1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Feng Y, Chen R, Dong Y, Han H, Xie B, Mo L, Huangfu H, Yang G, Liu Y, Yang P. Probiotic DNA epigenetically upregulates epithelial PD-L1 via KDM5A-mediated demethylation to suppress airway allergy by inducing activated Th2 cell apoptosis. Int Immunopharmacol 2025; 159:114881. [PMID: 40398257 DOI: 10.1016/j.intimp.2025.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Current therapies for airway allergy (AA) exhibit limited efficacy in targeting pathogenic Th2-driven inflammation. Probiotics demonstrate immunoregulatory potential, yet the epigenetic mechanisms by which probiotic-derived DNA modulates allergic responses remain unexplored. This study investigates whether Lactobacillus rhamnosus GG DNA (LgDNA) alleviates AA through PD-L1-mediated T cell suppression. A murine AA model was established using house dust mite (Derf2) sensitization and challenge. LgDNA was intranasally administered at 10 μg/mouse/day. Epithelial PD-L1 expression was quantified by flow cytometry and qRT-PCR. KDM5A recruitment and Pd-l1 promoter methylation were analyzed via ChIP-qPCR and bisulfite sequencing. Th2 cell apoptosis was assessed by annexin V/PI staining. LgDNA treatment increased airway epithelial PD-L1 expression by 2.8-fold (P < 0.01) and reduced Derf2-induced Th2 cytokine levels (IL-4: 62 %↓; IL-5: 68 %↓). Mechanistically, LgDNA induced Pd-l1 promoter demethylation (methylation rate: 35 % vs. 78 % in controls) via KDM5A-mediated H3K4me3 modification. KDM5A knockdown abrogated LgDNA-driven PD-L1 upregulation (ΔPD-L1: 1.2-fold vs. 3.1-fold, P < 0.05). PD-L1 overexpression in epithelial cells triggered activated Th2 cell apoptosis (annexin V+PI+: 41 % vs. 12 %), reducing airway hyperresponsiveness by 54 % in AA mice. In summary, LgDNA alleviates AA by epigenetically enhancing epithelial PD-L1 via KDM5A, which induces pathogenic Th2 cell apoptosis. This study identifies a novel probiotic DNA-based epigenetic axis for allergic disease therapy, bridging microbiome biology with immune checkpoint regulation.
Collapse
Affiliation(s)
- Yan Feng
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Ruien Chen
- Clinical College at Shenzhen, Guangdong University of Chinese Medicine and Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China.; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yixuan Dong
- Clinical College at Shenzhen, Guangdong University of Chinese Medicine and Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China.; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haiyang Han
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Bailing Xie
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lihua Mo
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Hui Huangfu
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Gui Yang
- Clinical College at Shenzhen, Guangdong University of Chinese Medicine and Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Li D, Yang T, Ma S, Lyu X, Hu C, Yan J, Guo L, Tan J. Quorum sensing: An essential factor in culturing the human promyelocytic leukemia cell line HL-60 and its neutrophil-related functions. Methods 2025; 241:94-102. [PMID: 40403782 DOI: 10.1016/j.ymeth.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
HL-60 cells are frequently employed as a standard in vitro model for neutrophil research and extensively utilized. However, the cultivation of HL-60 cells presents a recurring challenge. Historically, cell culture density has been ignored in the consistency of culture conditions. Here, we optimized the culture protocol and explored the impact of culture density on HL-60 cells. Additionally, we investigated the differentiated rate and antibacterial potential of differentiated HL-60 (dHL-60) neutrophils across varying cell density cultures. The findings revealed a positive correlation between cell proliferation activity and cell density, suggesting that increased density facilitates enhanced cell proliferation. Furthermore, as the density of the cell culture increased, there was a concomitant rise in the differentiation rate of HL-60 cells into neutrophils upon stimulation. Importantly, this elevated density also led to significantly higher levels of mitochondrial reactive oxygen species (ROS) production and bacterial phagocytosis. Further investigation revealed that small extracellular vesicles (sEVs) are crucial communicator in quorum sensing within HL-60 cells. Supplementation of HL60-derived sEVs (hEVs) in low-density cell populations resulted in a restoration of cell proliferation, in dose-dependent tendency. Conversely, the inhibition of EV-secretion in HL-60 cells restrains cell growth and proliferation. Overall, our study not only optimized the HL-60 cell culture protocol but also elucidated the critical role of culture density in enhancing HL-60 cell proliferation and antibacterial activity. This finding offers a noteworthy consideration for in vitro experiments of HL-60 cells and suggests the involvement of a quorum sensing mechanism within the neutrophil microenvironment.
