1
|
Wood CM, Pelster B, Val AL. Is the air-breathing organ a significant route for CO 2 excretion during aquatic hypercapnia in the pirarucu, Arapaima gigas? J Comp Physiol B 2025; 195:39-51. [PMID: 39704815 DOI: 10.1007/s00360-024-01597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O2 uptake (ṀO2), with the gills providing the major route for excretion of CO2 (ṀCO2) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO2 to the water may become impaired. Under these conditions, does the ABO become an important route of ṀCO2 excretion to the air? We have answered this question by measuring ṀCO2 and ṀO2 in both air and water phases, as well as the pattern of air-breathing, in pirarucu under aquatic normocapnia and hypercapnia (3% CO2). Indeed, ṀCO2 to the air phase via the ABO increased 2- to 3-fold during exposure to high water PCO2, accounting for 59-71% of the total, with no change in the dominant contribution of the ABO to ṀO2 (71-75% of the total). These adjustments were quickly reversed upon restoration of aquatic normocapnia. During aquatic hypercapnia, ṀCO2 via the ABO became more effective over time, and the pattern of air-breathing changed, exhibiting increased frequency and decreased breath volume. Ammonia-N excretion (86-88% of total) dominated over urea-N excretion and tended to increase during exposure to aquatic hypercapnia. We conclude that the ability of the ABO to take on the dominant role in CO2 excretion when required may have been an important driver in the original evolution of air-breathing, as well as in the functionality of the ABO in modern air-breathing fish.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Bernd Pelster
- Institut für Zoologie, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, Innsbruck, A-6020, Austria
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil
| |
Collapse
|
2
|
Aaskov ML, Ishimatsu A, Nyengaard JR, Malte H, Lauridsen H, Ha NTK, Huong DTT, Bayley M. Modulation of gill surface area does not correlate with oxygen loss in Chitala ornata. Proc Biol Sci 2024; 291:20241884. [PMID: 39410672 PMCID: PMC11521143 DOI: 10.1098/rspb.2024.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 11/01/2024] Open
Abstract
Air-breathing fish risk losing aerially sourced oxygen to ambient hypoxic water since oxygenated blood from the air-breathing organ returns through the heart to the branchial basket before distribution. This loss is thought to help drive the evolutionary reduction in gill size with the advent of air-breathing. In many teleost fish, gill size is known to be highly plastic by modulation of their anatomic diffusion factor (ADF) with inter-lamellar cell mass (ILCM). In the anoxia-tolerant crucian carp, ILCM recedes with hypoxia but regrows in anoxia. The air-breathing teleost Chitala ornata has been shown to increase gill ADF from normoxic to mildly hypoxic water by reducing ILCM. Here, we test the hypothesis that ADF is modulated to minimize oxygen loss in severe aquatic hypoxia by measuring ADF, gas-exchange, and by using computed tomography scans to reveal possible trans-branchial shunt vessels. Contrary to our hypothesis, ADF does not modulate to prevent oxygen loss and despite no evident trans-branchial shunting, C. ornata loses only 3% of its aerially sourced O2 while still excreting 79% of its CO2 production to the severely hypoxic water. We propose this is achieved by ventilatory control and by compensating the minor oxygen loss by extra aerial O2 uptake.
Collapse
Affiliation(s)
- Magnus L. Aaskov
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Atsushi Ishimatsu
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
- Emeritus professor, Nagasaki University, 14 Bunkyo- machi, Nagasaki-shi852-8521, Japan
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| | - Nguyen Thi Kim Ha
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Mark Bayley
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| |
Collapse
|
3
|
Aaskov ML, Nelson D, Lauridsen H, Huong DTT, Ishimatsu A, Crossley DA, Malte H, Bayley M. Do air-breathing fish suffer branchial oxygen loss in hypoxic water? Proc Biol Sci 2023; 290:20231353. [PMID: 37700647 PMCID: PMC10498054 DOI: 10.1098/rspb.2023.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
In hypoxia, air-breathing fish obtain O2 from the air but continue to excrete CO2 into the water. Consequently, it is believed that some O2 obtained by air-breathing is lost at the gills in hypoxic water. Pangasionodon hypophthalmus is an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand how P. hypophthalmus can maintain high growth in hypoxia with the presumed O2 loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2 uptake, while maintaining aquatic CO2 excretion at 91% of the total. Further, even small elevations in water PO2 rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency.
