1
|
Kraus L, Fredericks S, Scheeler K. The epigenetic regulation of crosstalk between cardiac fibroblasts and other cardiac cell types during stress. Front Cardiovasc Med 2025; 12:1539826. [PMID: 40264508 PMCID: PMC12011845 DOI: 10.3389/fcvm.2025.1539826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
With the global impact of cardiovascular disease, there is a dire need to understand the mechanisms in the heart during injury and stress. It has been shown that the regulation of the extracellular matrix via cardiac fibroblasts plays a major role in the progression of heart failure and worsening function of the heart. Importantly, it has been suggested that crosstalk between other cardiac cells like cardiomyocytes, immune cells, and endothelial cells are influenced by the pathological function of the fibroblasts. This decline in function across all cardiac cells is seemingly irreversible. However, epigenetic mechanisms have been shown to regulate functionality across cardiac cells and improve outcomes during stress or injury. This epigenetic regulation has also been shown to control communication between different cell types and influence the role of multiple cardiac cell types during injury. The goal of this review is to summarize and discuss the current research of epigenetic regulation of cardiac fibroblasts and the subsequent crosstalk with other cardiac cell types in cardiovascular disease states.
Collapse
Affiliation(s)
- Lindsay Kraus
- Department of Biology, College of Science, Technology, Engineering, Arts, and Mathematics, Alvernia University, Reading, PA, United States
| | | | | |
Collapse
|
2
|
Fang H, Rai A, Eslami SS, Huynh K, Liao HC, Salim A, Greening DW. Proteomics and Machine Learning-Based Approach to Decipher Subcellular Proteome of Mouse Heart. Mol Cell Proteomics 2025; 24:100952. [PMID: 40113211 PMCID: PMC12019842 DOI: 10.1016/j.mcpro.2025.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
Protein compartmentalization to distinctive subcellular niches is critical for cardiac function and homeostasis. Here, we employed a rapid and robust workflow based on differential centrifugal-based fractionation with mass spectrometry-based proteomics and bioinformatic analyses for systemic mapping of the subcellular proteome of mouse heart. Using supervised machine learning of 450 hallmark protein markers from 16 subcellular niches, we further refined the subcellular information of 2083 proteins with high confidence. Our data validation focused on specific subcellular niches such as mitochondria, cell surface, cardiac dyad, myofibril, and nuclear, unfolding dominant subcellular localization of proteins in their native environment of mouse heart. We further provide targeted nuclear enrichment and co-immunoprecipitation-based proteomic validation from the heart of nuclear-localizing protein networks. This study provides novel insights into the molecular landscape of different subcellular niches of the heart and serves as a draft map for heart subcellular proteome.
Collapse
Affiliation(s)
- Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Seyed Sadegh Eslami
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Hsiao-Chi Liao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
3
|
Singh J, Jackson KL, Fang H, Gumanti A, Claridge B, Tang FS, Kiriazis H, Salimova E, Parker AM, Nowell C, Woodman OL, Greening DW, Ritchie RH, Head GA, Qin CX. Novel formylpeptide receptor 1/2 agonist limits hypertension-induced cardiovascular damage. Cardiovasc Res 2024; 120:1336-1350. [PMID: 38879891 PMCID: PMC11416058 DOI: 10.1093/cvr/cvae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Angiotensin II
- Anti-Inflammatory Agents/pharmacology
- Antihypertensive Agents/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Blood Pressure/drug effects
- Disease Models, Animal
- Fibrosis
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proteomics
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/agonists
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Haoyun Fang
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Audrey Gumanti
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Bethany Claridge
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, VIC, Australia
| | - Alex M Parker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David W Greening
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, 44 Wenhua Xilu, Jinan, Shandong 250012, PR China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, Shandong 250012, PR China
| |
Collapse
|
4
|
Kleinbongard P, Senyo SE, Lindsey ML, Garvin AM, Simpson JA, de Castro Braz LE. Cardiac fibroblasts: answering the call. Am J Physiol Heart Circ Physiol 2024; 327:H681-H686. [PMID: 39093000 PMCID: PMC11442096 DOI: 10.1152/ajpheart.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Cardiac fibroblasts play a pivotal role in maintaining heart homeostasis by depositing extracellular matrix (ECM) to provide structural support for the myocardium, vasculature, and neuronal network and by contributing to essential physiological processes. In response to injury such as myocardial infarction or pressure overload, fibroblasts become activated, leading to increased ECM production that can ultimately drive left ventricular remodeling and progress to heart failure. Recently, the American Journal of Physiology-Heart and Circulatory Physiology issued a call for papers on cardiac fibroblasts that yielded articles with topics spanning fibroblast physiology, technical considerations, signaling pathways, and interactions with other cell types. This mini-review summarizes those articles and places the new findings in the context of what is currently known for cardiac fibroblasts and what future directions remain.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Alexandra M Garvin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Guelph, Ontario, Canada
| | - Lisandra E de Castro Braz
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
5
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
6
|
Poh QH, Rai A, Cross J, Greening DW. HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion. Proteomics 2024; 24:e2200145. [PMID: 38214697 DOI: 10.1002/pmic.202200145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|