Collapse
Affiliation(s)
- Danfeng Li
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Tian Yang
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyuan Ma
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinwei Lyu
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Cheng Hu
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayin Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lihong Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China; Department of Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Jiali Tan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Deng W, Zhu X, Li H, Hu P, Qian K, Liu F. Lung Tissue Extracellular Vesicles-Mediated Delivery of miR-128-3p as a Novel Mechanism of Acute Lung Inflammation. Int J Nanomedicine 2025; 20:4831-4848. [PMID: 40255671 PMCID: PMC12009125 DOI: 10.2147/ijn.s510241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
Background Emerging evidence links macrophage overactivation to sepsis-associated acute lung injury (ALI), yet the role of lung tissue-derived extracellular vesicles (Ti-EVs) in this process remains unclear. This study combines transcriptomic profiling and functional validation to reveal how Lung Ti-EVs mediate macrophage polarization through miRNA-dependent NLRP3 inflammasome activation. Methods We established a sepsis mouse model, extracted and characterized lung tissue-derived EVs, performed high-throughput transcriptome sequencing and bioinformatics analysis. Intratracheal administration of these EVs to wild-type C57BL/6 mice revealed their effects on pulmonary inflammation, macrophage polarization, and proliferation. In vitro co-culture experiments with Raw264.7 macrophages further validated these findings and explored underlying mechanisms. Results We identified extracellular vesicles (EVs) enriched in lung tissues from septic ALI mice, selectively carrying miRNAs including miR-128-3p. In vivo administration of these EVs exacerbated pulmonary inflammation by expanding M1 macrophage populations, while in vitro experiments demonstrated EV-mediated miR-128-3p delivery to macrophages stimulated TNF-α and IL-6 production. Mechanistically, miR-128-3p promoted macrophage proliferation and inflammatory responses by targeting Rab20.
Collapse
Affiliation(s)
- Wei Deng
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hang Li
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ping Hu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kejian Qian
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fen Liu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
5
|
Li L, Liu Y, Wang K, Mo J, Weng Z, Jiang H, Jin C. Stem cell exosomes: new hope and future potential for relieving liver fibrosis. Clin Mol Hepatol 2025; 31:333-349. [PMID: 39510097 PMCID: PMC12016649 DOI: 10.3350/cmh.2024.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Liver fibrosis is a chronic liver injury resulting from factors like viral hepatitis, autoimmune hepatitis, non-alcoholic steatohepatitis, fatty liver disease, and cholestatic liver disease. Liver transplantation is currently the gold standard for treating severe liver diseases. However, it is limited by a shortage of donor organs and the necessity for lifelong immunosuppressive therapy. Mesenchymal stem cells (MSCs) can differentiate into various liver cells and enhance liver function when transplanted into patients due to their differentiation and proliferation capabilities. Therefore, it can be used as an alternative therapy for treating liver diseases, especially for liver cirrhosis, liver failure, and liver transplant complications. However, due to the potential tumorigenic effects of MSCs, researchers are exploring a new approach to treating liver fibrosis using extracellular vesicles (exosomes) secreted by stem cells. Many studies show that exosomes released by stem cells can promote liver injury repair through various pathways, contributing to the treatment of liver fibrosis. In this review, we focus on the molecular mechanisms by which stem cell exosomes affect liver fibrosis through different pathways and their potential therapeutic targets. Additionally, we discuss the advantages of exosome therapy over stem cell therapy and the possible future directions of exosome research, including the prospects for clinical applications and the challenges to be overcome.
Collapse
Affiliation(s)
- Lihua Li
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Yongjie Liu
- Department of Cell biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, P. R. China
| | - Kunpeng Wang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Jinggang Mo
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Zhiyong Weng
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Hao Jiang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Chong Jin
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Wu X, Li H, Meng F, Lui TH, Pan X. iTRAQ proteomic analysis of exosomes derived from synovial fluid reveals disease patterns and potential biomarkers of Osteoarthritis. J Orthop Surg Res 2024; 19:849. [PMID: 39702169 DOI: 10.1186/s13018-024-05336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Exosomes extracted from synovial fluid (SF-exo) reflect the status of their originating cells. The proteomic profiles of SF-exo are important for the diagnosis of osteoarthritis (OA). To delineate the proteomic differences between SF-exo from OA patients and healthy individuals, a quantitative proteomic study based on iTRAQ technology was performed. In this study, a total of 439 proteins were identified, with 20 proteins exhibiting increased expression in the OA patient group, while 5 showed decreased expression levels. Bioinformatic analysis showed these differentially expressed proteins (DEPs) were involved in a variety of immune-related processes, including complement activation and antigen binding. For further screening, we downloaded a publicly available dataset of synovial fluid (PXD023708) and compared it with our dataset. The comparative Results identified that 5 DEPs overlapped in two datasets, and protein-protein interaction revealed that C3, C4B and APOM were key members of a tightly interactive network. Through receiver operating characteristic (ROC) curve analysis and enzyme-linked immunosorbent assay (ELISA), we confirmed 5 DEPs (C3, C4B, APOM, MMP3, DPYSL2) as potential diagnostic biomarkers for OA. And Pearson correlation analysis confirmed that most of these biomarkers had no significant linear correlation with age. Overall, our study provides the first comprehensive description of the proteomic landscape of SF-exo in OA and identifies several potential biomarkers. These findings are expected to provide valuable insights into the diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Huaiming Li
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Fengzhen Meng
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Tun Hing Lui
- Department of Orthopaedic and Traumatology, North District Hospital, Sheung Shui, Hong Kong, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, China.
