune checkpoint gene expression. Single-cell analysis indicated that SLC7A1 was predominantly expressed in osteosarcoma cells and correlated with various malignant tumor characteristics. SLC7A1 also regulate interactions between tumor cells and macrophages, as well as modulate macrophage function through multiple pathways. In vitro assays and survival analysis demonstrated that inhibition of SLC7A1 suppressed the malignant phenotype of osteosarcoma cells, with SLC7A1 expression correlating with poor prognosis. Co-culture models confirmed the involvement of SLC7A1 in macrophage polarization. Finally, virtual screening and CETSA identified Cepharanthine as potential inhibitors of SLC7A1. CONCLUSION SLC-related prognostic signatures can be utilized for the prognostic evaluation of osteosarcoma. Pharmacological inhibition of SLC7A1 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ting Zheng
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - ZeHao Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Zabeti Touchaei A, Vahidi S. Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: implications for immune dysfunction and therapeutic approaches. J Transl Med 2024; 22:1131. [PMID: 39707465 DOI: 10.1186/s12967-024-05963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
MicroRNAs (miRNAs) emerge as critical regulators of CD8 + T cell function within the complex tumor microenvironment (TME). This review explores the multifaceted interplay between miRNAs and CD8 + T cells across various cancers. We discuss how specific miRNAs influence CD8 + T cell activation, recruitment, infiltration, and effector function. Dysregulation of these miRNAs can contribute to CD8 + T cell exhaustion and immune evasion, hindering anti-tumor immunity. Conversely, manipulating miRNA expression holds promise for enhancing CD8 + T cell activity and improving cancer immunotherapy outcomes. We delve into the role of miRNAs in CD8 + T-cell function across different cancer types, including gliomas, gastric and colon cancer, oral squamous cell carcinoma, thyroid carcinoma, lymphomas, melanoma, breast cancer, renal cell carcinoma, ovarian cancer, uterine corpus endometrial cancer, bladder cancer, acute myeloid leukemia, chronic myelogenous leukemia, and osteosarcoma. Additionally, we explore how extracellular vesicles and cytokines modulate CD8 + T-cell function through complex interactions with miRNAs. Finally, we discuss the potential impact of radiotherapy and specific drugs on miRNA expression and CD8 + T-cell activity within the TME. This review highlights the immense potential of targeting miRNAs to manipulate CD8 + T-cell activity for the development of novel and improved cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Zha C, Yang X, Yang J, Zhang Y, Huang R. Immunosuppressive microenvironment in acute myeloid leukemia: overview, therapeutic targets and corresponding strategies. Ann Hematol 2024; 103:4883-4899. [PMID: 39607487 DOI: 10.1007/s00277-024-06117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Similar to other malignancies, immune dysregulation is a key feature of acute myeloid leukemia (AML), manifesting as suppressed anti-leukemia immune cells, immune evasion by leukemia blasts, and disease progression. Various immunosuppressive factors within the AML microenvironment contribute to the weakening of host immune responses and the efficacy of cellular immunotherapy. To address these challenges, strategies targeting immunosuppressive elements within the AML microenvironment aim to bolster host or adoptive immune effector cells, ultimately enhancing leukemia treatment. Additionally, the off-target effects of certain targeted drugs (venetoclax, sorafenib, ivosidenib, etc.) may also positively impact anti-AML immunity and immunotherapy. This review provides an overview of the immunosuppressive factors present in AML microenvironment and the strategies developed to rescue immune cells from immunosuppression. We also outline how targeted agents can alter the immune landscape in AML patients, and discuss the potential of targeted drugs to benefit host anti-leukemia immunity and immunotherapy for AML.