Collapse
Affiliation(s)
- Magnus L. Aaskov
- Division of Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus, Denmark
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Atsushi Ishimatsu
- Institute for East China Sea Research, Nagasaki University, Nagasaki, Japan
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Hans Malte
- Division of Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Mark Bayley
- Division of Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| |
Collapse
|
4
|
Ramírez JFP, Amanajás RD, Val AL. Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals (Basel) 2023; 13:1977. [PMID: 37370487 DOI: 10.3390/ani13121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ammonia is toxic to fish, and when associated with global warming, it can cause losses in aquaculture. In this study, we investigated the physiological and zootechnical responses of Arapaima gigas to the current scenarios and to RCP8.5, a scenario predicted by the IPCC for the year 2100 which is associated with high concentrations of environmental ammonia (HEA). Forty-eight chipped juvenile A. gigas were distributed in two experimental rooms (current scenario and RCP8.5) in aquariums with and without the addition of ammonia (0.0 mM and 2.44 mM) for a period of 30 days. The HEA, the RCP8.5 scenario, and the association of these factors affects the zootechnical performance, the ionic regulation pattern, and the levels of ammonia, glucose, triglycerides, sodium, and potassium in pirarucu plasma. The branchial activity of H+-ATPase was reduced and AChE activity increased, indicating that the species uses available biological resources to prevent ammonia intoxication. Thus, measures such as monitoring water quality in regard to production, densities, and the feed supplied need to be more rigorous and frequent in daily management in order to avoid the accumulation of ammonia in water, which, in itself, proved harmful and more stressful to the animals subjected to a climate change scenario.
Collapse
Affiliation(s)
- José Fernando Paz Ramírez
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins, Avenida Professor Nilton Lins, 3259, Parques das Laranjeiras, Manaus CEP 69058-030, Brazil
| | - Renan Diego Amanajás
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
- Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
| |
Collapse
|
5
|
Weber RE, Damsgaard C, Fago A, Val AL, Moens L. Ontogeny of hemoglobin‑oxygen binding and multiplicity in the obligate air-breathing fish Arapaima gigas. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111190. [PMID: 35331911 DOI: 10.1016/j.cbpa.2022.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
The evolutionary and ontogenetic changes from water- to air-breathing result in major changes in the cardiorespiratory systems. However, the potential changes in hemoglobin's (Hb) oxygen binding properties during ontogenetic transitions to air-breathing remain poorly understood. Here we investigated Hb multiplicity and O2 binding in hemolysates and Hb components from juveniles and adults of the obligate air-breathing pirarucu (Arapaima gigas) that starts life as water-breathing hatchlings. Contrasting with previous electrophoresis studies that report one or two isoHbs in adults, isoelectric focusing (IEF) resolved the hemolysates from both stages into four major bands, which exhibited identical O2 binding properties (i.e. O2 affinities, cooperativity coefficients, and sensitivities to pH and the major organic phosphate effectors), also as compared to the cofactor-free hemolysates. Of note, the multiplicity pattern recurred upon reanalyses of the most-abundant fractions isolated from the juvenile and the adult stages, suggesting possible stabilization of different quaternary states with different isoelectric points during the purification procedure. The study demonstrates unchanged Hb-O2 binding properties during development, despite the pronounced differences in O2 availability between the two media, which harmonizes with findings based on a broader spectrum of interspecific comparisons. Taken together, these results disclose that obligate air-breathing in Arapaima is not contingent upon changes in Hb multiplicity and O2 binding characteristics.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Christian Damsgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Adalberto L Val
- Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Luis Val A, Wood CM. Global change and physiological challenges for fish of the Amazon today and in the near future. J Exp Biol 2022; 225:275450. [PMID: 35582942 DOI: 10.1242/jeb.216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amazonia is home to 15% (>2700, in 18 orders) of all the freshwater fish species of the world, many endemic to the region, has 65 million years of evolutionary history and accounts for 20% of all freshwater discharge to the oceans. These characteristics make Amazonia a unique region in the world. We review the geological history of the environment, its current biogeochemistry and the evolutionary forces that led to the present endemic fish species that are distributed amongst three very different water types: black waters [acidic, ion-poor, rich in dissolved organic carbon (DOC)], white waters (circumneutral, particle-rich) and clear waters (circumneutral, ion-poor, DOC-poor). The annual flood pulse is the major ecological driver for fish, providing feeding, breeding and migration opportunities, and profoundly affecting O2, CO2 and DOC regimes. Owing to climate change and other anthropogenic pressures such as deforestation, pollution and governmental mismanagement, Amazonia is now in crisis. The environment is becoming hotter and drier, and more intense and frequent flood pulses are now occurring, with greater variation between high and low water levels. Current projections are that Amazon waters of the near future will be even hotter, more acidic, darker (i.e. more DOC, more suspended particles), higher in ions, higher in CO2 and lower in O2, with many synergistic effects. We review current physiological information on Amazon fish, focusing on temperature tolerance and ionoregulatory strategies for dealing with acidic and ion-poor environments. We also discuss the influences of DOC and particles on gill function, the effects of high dissolved CO2 and low dissolved O2, with emphasis on water- versus air-breathing mechanisms, and strategies for pH compensation. We conclude that future elevations in water temperature will be the most critical factor, eliminating many species. Climate change will likely favour predominantly water-breathing species with low routine metabolic rates, low temperature sensitivity of routine metabolic rates, high anaerobic capacity, high hypoxia tolerance and high thermal tolerance.
Collapse
Affiliation(s)
- Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil, 69080-971
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, CanadaL8S 4K1
| |
Collapse
|
7
|
Aaskov ML, Jensen RJ, Skov PV, Wood CM, Wang T, Malte H, Bayley M. Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss. J Exp Biol 2022; 225:274291. [PMID: 35132994 DOI: 10.1242/jeb.243672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
One of the most air-reliant obligate air-breathing fish is the South American Arapaima gigas, with substantially reduced gills impeding gas diffusion, thought to be a result of recurring aquatic hypoxia in its habitat. In normoxic water, A. gigas is reported to satisfy 70-80% of its O2 requirement from the air while excreting 60-90% of its CO2 to the water. If this pattern of gas exchange were to continue in severely hypoxic water, O2 loss at the gills would be expected. We hypothesized therefore that partitioning of CO2 would shift to the air phase in severe aquatic hypoxia eliminating the risk of branchial O2 loss. By adapting a respirometer designed to measure aquatic MO2/MCO2 we were able to run intermittent closed respirometry on both water and air phase for both of these gasses as well as sample water for N-waste measurements (ammonia-N, urea-N) so as to calculate metabolic fuel utilization. In contrast to our prediction, we found that partitioning of CO2 excretion changed little between normoxia and severe hypoxia (83% vs 77% aquatic excretion respectively) and at the same time there was no evidence of branchial O2 loss in hypoxia. This indicates that A. gigas can utilize distinct transfer pathways for O2 and CO2. Routine and standard MO2, N-waste excretion, and metabolic fuel utilization did not change with water oxygenation. Metabolism was fueled mostly by protein oxidation (53%) while carbohydrates and lipids accounted for 27% and 20% respectively.
Collapse
Affiliation(s)
- Magnus L Aaskov
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus J Jensen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, Hirtshals, Denmark
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Montgomery DW, Kwan GT, Davison WG, Finlay J, Berry A, Simpson SD, Engelhard GH, Birchenough SNR, Tresguerres M, Wilson RW. Rapid blood acid-base regulation by European sea bass (Dicentrarchus labrax) in response to sudden exposure to high environmental CO2. J Exp Biol 2022; 225:jeb242735. [PMID: 35005768 PMCID: PMC8917447 DOI: 10.1242/jeb.242735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.