| |
Collapse
|
7
|
Liu C, Zhang Y, Zhao J, Zhang J, Meng Z, Yang Y, Xie Y, Jiao X, Liang B, Cao J, Wang Y. Vaping/e-cigarette-induced pulmonary extracellular vesicles contribute to exacerbated cardiomyocyte impairment through the translocation of ERK5. Life Sci 2024; 358:123195. [PMID: 39481834 DOI: 10.1016/j.lfs.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhijun Meng
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuhui Yang
- Department of Anesthesiology, Guangdong Medical University, Guangzhou 510182, Guangdong, China
| | - Yaoli Xie
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Jiang P, Ma X, Wang X, Huang J, Wang Y, Ai J, Xiao H, Dai M, Lin Y, Shao B, Tang X, Tong W, Ye Z, Chai R, Zhang S. Isolation and Comprehensive Analysis of Cochlear Tissue-Derived Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408964. [PMID: 39497619 DOI: 10.1002/advs.202408964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Indexed: 12/28/2024]
Abstract
Small extracellular vesicles (sEVs) act as a critical mediator in intercellular communication. Compared to sEVs derived from in vitro sources, tissue-derived sEVs can reflect the in vivo signals released from specific tissues more accurately. Currently, studies on the role of sEVs in the cochlea have relied on studying sEVs from in vitro sources. This study evaluates three cochlear tissue digestion and cochlear tissue-derived sEV (CDsEV) isolation methods, and first proposes that the optimal approach for isolating CDsEVs using collagenase D and DNase І combined with sucrose density gradient centrifugation. Furthermore, it comprehensively investigates CDsEV contents and cell origins. Small RNA sequencing and proteomics are performed to analyze the miRNAs and proteins of CDsEVs. The miRNAs and proteins of CDsEVs are crucial for maintaining normal auditory function. Among them, FGFR1 in CDsEVs may mediate the survival of cochlear hair cells via sEVs. Finally, the joint analysis of single CDsEV sequencing and single-cell RNA sequencing data is utilized to trace cellular origins of CDsEVs. The results show that different types of cochlear cells secrete different amounts of CDsEVs, with Kölliker's organ cells and supporting cells secrete the most. The findings are expected to enhance the understanding of CDsEVs in the cochlea.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingyuan Huang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
10
|
Zi S, Wu X, Tang Y, Liang Y, Liu X, Wang L, Li S, Wu C, Xu J, Liu T, Huang W, Xie J, Liu L, Chao J, Qiu H. Endothelial Cell-Derived Extracellular Vesicles Promote Aberrant Neutrophil Trafficking and Subsequent Remote Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400647. [PMID: 39119837 PMCID: PMC11481253 DOI: 10.1002/advs.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/18/2024] [Indexed: 08/10/2024]
Abstract
The development of acute respiratory distress syndrome (ARDS) in sepsis is associated with substantial morbidity and mortality. However, the molecular pathogenesis underlying sepsis-induced ARDS remains elusive. Neutrophil heterogeneity and dysfunction contribute to uncontrolled inflammation in patients with ARDS. A specific subset of neutrophils undergoing reverse transendothelial migration (rTEM), which is characterized by an activated phenotype, is implicated in the systemic dissemination of inflammation. Using single-cell RNA sequencing (scRNA-seq), it identified functionally activated neutrophils exhibiting the rTEM phenotype in the lung of a sepsis mouse model using cecal ligation and puncture. The prevalence of neutrophils with the rTEM phenotype is elevated in the blood of patients with sepsis-associated ARDS and is positively correlated with disease severity. Mechanically, scRNA-seq and proteomic analys revealed that inflamed endothelial cell (EC) released extracellular vesicles (EVs) enriched in karyopherin subunit beta-1 (KPNB1), promoting abluminal-to-luminal neutrophil rTEM. Additionally, EC-derived EVs are elevated and positively correlated with the proportion of rTEM neutrophils in clinical sepsis. Collectively, EC-derived EV is identified as a critical regulator of neutrophil rTEM, providing insights into the contribution of rTEM neutrophils to sepsis-associated lung injury.