Collapse
Affiliation(s)
- Chenyu Zha
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024; 31:1765-1772. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
8
|
Licari E, Cricrì G, Mauri M, Raimondo F, Dioni L, Favero C, Giussani A, Starace R, Nucera S, Biondi A, Piazza R, Bollati V, Dander E, D'Amico G. ActivinA modulates B-acute lymphoblastic leukaemia cell communication and survival by inducing extracellular vesicles production. Sci Rep 2024; 14:16083. [PMID: 38992199 PMCID: PMC11239915 DOI: 10.1038/s41598-024-66779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) are a new mechanism of cellular communication, by delivering their cargo into target cells to modulate molecular pathways. EV-mediated crosstalk contributes to tumor survival and resistance to cellular stress. However, the role of EVs in B-cell Acute Lymphoblastic Leukaemia (B-ALL) awaits to be thoroughly investigated. We recently published that ActivinA increases intracellular calcium levels and promotes actin polymerization in B-ALL cells. These biological processes guide cytoskeleton reorganization, which is a crucial event for EV secretion and internalization. Hence, we investigated the role of EVs in the context of B-ALL and the impact of ActivinA on this phenomenon. We demonstrated that leukemic cells release a higher number of EVs in response to ActivinA treatment, and they can actively uptake EVs released by other B-ALL cells. Under culture-induced stress conditions, EVs coculture promoted cell survival in B-ALL cells in a dose-dependent manner. Direct stimulation of B-ALL cells with ActivinA or with EVs isolated from ActivinA-stimulated cells was even more effective in preventing cell death. This effect can be possibly ascribed to the increase of vesiculation and modifications of EV-associated microRNAs induced by ActivinA. These data demonstrate that ActivinA boosts EV-mediated B-ALL crosstalk, improving leukemia survival in stress conditions.
Collapse
Affiliation(s)
- Eugenia Licari
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giulia Cricrì
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomic Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alice Giussani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Rita Starace
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Silvia Nucera
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- CRC, Center for Environmental Health, University of Milan, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy.
| |
Collapse
|
9
|
Shao Y, Li R, Chen G, Zhang L. Pan-Cancer Analysis of GALNT6 with Potential Implications for Prognosis and Tumor Microenvironment in Human Cancer Based on Bioinformatics and qPCR Verification. Int J Gen Med 2024; 17:2187-2201. [PMID: 38770365 PMCID: PMC11104441 DOI: 10.2147/ijgm.s459953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose We explored the expression and prognostic value of GALNT6 and the tumor microenvironment of pan-cancer in humans. Methods In this study, we explored the expression pattern of GALNT6 pan-cancer across multiple databases. The prognostic value of GALNT6 was evaluated using the Kaplan-Meier method. The types and numbers of GALNT6 gene alterations were exhibited using the cBio Cancer Genomics Portal. The correlations between GALNT6 expression and immune infiltration in cancers were analyzed using the database Tumor Immune Estimation Resource 2. We also used the Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analysis to investigate the molecular mechanisms of the GALNT6 gene in tumorigenesis. The expression of GALNT6 was also further verified by qPCR in lung adenocarcinoma tissues. Results In general, compared with normal tissue, tumor tissue had a higher expression level of GALNT6. GALNT6 showed a protective effect in colon carcinoma and other cancers; however, a high expression level of GALNT6 was detrimental to survival in bladder cancer and in pheochromocytoma and paraganglioma. Mutation, amplification, and deep deletion were the three main types of GALNT6 mutations in tumors. There was a significant positive correlation between GALNT6 expression and immune infiltration of CD8+ T-cells in skin cutaneous melanoma metastasis, based on most of the algorithms used. Moreover, protein processing- and glycoprotein metabolic-associated functions were involved in the functional mechanisms of GALNT6. Conclusion This first pan-cancer study offers a relatively comprehensive understanding of the oncogenic roles of GALNT6 across different cancer types.
Collapse
Affiliation(s)
- Yue Shao
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People’s Republic of China
| | - Rong Li
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People’s Republic of China
| | - Guangmei Chen
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People’s Republic of China
| | - Lichuan Zhang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People’s Republic of China
| |
Collapse
|
10
|
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8 + T cell-based cancer immunotherapy. J Transl Med 2024; 22:394. [PMID: 38685033 PMCID: PMC11057112 DOI: 10.1186/s12967-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.