Collapse
Affiliation(s)
| | - Garfield T. Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- National Oceanic and Atmospheric Administration Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - William G. Davison
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Jennifer Finlay
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Alex Berry
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D. Simpson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H. Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N. R. Birchenough
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rod W. Wilson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
9
|
Cruz MGD, Jerônimo GT, Bentes SPC, Gonçalves LU. Trichlorfon is effective against Dawestrema cycloancistrium and does not alter the physiological parameters of arapaima (Arapaima gigas): A large Neotropical fish from the Amazon. JOURNAL OF FISH DISEASES 2022; 45:203-212. [PMID: 34779526 DOI: 10.1111/jfd.13549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the in vitro and in vivo efficacy of trichlorfon against Dawestrema cycloancistrium, as well as its physiological effects on arapaima. Naturally parasitized arapaima gill arches were exposed in vitro to 100, 250, 500 and 750 mg/L of trichlorfon and a control group (only distilled water), in triplicate. Parasites were monitored, and mortality was used to determine the median effective concentration (EC50 ). The 750 mg/L concentration demonstrated 100% in vitro efficacy against D. cycloancistrium after 60 min, while the intermediate (500 mg/L) and the lowest (100 and 250 mg/L) tested concentrations were completely efficient after 90 and 130 min, respectively. The EC50-1h of trichlorfon for D. cycloancistrium was determined at 171.73 mg/L. Parasitized arapaima juveniles were exposed to a control group and 150 mg/L of trichlorfon in triplicate. Fish were exposed to two therapeutic baths for 60 min with 24-h intervals between treatments. Therapeutic baths with 150 mg/L of trichlorfon were 92.99% effective against D. cycloancistrium and did not bring about haematological alterations (erythrogram, white blood cell count, thrombogram, plasma glucose and total proteins). Therefore, 150 mg/L of trichlorfon can be used in therapeutic baths to control and treat D. cycloancistrium infestations with no physiological impairments for arapaima.
Collapse
Affiliation(s)
| | - Gabriela Tomas Jerônimo
- Postgraduate Program in Animal Science and Fisheries Resources, Federal University of Amazonas, Manaus, Brazil
| | | | - Ligia Uribe Gonçalves
- Postgraduate in Aquaculture Program, Nilton Lins University, Manaus, Brazil
- Postgraduate Program in Animal Science and Fisheries Resources, Federal University of Amazonas, Manaus, Brazil
- Technology, and Innovation Coordination, National Institute of Amazonian Research, Manaus, Brazil
| |
Collapse
|
10
|
Fibronectin 1B Gene Plays an Important Role in Loach Barbel Air-Breathing. Int J Mol Sci 2021; 22:ijms222111928. [PMID: 34769365 PMCID: PMC8584523 DOI: 10.3390/ijms222111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Loach (Misgurnus anguillicaudatus) is well known to perform air-breathing through the posterior intestine and skin. However, we find here for the first time a unique central vascular structure in the loach barbel, with a blood–gas diffusion distance as short as that of the posterior intestine. Under acute hypoxia, the distance of loach barbels became significantly shorter. Moreover, barbel removal significantly decreased air-breathing frequency of the loach. These findings imply that the barbel is another air-breathing organ of the loach. For further investigation of loach barbel air-breathing, a transcriptome analysis of barbels with air exposure treatment was performed. A total of 2546 differentially expressed genes (DEGs) between the T-XU (air exposure) and C-XU (control) group were identified, and 13 key DEGs related to barbel air-breathing were screened out. On this foundation, sequence, expression, and location analysis results indicated an important positive role of fibronectin 1b (fn1b) in loach barbel air-breathing. We further generated an fn1b-depletion loach (MT for short) using the CRISPR/Cas9 technique. It was indicated that depletion of fn1b could weaker barbel air-breathing ability. In conclusion, due to nonlethal and regenerative characteristics, the loach barbel, a newly discovered and fn1b-related fish air-breathing organ, can be a good model for fish air-breathing research.
Collapse
|