Collapse
Affiliation(s)
- Shuang‐Feng Zi
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiao‐Jing Wu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yun‐Peng Liang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Song‐Li Li
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Chang‐De Wu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jing‐Yuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjing210009China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jian‐Feng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
- Department of PhysiologySchool of MedicineSoutheast UniversityNanjing210009China
| | - Hai‐Bo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| |
Collapse
|
11
|
Wang Y, Li C, Wu F, Mao J, Zhu J, Xie H, Zhou X, Wen C, Tian J. The negative effects of extracellular vesicles in the immune system. Front Immunol 2024; 15:1410273. [PMID: 39372421 PMCID: PMC11449741 DOI: 10.3389/fimmu.2024.1410273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Immunity is a critical self-defense mechanism of the human body, wherein immune cells and immune molecules play a crucial role. Extracellular vesicles (EVs), derived from immune cells or other cells, play a significant role in tumors, autoimmune diseases and other immune-related disorders by serving as carriers and facilitating intercellular communication through the transfer of cargoes. Numerous studies have revealed that EVs can exacerbate disease development by modulating immune responses. Therefore, this paper focuses on the effects of EVs on the number, activity and function of different types of immune cells and the release of immune molecules (such as cytokines, antigens, antibodies, etc) in various diseases, as well as the roles of EVs associated with different types of immune cells in various diseases. We aim to provide a comprehensive review of the negative effects that EVs play in the immune system to provide more ideas and strategies for the management of clinical immune diseases.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jidong Tian
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Patel S, Khan MB, Kumar S, Vyavahare S, Mendhe B, Lee TJ, Cai J, Isales CM, Liu Y, Hess DC, Fulzele S. The impact of ischemic stroke on bone marrow microenvironment and extracellular vesicles: A study on inflammatory and molecular changes. Exp Neurol 2024; 379:114867. [PMID: 38914274 DOI: 10.1016/j.expneurol.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
An ischemic stroke (IS) is caused due to the lack of blood flow to cerebral tissue. Most of the studies have focused on how stroke affects the localized tissue, but it has been observed that a stroke can cause secondary complications in distant organs, such as Bone Marrow (BM). Our study focused on the effect of ischemic strokes on the bone marrow microenvironment. Bone marrow (BM) is a vital organ that maintains inflammatory homeostasis and aids in the repair of damaged tissue after injury/IS. We used the middle cerebral artery occlusion (MCAO) model of ischemic stroke on adult mice (6 months) and investigated the changes in the BM environment. BM cells were used for western blot and RT-PCR, and the BM supernatant was used for cytokine analysis and extracellular vesicle (EVs) isolation. We observed a significant increase in the total cell number within the BM and an increase in TNF-alpha and MCP-1, which are known for inducing a pro-inflammatory environment. Western blots analysis on the whole BM cell lysate demonstrated elevated levels of inflammatory factors (IL-6, TNF-alpha, and TLR-4) and senescence markers (p21 p16). EVs isolated from the BM supernatant showed no change in size or concentration; however, we found that the EVs carried increased miRNA-141-3p and miRNA-34a. Proteomic analysis on BM-derived EVs showed an alteration in the protein cargo of IS. We observed an increase in FgB, C3, Fn1, and Tra2b levels. The signaling pathway analysis showed mitochondrial function is most affected within the bone marrow. Our study demonstrated that IS induces changes in the BM environment and EVs secreted in the BM.
Collapse
Affiliation(s)
- Sagar Patel
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Bharati Mendhe
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Han Y, Ye M, Ye S, Liu B. Comparison of Lung Tissue-Derived Extracellular Vesicles Using Multiple Dissociation Methods for Profiling Protein Biomarkers. Biotechnol J 2024; 19:e202400329. [PMID: 39295555 DOI: 10.1002/biot.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Extracellular vesicles (EVs) operate as chemical messengers that facilitate intercellular communication. Emerging evidence has demonstrated that lung tissue-derived EVs play pivotal roles in pulmonary physiological processes and have potential as biomarkers and therapeutics for lung diseases. Multiple methods have been proposed for the isolation of lung tissue-derived EVs. However, the effects of different tissue pre-treatments on lung EV isolation and subsequent disease biomarker discovery have not yet been comprehensively investigated. In this study, we compared the physical characteristics, recovery yields, and protein compositions of EVs isolated from lung tissues using three methods based on different tissue dissociation principles. Methodologically, the beneficial roles of blood perfusion and gentle meshing were emphasized based on their impact on EV yield and purity. These results demonstrate that different methods enrich distinct subpopulations of EVs that exhibit significant differences in their protein cargo and surface properties. These disparities directly affect the diagnostic detection of marker proteins related to lung diseases, including lung tumors, asthma, and pulmonary fibrosis. Collectively, these findings highlight the variations in EV characteristics resulting from the applied approaches and offer compelling suggestions for guiding researchers in selecting a suitable isolation method based on downstream functional studies and clinical applications.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Meng Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Li H, Zhang X, Xu H, Liu H, Zhang Y, Zhang L, Zhou Y, Zhang Y, Liu J, Jing M, Zhang P, Yang P. Alternation of gene expression in brain-derived exosomes after cerebral ischemic preconditioning in mice. Heliyon 2024; 10:e35936. [PMID: 39224379 PMCID: PMC11367060 DOI: 10.1016/j.heliyon.2024.e35936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Cerebral ischemic preconditioning is a neuroprotective therapy against cerebral ischemia and ischemia-reperfusion injury. This study aims to demonstrate the alternation of gene expression in exosomes from brain tissue of mice after ischemic preconditioning and their potential functions. Methods Ten mice were divided into the sham and the cerebral ischemic preconditioning groups. Their brain tissues were harvested, from which the exosomes were extracted. The characteristics and protective effects of exosomes were evaluated. Whole transcriptome sequencing was used to demonstrate the gene expression discrepancy between the exosomes from the two groups of mice brains. Volcano graphs and heatmaps were used to picture the difference in expression quantity of mRNA, lncRNA, and circRNA. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to demonstrate the functions of differentially expressed RNAs. Results Exosomes were successfully extracted, and those from the cerebral ischemic preconditioning group had better protective effects on cells that received oxygen-glucose deprivation and restoration injury. A total of 306 mRNAs and 374 lncRNAs were significantly upregulated, and 320 mRNAs and 405 lncRNAs were significantly downregulated in the preconditioning group. No circRNAs were differentially expressed between the two groups. GO and KEGG pathway analysis indicated that the functions of differentially expressed RNAs were related to both neural protective and injurious effects. Conclusion The brain-derived exosomes may participate in the neuroprotective effect of cerebral ischemic preconditioning. Thorough research is necessary to investigate exosome functions derived from the ischemic preconditioned brain.