Collapse
Affiliation(s)
- Yanxia Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dingning Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
11
|
Huang Z, Liu X, Guo Q, Zhou Y, Shi L, Cai Q, Tang S, Ouyang Q, Zheng J. Extracellular vesicle-mediated communication between CD8 + cytotoxic T cells and tumor cells. Front Immunol 2024; 15:1376962. [PMID: 38562940 PMCID: PMC10982391 DOI: 10.3389/fimmu.2024.1376962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuehui Liu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qinghao Guo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Shi
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shupei Tang
- Department of Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Sun Y, Xing L, Luo J, Yu M, Wang X, Wang Y, Zhou T, Jiang H. A Pro-Metastatic Derivatives Eliminator for In Vivo Dual-Removal of Circulating Tumor Cells and Tumor-Derived Exosomes Impedes their Biodistribution into Distant Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304287. [PMID: 37867235 PMCID: PMC10700241 DOI: 10.1002/advs.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) play an irreplaceable role in the metastatic cascade and preventing them from reaching distant organs via blood circulation helps to reduce the probability of cancer recurrence and metastasis. However, technologies that can simultaneously prevent CTCs and TDEs from reaching distant organs have not been thoroughly developed until now. Here, inspired by hemoperfusion, a pro-metastatic derivative eliminator (PMDE) is developed for the removal of both CTCs and TDEs from the peripheral blood, which also inhibits their biodistribution in distant organs. This device is designed with a dual antibody-modified immunosorbent filled into a capture column that draws peripheral blood out of the body to flow through the column to specifically capture CTCs and TDEs, followed by retransfusing the purified blood into the body. The PMDE can efficiently remove CTCs and TDEs from the peripheral blood and has excellent biocompatibility. Interestingly, the PMDE device can significantly inhibit the biodistribution of CTCs and TDEs in the lung and liver by scavenging them. This work provides a new perspective on anti-metastatic therapy and has broad prospects in clinical applications to prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Lei Xing
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesChina Pharmaceutical UniversityNanjing210009China
| | - Jun Luo
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Ming‐Tao Yu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xiao‐Jie Wang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Yi Wang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Tian‐Jiao Zhou
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Hu‐Lin Jiang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
13
|
Van Morckhoven D, Dubois N, Bron D, Meuleman N, Lagneaux L, Stamatopoulos B. Extracellular vesicles in hematological malignancies: EV-dence for reshaping the tumoral microenvironment. Front Immunol 2023; 14:1265969. [PMID: 37822925 PMCID: PMC10562589 DOI: 10.3389/fimmu.2023.1265969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Following their discovery at the end of the 20th century, extracellular vesicles (EVs) ranging from 50-1,000 nm have proven to be paramount in the progression of many cancers, including hematological malignancies. EVs are a heterogeneous group of cell-derived membranous structures that include small EVs (commonly called exosomes) and large EVs (microparticles). They have been demonstrated to participate in multiple physiological and pathological processes by allowing exchange of biological material (including among others proteins, DNA and RNA) between cells. They are therefore a crucial way of intercellular communication. In this context, malignant cells can release these extracellular vesicles that can influence their microenvironment, induce the formation of a tumorigenic niche, and prepare and establish distant niches facilitating metastasis by significantly impacting the phenotypes of surrounding cells and turning them toward supportive roles. In addition, EVs are also able to manipulate the immune response and to establish an immunosuppressive microenvironment. This in turn allows for ideal conditions for heightened chemoresistance and increased disease burden. Here, we review the latest findings and reports studying the effects and therapeutic potential of extracellular vesicles in various hematological malignancies. The study of extracellular vesicles remains in its infancy; however, rapid advances in the analysis of these vesicles in the context of disease allow us to envision prospects to improve the detection and treatment of hematological malignancies.