Collapse
Affiliation(s)
- He Li
- Emergency Department, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongxin Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mei Jing
- Emergency Department, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
17
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
18
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
19
|
Wang X, Zhang Y, Wu Y, Wang C, Li S, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Ning Y, Zhao H. Integration of miRNA in exosomes and single-cell RNA-seq profiles in endemic osteoarthritis, Kashin-Beck disease. Biofactors 2024; 50:725-737. [PMID: 38156801 DOI: 10.1002/biof.2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
20
|
Couse AD, Cox-Vazquez SJ, Ghatak S, Trinidad JC, Clemmer DE. Delineating Bovine Milk Derived Microvesicles from Exosomes Using Proteomics. J Proteome Res 2024. [PMID: 38805445 DOI: 10.1021/acs.jproteome.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.
Collapse
Affiliation(s)
- Andrew D Couse
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Sarah J Cox-Vazquez
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Subhadip Ghatak
- McGowan Institute of Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Zhou Y, Deng S, Du C, Zhang L, Li L, Liu Y, Wang Y, Zhang Y, Zhu L. Leukotriene B4-induced neutrophil extracellular traps impede the clearance of Pneumocystis. Eur J Immunol 2024; 54:e2350779. [PMID: 38440842 DOI: 10.1002/eji.202350779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.
Collapse
Affiliation(s)
- Yanxi Zhou
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuwei Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Zhang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yujia Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
23
|
Li W, Zhu J, Li J, Jiang Y, Sun J, Xu Y, Pan H, Zhou Y, Zhu J. Research advances of tissue-derived extracellular vesicles in cancers. J Cancer Res Clin Oncol 2024; 150:184. [PMID: 38598014 PMCID: PMC11006789 DOI: 10.1007/s00432-023-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.
Collapse
Affiliation(s)
- Wei Li
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, People's Republic of China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiayuan Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yiyun Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jiuai Sun
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yan Xu
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 200120, People's Republic of China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
24
|
Li F, Li L, Peng R, Liu C, Liu X, Liu Y, Wang C, Xu J, Zhang Q, Yang G, Li Y, Chen F, Li S, Cui W, Liu L, Xu X, Zhang S, Zhao Z, Zhang J. Brain-derived extracellular vesicles mediate systemic coagulopathy and inflammation after traumatic brain injury. Int Immunopharmacol 2024; 130:111674. [PMID: 38387190 DOI: 10.1016/j.intimp.2024.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can induce systemic coagulopathy and inflammation, thereby increasing the risk of mortality and disability. However, the mechanism causing systemic coagulopathy and inflammation following TBI remains unclear. In prior research, we discovered that brain-derived extracellular vesicles (BDEVs), originating from the injured brain, can activate the coagulation cascade and inflammatory cells. In this study, we primarily investigated how BDEVs affect systemic coagulopathy and inflammation in peripheral circulation. The results of cytokines and coagulation function indicated that BDEVs can lead to systemic coagulopathy and inflammation by influencing inflammatory factors and chemokines within 24 h. Furthermore, according to flow cytometry and blood cell counter results, we found that BDEVs induced changes in the blood count such as a reduced number of platelets and leukocytes and an increased percentage of neutrophils, macrophages, activated platelets, circulating platelet-EVs, and leukocyte-derived EVs. We also discovered that eliminating circulating BDEVs with lactadherin helped improve coagulopathy and inflammation, relieved blood cell dysfunction, and decreased the circulating platelet-EVs and leukocyte-derived EVs. Our research provides a novel viewpoint and potential mechanism of TBI-associated secondary damage.