Collapse
Affiliation(s)
- David Van Morckhoven
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
14
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Jiang Z, Zhou J, Deng J, Li L, Wang R, Han Y, Zhou J, Tao R, Peng L, Wang D, Huang T, Yu Y, Zhou Z, Li J, Ousmane D, Wang J. Emerging roles of ferroptosis-related miRNAs in tumor metastasis. Cell Death Discov 2023; 9:193. [PMID: 37369681 DOI: 10.1038/s41420-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a novel mode of cell death dependent on iron and reactive oxygen species, has been extensively explored during malignant tumors metastasis. Ferroptosis can interact with multiple components of the tumor microenvironment to regulate metastasis. These interactions generally include the following aspects: (1) Epithelial-mesenchymal transformation, which can help cancer cells increase their sensitivity to ferroptosis while they have multiple mechanisms to fight against it; (2) Disorder of iron metabolism in cancer stem cells which maintains their stem characteristics; (3) Polarization of M0 macrophages to M2. (4) The paradoxical effects of iron metabolism and CD8 + T cells induced by ferroptosis (5) Regulation of angiogenesis. In addition, ferroptosis can be regulated by miRNAs through the reprogramming of various intracellular metabolism processes, including the regulation of the glutathione- glutathione peroxidase 4 pathway, glutamic acid/cystine transport, iron metabolism, lipid metabolism, and oxidative stress. Therefore, there are many potential interactions between ferroptosis-related miRNAs and tumor metastasis, including interaction with cancer cells and immune cells, regulating cytokines, and angiogenesis. This review focuses on the role of ferroptosis-related miRNA in tumor metastasis, aiming to help readers understand their relationship and provide a new perspective on the potential treatment strategies of malignant tumors.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Deng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Luohong Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Ruifeng Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junyu Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Rui Tao
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yupei Yu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Jinghe Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China.
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Xiong L, Wei Y, Jia Q, Chen J, Chen T, Yuan J, Pi C, Liu H, Tang J, Yin S, Zuo Y, Zhang X, Liu F, Yang H, Zhao L. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023; 21:143. [PMID: 37120534 PMCID: PMC10148416 DOI: 10.1186/s12951-023-01888-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qiang Jia
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yuan
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People's Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Zhang N, Zhang H, Liu Z, Dai Z, Wu W, Zhou R, Li S, Wang Z, Liang X, Wen J, Zhang X, Zhang B, Ouyang S, Zhang J, Luo P, Li X, Cheng Q. An artificial intelligence network-guided signature for predicting outcome and immunotherapy response in lung adenocarcinoma patients based on 26 machine learning algorithms. Cell Prolif 2023; 56:e13409. [PMID: 36822595 PMCID: PMC10068958 DOI: 10.1111/cpr.13409] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Abstract
The immune cells play an increasingly vital role in influencing the proliferation, progression, and metastasis of lung adenocarcinoma (LUAD) cells. However, the potential of immune cells' specific genes-based model remains largely unknown. In the current study, by analysing single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing data, the tumour-infiltrating immune cell (TIIC) associated signature was developed based on a total of 26 machine learning (ML) algorithms. As a result, the TIIC signature score could predict survival outcomes of LUAD patients across five independent datasets. The TIIC signature score showed superior performance to 168 previously established signatures in LUAD. Moreover, the TIIC signature score developed by the immunofluorescence staining of the tissue array of LUAD patients showed a prognostic value. Our research revealed a solid connection between TIIC signature score and tumour immunity as well as metabolism. Additionally, it has been discovered that the TIIC signature score can forecast genomic change, chemotherapeutic drug susceptibility, and-most significantly-immunotherapeutic response. As a newly demonstrated biomarker, the TIIC signature score facilitated the selection of the LUAD population who would benefit from future clinical stratification.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wantao Wu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ran Zhou
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji HospitalTongji Medical College of Huazhong University of Science and TechnologyWuhanChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Sirui Ouyang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xizhe Li