Collapse
Affiliation(s)
- Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chuan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiaoling Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - FangLian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Weiyun Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
25
|
Lu W, Yan J, Wang C, Qin W, Han X, Qin Z, Wei Y, Xu H, Gao J, Gao C, Ye T, Tay FR, Niu L, Jiao K. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res 2024; 12:11. [PMID: 38383487 PMCID: PMC10881583 DOI: 10.1038/s41413-023-00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zixuan Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wei
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Wang W, Ren X, Chen X, Hong Q, Cai G. Integrin β1-rich extracellular vesicles of kidney recruit Fn1+ macrophages to aggravate ischemia-reperfusion-induced inflammation. JCI Insight 2024; 9:e169885. [PMID: 38258908 PMCID: PMC10906229 DOI: 10.1172/jci.insight.169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Ischemia-reperfusion injury-induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle-carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin β1-rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT's inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin β1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1β. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuejing Ren
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
27
|
Huang Y, Zhou R. Cytosolic transfer of circulating LPS by EVs. Nat Cell Biol 2023; 25:1729-1731. [PMID: 37973842 DOI: 10.1038/s41556-023-01283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Yi Huang
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Rongbin Zhou
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Shen L, Huang H, Wei Z, Chen W, Li J, Yao Y, Zhou J, Liu J, Sun S, Xia W, Zhang T, Yu X, Shen J, Wang W, Jiang J, Huang J, Jiang M, Ni C. Integrated transcriptomics, proteomics, and functional analysis to characterize the tissue-specific small extracellular vesicle network of breast cancer. MedComm (Beijing) 2023; 4:e433. [PMID: 38053815 PMCID: PMC10694390 DOI: 10.1002/mco2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Small extracellular vesicles (sEVs) are essential mediators of intercellular communication within the tumor microenvironment (TME). Although the biological features of sEVs have been characterized based on in vitro culture models, recent evidence indicates significant differences between sEVs derived from tissue and those derived from in vitro models in terms of both content and biological function. However, comprehensive comparisons and functional analyses are still limited. Here, we collected sEVs from breast cancer tissues (T-sEVs), paired normal tissues (N-sEVs), corresponding plasma (B-sEVs), and tumor organoids (O-sEVs) to characterize their transcriptomic and proteomic profiles. We identified the actual cancer-specific sEV signatures characterized by enriched cell adhesion and immunomodulatory molecules. Furthermore, we revealed the significant contribution of cancer-associated fibroblasts in the sEV network within the TME. In vitro model-derived sEVs did not entirely inherit the extracellular matrix- and immunity regulation-related features of T-sEVs. Also, we demonstrated the greater immunostimulatory ability of T-sEVs on macrophages and CD8+ T cells compared to O-sEVs. Moreover, certain sEV biomarkers derived from noncancer cells in the circulation exhibited promising diagnostic potential. This study provides valuable insights into the functional characteristics of tumor tissue-derived sEVs, highlighting their potential as diagnostic markers and therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Huanhuan Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Zichen Wei
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Department of AnesthesiologyTaihe HospitalHubei University of MedicineShiyanChina
| | - Wuzhen Chen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jiaxin Li
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Yao Yao
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Zhou
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Jian Liu
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Shanshan Sun
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Wenjie Xia
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhouChina
| | - Ting Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
- Department of Radiation OncologySecond Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Xiuyan Yu
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Shen
- Department of Surgical OncologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
| | - Weilan Wang
- Department of Breast SurgeryChangxing People's HospitalHuzhouChina
| | - Jingxin Jiang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jian Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Ming Jiang
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersHangzhouChina
| | - Chao Ni
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
29
|
Hu H, Wang Z, Yang H, Bai Y, Zhu R, Cheng L. Hypoxic Preconditional Engineering Small Extracellular Vesicles Promoted Intervertebral Disc Regeneration by Activating Mir-7-5p/NF-Κb/Cxcl2 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304722. [PMID: 37870186 PMCID: PMC10724439 DOI: 10.1002/advs.202304722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Indexed: 10/24/2023]
Abstract
Chronic low back pain (LBP) caused by intervertebral disc (IVD) degradation is a serious socioeconomic burden that can cause severe disabilities. Addressing the underlying pathogenic mechanisms of IVD degeneration may inspire novel therapeutic strategy for LBP. Herein, hypoxic preconditioning improves both the biological function of MSCs in hostile microenvironments and enhances the production of small extracellular vesicles (sEVs) with desirable therapeutic functions. In vitro results reveal that hypoxic preconditional engineering sEVs (HP-sEVs) alleviate the inflammatory microenvironments of IVD degradation, enhance the proliferation of nucleus pulposus (NP) cells, and promote proteoglycan synthesis and collagen formation. Transcriptomic sequencing reveales the excellent therapeutic effects of HP-sEVs in promoting extracellular matrix regeneration through the delivery of microRNA(miR)-7-5p, which further suppresses p65 production and thus the inhibition of Cxcl2 production. Moreover, in vivo results further confirm the robust therapeutic role of HP-sEVs in promoting IVD regeneration through the same mechanism mediated by miR-7-5p delivery. In conclusion, this study provides a novel therapeutic strategy for treating IVD degradation and is thus valuable for understanding the mechanism-of-action of HP-sEVs in IVD regeneration associated with chronic lower back pain.
Collapse
Affiliation(s)
- Hongxing Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Clinical Center for Brain and Spinal Cord ResearchTongji UniversityShanghai200092China
| |
Collapse
|
30
|
Fan D, Wang S, Huang R, Liu X, He H, Zhang G. Light-Assisted "Nano-Neutrophils" with High Drug Loading for Targeted Cancer Therapy. Int J Nanomedicine 2023; 18:6487-6502. [PMID: 37965278 PMCID: PMC10642559 DOI: 10.2147/ijn.s432854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Background Nanomedicine presents a promising alternative for cancer treatment owing to its outstanding features. However, the therapeutic outcome is still severely compromised by low tumor targeting, loading efficiency, and non-specific drug release. Methods Light-assisted "nano-neutrophils (NMPC-NPs)", featuring high drug loading, self-amplified tumor targeting, and light-triggered specific drug release, were developed. NMPC-NPs were composed of neutrophil membrane-camouflaged PLGA nanoparticles (NPs) loaded with a hypoxia-responsive, quinone-modified PTX dimeric prodrug (hQ-PTX2) and photosensitizer (Ce6). Results hQ-PTX2 significantly enhanced the drug loading of NPs by preventing intermolecular π-π interactions, and neutrophil membrane coating imparted the biological characteristics of neutrophils to NMPC-NPs, thus improving the stability and inflammation-targeting ability of NMPC-NPs. Under light irradiation, extensive NMPC-NPs were recruited to tumor sites based on photodynamic therapy (PDT)-amplified intratumoral inflammatory signals for targeted drug delivery to inflammatory tumors. Besides, PDT could effectively eliminate tumor cells via reactive oxygen species (ROS) generation, while the PDT-aggravated hypoxic environment accelerated hQ-PTX2 degradation to realize the specific release of PTX, thus synergistically combining chemotherapy and PDT to suppress tumor growth and metastasis with minimal adverse effects. Conclusion This nanoplatform provides a prospective and effective avenue toward enhanced tumor-targeted delivery and synergistic cancer therapy.
Collapse
Affiliation(s)
- Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Xiaoning Liu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
- Longhu Laboratory, Zhengzhou, 450046, People’s Republic of China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, People’s Republic of China
| |
Collapse
|
31
|
Salken I, Provencio JJ, Coulibaly AP. A potential therapeutic target: The role of neutrophils in the central nervous system. Brain Behav Immun Health 2023; 33:100688. [PMID: 37767236 PMCID: PMC10520304 DOI: 10.1016/j.bbih.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophils play a critical role in immune defense as the first recruited and most abundant leukocytes in the innate immune system. As such, regulation of neutrophil effector functions have strong implications on immunity. These cells display a wide heterogeneity of function, including both inflammatory and immunomodulatory roles. Neutrophils commonly infiltrate the central nervous system (CNS) in response to varied pathological conditions. There is still little understanding of the role these cells play in the CNS in such conditions. In the present review, we will summarize what is known of neutrophil's role in cancer and Alzheimer's disease (AD), with a focus on highlighting the gaps in our understanding.
Collapse
Affiliation(s)
- Isabel Salken
- College of Arts and Science, University of Virginia, USA
| | | | | |
Collapse
|
32
|
Zhang R, Duan X, Liu Y, Xu J, Al-bashari AAG, Ye P, Ye Q, He Y. The Application of Mesenchymal Stem Cells in Future Vaccine Synthesis. Vaccines (Basel) 2023; 11:1631. [PMID: 38005963 PMCID: PMC10675160 DOI: 10.3390/vaccines11111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccines have significant potential in treating and/or preventing diseases, yet there remain challenges in developing effective vaccines against some diseases, such as AIDS and certain tumors. Mesenchymal stem cells (MSCs), a subset of cells with low immunogenicity, high proliferation potential, and an abundant source of extracellular vesicles (EVs), represent one of the novel and promising vaccine platforms. This review describes the unique features and potential mechanisms of MSCs as a novel vaccine platform. We also cover aspects such as the safety and stability of MSCs that warrant future in-depth studies.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Xingxiang Duan
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Ye Liu
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Jia Xu
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
| | - Abdullkhaleg Ali Ghaleb Al-bashari
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Deng W, Lu Y, Hu P, Zhang Q, Li S, Yang D, Zhao N, Qian K, Liu F. Integrated Analysis of Non-Coding RNA and mRNA Expression Profiles in Exosomes from Lung Tissue with Sepsis-Induced Acute Lung Injury. J Inflamm Res 2023; 16:3879-3895. [PMID: 37674532 PMCID: PMC10478974 DOI: 10.2147/jir.s419491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
Background Acute lung injury (ALI) is associated with a high mortality rate; however, the underlying molecular mechanisms are poorly understood. The purpose of this study was to investigate the expression profile and related networks of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in lung tissue exosomes obtained from sepsis-induced ALI. Methods A mouse model of sepsis was established using the cecal ligation and puncture method. RNA sequencing was performed using lung tissue exosomes obtained from mice in the sham and CLP groups. Hematoxylin-eosin staining, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and nanoparticle tracking analysis were performed to identify relevant phenotypes, and bioinformatic algorithms were used to evaluate competitive endogenous RNA (ceRNA) networks. Results Thirty lncRNA-miRNA-mRNA interactions were identified, including two upregulated lncRNAs, 30 upregulated miRNAs, and two downregulated miRNAs. Based on the expression levels of differentially expressed mRNAs(DEmRNAs), differentially expressed LncRNAs(DELncRNAs), and differentially expressed miRNAs(DEmiRNAs), 30 ceRNA networks were constructed. Conclusion Our study revealed, for the first time, the expression profiles of lncRNA, miRNA, and mRNA in exosomes isolated from the lungs of mice with sepsis-induced ALI, and the exosome co-expression network and ceRNA network related to ALI in sepsis.