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & TreatmentChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
18
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
19
|
Huang Y, Peng M, Qin H, Li Y, Pei L, Liu X, Zhao X. LAPTM4B promotes AML progression through regulating RPS9/STAT3 axis. Cell Signal 2023; 106:110623. [PMID: 36758682 DOI: 10.1016/j.cellsig.2023.110623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder with high morbidity and mortality under the existing treatment strategy. Here, we found that lysosome-associated protein transmembrane 4 beta (LAPTM4B) was frequently upregulated in AML, and high LAPTM4B was associated with poor outcome. Moreover, LAPTM4B promoted leukemia progression in vitro and in vivo. Mechanically, LAPTM4B interacted with RPS9, and positively regulated RPS9 protein stability, which enhanced leukemia cell progression via activating STAT3. Our findings indicate for the first time that LAPTM4B contributes to leukemia progression in a RPS9/STAT3-dependent manner, suggesting that LAPTM4B may serve as a promising target for treatment of AML.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medicine, Chongqing University, Chongqing 400044, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Meixi Peng
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Huanhuan Qin
- Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan Li
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Xindong Liu
- School of Medicine, Chongqing University, Chongqing 400044, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Xueya Zhao
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
21
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
23
|
Zhang L, Jing J, Han L, Liu Z, Wang J, Zhang W, Gao A. Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism. NANO RESEARCH 2022; 16:2885-2894. [PMID: 37207041 PMCID: PMC10193254 DOI: 10.1007/s12274-022-5032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Plastic pollution has become a non-negligible global pollution problem. Nanoplastics (NP) can reach the bone marrow with blood circulation and develop hematotoxicity, but potential mechanisms and prevention strategies are lacking. Here, we report the biological distribution of NP particles in the bone marrow of mice and hematopoietic toxicity after exposure to 60 μg of 80 nm NP for 42 days. NP exposure inhibited the capability of bone marrow hematopoietic stem cells to renew and differentiate. Notably, probiotics and melatonin supplementation significantly ameliorated NP-induced hematopoietic damage, and the former was superior to the latter. And interestingly, melatonin and probiotic interventions may involve different microbes and metabolites. After melatonin intervention, creatine showed a stronger correlation with NP-induced gut microbiota disorders. In contrast, probiotic intervention reversed the levels of more gut microbes and plasma metabolites. Of these, threonine, malonylcarnitine, and 3-hydroxybutyric acid might be potential performers in the regulation of hematopoietic toxicity by gut microbes, as they had a more significant relationship with the identified microbes. In conclusion, supplementation with melatonin or probiotics may be two candidates to prevent hematopoietic toxicity attributable to NP exposure. Also, the multi-omics results may lay the foundation for future investigations into in-depth mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
24
|
Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia. Cell Death Dis 2022; 13:915. [PMID: 36316313 PMCID: PMC9622865 DOI: 10.1038/s41419-022-05357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Acute myeloid leukemia (AML) is a rapidly progressing and often fatal hematopoietic malignancy. Venetoclax (VEN), a recent FDA-approved BCL-2 selective inhibitor, has high initial response rates in elderly AML patients, but the majority of patients eventually acquire resistance. Multiple studies have demonstrated that the female sex is associated with better outcomes in patients with AML, which are predominantly attributed to estrogen signaling. As a novel membrane estrogen receptor, G protein-coupled estrogen receptor (GPER)-mediated-rapid estrogen effects have attracted considerable attention. However, whether targeting GPER enhances the antileukemic activity of VEN is unknown. In this study, we first demonstrated that GPER expression was dramatically reduced in AML cells owing to promoter hypermethylation. Furthermore, pharmacological activation of GPER by G-1 combined with VEN resulted in synergistic antileukemic activity in vitro and in vivo. Mechanistically, G-1/VEN combination synergistically triggered concurrent mitochondria-related apoptosis and gasdermin E (GSDME)-dependent pyroptosis by activating p38-MAPK/myeloid cell leukemia 1 (MCL-1) axis. Importantly, leukemic pyroptosis heightened CD8+ T cell immune function by releasing interleukin (IL)-1β/18 into the tumor microenvironment. Our study corroborates that GPER activation shows a synergistic antileukemic effect with VEN, making it a promising therapeutic regimen for AML.