Collapse
Affiliation(s)
- Wei Deng
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Yanhua Lu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ping Hu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qingqing Zhang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Shuangyan Li
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Dong Yang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ning Zhao
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kejian Qian
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fen Liu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
34
|
Lou P, Liu S, Wang Y, Lv K, Zhou X, Li L, Zhang Y, Chen Y, Cheng J, Lu Y, Liu J. Neonatal-Tissue-Derived Extracellular Vesicle Therapy (NEXT): A Potent Strategy for Precision Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300602. [PMID: 37148469 DOI: 10.1002/adma.202300602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Extracellular vesicle (EV)-based therapies have emerged as a promising means in regenerative medicine. However, the conventional EV therapy strategy displays some limitations, such as inefficient EV production and lack of tissue-specific repair effects. Here, it is reported that neonatal-tissue-derived EV therapy (NEXT) is a potent strategy for precision tissue repair. In brief, large amounts of EVs with higher yield/purity can be readily isolated from desired tissues with less production time/cost compared to the conventional cell-culture-based method. Moreover, source factors, such as age and tissue type, can affect the repair efficacy of such tissue-derived EVs in different tissue injury models (skin wounds and acute kidney injury), and neonatal-tissue-derived EVs show superior tissue repair potency compared with adult-tissue-derived EVs. Different age- or tissue-type-derived EVs have distinct composition (e.g., protein) signatures that are likely due to the diverse metabolic patterns of the donor tissues, which may contribute to the specific repair action modes of NEXT in different types of tissue injury. Furthermore, neonatal-tissue-derived EVs can be incorporated with bioactive materials for advanced tissue repair. This study highlights that the NEXT strategy may provide a new avenue for precision tissue repair in many types of tissue injury.
Collapse
Affiliation(s)
- Peng Lou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuyun Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yizhuo Wang
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Lv
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiyue Zhou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Li
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Younan Chen
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingping Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
35
|
Huang Q, Sun Y, Sun J, Peng L, Shang H, Wei D, Li C, Hu Z, Peng H. Proteomic Characterization of Peritoneal Extracellular Vesicles in a Mouse Model of Peritoneal Fibrosis. J Proteome Res 2023; 22:908-918. [PMID: 36648763 DOI: 10.1021/acs.jproteome.2c00713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peritoneal fibrosis progression is regarded as a significant cause of the loss of peritoneal function, markedly limiting the application of peritoneal dialysis (PD). However, the pathogenesis of peritoneal fibrosis remains to be elucidated. Tissue-derived extracellular vesicles (EVs) change their molecular cargos to adapt the environment alteration, mediating intercellular communications and play a significant role in organ fibrosis. Hence, we performed, for the first time, four-dimensional label-free quantitative liquid chromatography-tandem mass spectrometry proteomic analyses on EVs from normal peritoneal tissues and PD-induced fibrotic peritoneum in mice. We demonstrated the alterations of EV concentration and protein composition between normal control and PD groups. A total of 2339 proteins containing 967 differentially expressed proteins were identified. Notably, upregulated proteins in PD EVs were enriched in processes including response to wounding and leukocyte migration, which participated in the development of fibrosis. In addition, EV proteins of the PD group exhibited unique metabolic signature compared with those of the control group. The glycolysis-related proteins increased in PD EVs, while oxidative phosphorylation and fatty acid metabolism-related proteins decreased. We also evaluated the effect of cell-type specificity on EV proteins, suggesting that mesothelial cells mainly cause the alterations in the molecular composition of EVs. Our study provided a useful resource for further validation of the key regulator or therapeutic target of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qiang Huang
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxiang Sun
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Juan Sun
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Long Peng
- Division of Cardiovascular Medicine, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongli Shang
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Dandan Wei
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Canming Li
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hui Peng
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|