Collapse
|
25
|
Yang X, Li Q. Pan-Cancer Analysis of the Oncogenic and Immunological Role of Solute Carrier Family 6 Member 8 (SLC6A8). Front Genet 2022; 13:916439. [PMID: 36061183 PMCID: PMC9428493 DOI: 10.3389/fgene.2022.916439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence on the implication of SLC6A8 in the initiation and progression of human cancers. However, a comprehensive understanding of the role of SLC6A8 in pan-cancer remains elusive yet. Bioinformatics analysis was performed to investigate the expression and mutation profiles of SLC6A8 in cancers, and the association of SLC6A8 expression with cancer patients’ survival and immune cell infiltration. In general, SLC6A8 is significantly upregulated across multiple cancers. SLC6A8 expression was inconsistently prognostic in different types of cancer, albeit associated with favorable survival in the vast majority of cancers. The receiver operating characteristic curves showed that SLC6A8 was relatively accurate in identifying possible cancer patients. The genetic alteration of SLC6A8, including mutation, amplification and deletion, was frequently present across various types of cancer. Mechanistically, SLC6A8 might be involved in tumorigenesis through “carbon metabolism” and “HIF-1 signaling pathway.” Besides, SLC6A8 expression had significant correlation with immune checkpoints genes and tumor-infiltrating immune cell abundances. The present study offers a novel insight into the roles of SLC6A8 in the oncogenesis and development of multiple common cancers.
Collapse
Affiliation(s)
- Xin Yang
- Department of Surgery, People’s Hospital of Deyang City, Deyang, China
| | - Qiao Li
- Department of Pathology, People’s Hospital of Deyang City, Deyang, China
- *Correspondence: Qiao Li,
| |
Collapse
|
26
|
Genome-wide CRISPR screen identified Rad18 as a determinant of doxorubicin sensitivity in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:154. [PMID: 35459258 PMCID: PMC9034549 DOI: 10.1186/s13046-022-02344-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor mostly occurring in children and adolescents, while chemotherapy resistance often develops and the mechanisms involved remain challenging to be fully investigated. Methods Genome-wide CRISPR screening combined with transcriptomic sequencing were used to identify the critical genes of doxorubicin resistance. Analysis of clinical samples and datasets, and in vitro and in vivo experiments (including CCK-8, apoptosis, western blot, qRT-PCR and mouse models) were applied to confirm the function of these genes. The bioinformatics and IP-MS assays were utilized to further verify the downstream pathway. RGD peptide-directed and exosome-delivered siRNA were developed for the novel therapy strategy. Results We identified that E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin-resistance in OS. Further exploration revealed that Rad18 interact with meiotic recombination 11 (MRE11) to promote the formation of the MRE11-RAD50-NBS1 (MRN) complex, facilitating the activation of the homologous recombination (HR) pathway, which ultimately mediated DNA damage tolerance and leaded to a poor prognosis and chemotherapy response in patients with OS. Rad18-knockout effectively restored the chemotherapy response in vitro and in vivo. Also, RGD-exosome loading chemically modified siRad18 combined with doxorubicin, where exosome and chemical modification guaranteed the stability of siRad18 and the RGD peptide provided prominent targetability, had significantly improved antitumor activity of doxorubicin. Conclusions Collectively, our study identifies Rad18 as a driver of OS doxorubicin resistance that promotes the HR pathway and indicates that targeting Rad18 is an effective approach to overcome chemotherapy resistance in OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02344-y.
Collapse
|
27
|
Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells 2022; 40:619-629. [PMID: 35442447 DOI: 10.1093/stmcls/sxac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded cellular particles released by virtually any cell type, containing numerous bioactive molecules, including lipids, proteins, and nucleic acids. EVs act as a very efficient intercellular communication system by releasing their content into target cells, thus affecting their fate and influencing several biological processes. EVs are released both in physiological and pathological conditions, including several types of cancers. In hematological malignancies (HM), EVs have emerged as new critical players, contributing to tumor-to-stroma, stroma-to-tumor, and tumor-to-tumor cell communication. Therefore, EVs have been shown to play a crucial role in the pathogenesis and clinical course of several HM, contributing to tumor development, progression, and drug resistance. Furthermore, tumor EVs can reprogram the bone marrow (BM) microenvironment and turn it into a sanctuary, in which cancer cells suppress both the normal hematopoiesis and the immunological anti-tumor activity, conferring a therapy-resistant phenotype. Due to their physicochemical characteristics and pro-tumor properties, EVs have been suggested as new diagnostic biomarkers, therapeutic targets, and pharmacological nanocarriers. This review aims to provide an update on the pathogenetic contribution and the putative therapeutic utility of EVs in hematological diseases.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Nice Turazzi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| |
Collapse
|