1
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
2
|
Osada K, Miyazono S, Ohata M, Noguchi T, Kashiwayanagi M. Changes in gaseous concentration of alkylpyrazine analogs affect mouse avoidance behavior. Biosci Biotechnol Biochem 2021; 85:2343-2351. [PMID: 34647591 DOI: 10.1093/bbb/zbab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/01/2021] [Indexed: 11/14/2022]
Abstract
We developed a rapid and accurate method for quantifying gaseous phase odorants using headspace solid-phase microextraction (HS-SPME) in conjunction with GC-MS and used our system to quantify alkylpyrazine analogs in the Y-maze. Rapid extraction of volatile compounds in the vapor phase achieved accurate quantitative analysis of gaseous alkylpyrazine analogs at several locations in the Y-maze. We also used a series of three SPME fibers to quantify changes in the concentration over time. We conducted a behavioral test of mice in response to these alkylpyrazines and identified a positive relationship between the rate of increase in gaseous concentration and the avoidance rate induced. Our results demonstrate that the Y-maze is a simple but reliable apparatus for behavioral studies of olfaction. The HS-SPME fast extraction method can quantify how gaseous concentrations of alkylpyrazines change over time, and the time-dependent increase of alkylpyrazine concentration is correlated with induction of aversive behavior in mice.
Collapse
Affiliation(s)
- Kazumi Osada
- Laboratory of Food Science and Nutrition, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Motoko Ohata
- Laboratory of Food Science and Nutrition, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
3
|
Marcinek P, Haag F, Geithe C, Krautwurst D. An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB J 2021; 35:e21638. [PMID: 34047404 DOI: 10.1096/fj.202100224r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.
Collapse
Affiliation(s)
- Patrick Marcinek
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Hamilton Germany GmbH, Gräfelfing, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Christiane Geithe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Peixoto L, Salazar LTH, Laska M. Olfactory sensitivity for mold-associated odorants in CD-1 mice and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:821-833. [PMID: 30203157 PMCID: PMC6182676 DOI: 10.1007/s00359-018-1285-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 12/30/2022]
Abstract
Using operant conditioning procedures, we assessed the olfactory sensitivity of six CD-1 mice and three spider monkeys for mold-associated odorants. We found that with all eight stimuli, the mice detected concentrations as low as 0.1 ppm (parts per million), and with two of them individual animals even detected concentrations as low as 1 ppt (parts per trillion). The spider monkeys detected concentrations as low as 4 ppm with all eight stimuli, and with four of them individual animals even detected concentrations as low as 4 ppb (parts per billion). Between-species comparisons showed that with all eight odorants, the mice displayed significantly lower threshold values, that is, a higher sensitivity than the spider monkeys, but not than human subjects tested in previous studies. Analysis of odor structure–activity relationships showed that in both species, the type of oxygen-containing functional group and the presence versus absence of a double bond as well as the length of the carbon backbone of the odor stimuli had a systematic effect on detectability. We conclude that both mice and spider monkeys are clearly able to detect the presence of molds and thus to assess the palatability of potential food using the volatiles produced by molds during putrefaction.
Collapse
Affiliation(s)
- Luis Peixoto
- IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | | | - Matthias Laska
- IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
5
|
HPLC Separation of 2-Ethyl-5(6)-methylpyrazine and Its Electroantennogram and Alarm Activities on Fire Ants ( Solenopsis invicta Buren). Molecules 2018; 23:molecules23071661. [PMID: 29986521 PMCID: PMC6100352 DOI: 10.3390/molecules23071661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022] Open
Abstract
2-Ethyl-3,6-dimethylpyrazine (EDMP) was an alarm pheromone component isolated from the mandibular gland of the red imported fire ant, Solenopsis invicta Buren. Several pyrazine analogues have been previously found to elicit significant alarm responses in S. invicta workers. This study aimed to separate the commercially available 2-ethyl-5(6)-methylpyrazine (EMP), i.e., a mixture of 2-ethyl-6-methylpyrazine (2E6MP) and 2-ethyl-5-methylpyrazine (2E5MP), and to examine both electroantennogram (EAG) and behavioral responses of S. invicta workers to EMP and the purified isomers. HPLC separations were achieved using a polysaccharide chiral stationary phase (Chiralpak AD-H) column with both mobile phases: Cyclohexane/isopropanol, and hexane/isopropanol. A ratio of 99:1 was selected for the separation of EMP at semipreparative level. The structures of the isomers obtained through the cyclohexane/isopropanol mobile phase were confirmed by detailed analyses of 2D-HSQC- and -HMBC-NMR data. The two isomers showed differential methine C⁻H correlations evidenced by 2D-HMBC-NMR spectra. The two concentrated fractions obtained through hexane/isopropanol mobile phase were subjected to EAG test and behavioral bioassay on S. invicta workers. The two HPLC−purified isomers, 2E6MP and 2E5MP, and their mixture (1:1) at same dose elicited similar EAG and alarm responses, indicating that these two isomers are equally active. The 2D-NMR−spectroscopic characterization, and electrophysiological and alarm activities of 2E6MP and 2E5MP were reported here for the first time.
Collapse
|
6
|
Osada K, Miyazono S, Kashiwayanagi M. Structure-Activity Relationships of Alkylpyrazine Analogs and Fear-Associated Behaviors in Mice. J Chem Ecol 2017; 43:263-272. [DOI: 10.1007/s10886-017-0822-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 02/03/2023]
|
7
|
Sarrafchi A, Laska M. Olfactory Sensitivity for the Mammalian Blood Odor Component Trans-4,5-epoxy-(E)-2-decenal in CD-1 Mice. Perception 2016; 46:333-342. [PMID: 27251166 DOI: 10.1177/0301006616653136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using a conditioning paradigm and an automated olfactometer, we investigated the olfactory sensitivity of CD-1 mice for the mammalian blood odor component trans-4,5-epoxy-(E)-2-decenal. We found that two of the animals significantly discriminated concentrations down to 3.0 ppt (parts per trillion) from the solvent, and three animals even successfully detected dilutions as low as 0.3 ppt. Intraspecific comparisons between the olfactory detection thresholds obtained here with those obtained in earlier studies with other odorants show that mice are extraordinarily sensitive to this blood odor component. Interspecific comparisons of olfactory detection thresholds show that human subjects are even more sensitive to trans-4,5-epoxy-(E)-2-decenal than the mice tested here. Both intra- and inter-specific comparisons suggest that neither neuroanatomical properties such as the size of the olfactory epithelium, the total number of olfactory receptor neurons, or the size of olfactory brain structures, nor genetic properties such as the number of functional olfactory receptor genes or the proportion of functional relative to the total number of olfactory receptor genes allow us to reliably predict a species' olfactory sensitivity. In contrast, the results support the notion that the behavioral relevance of an odorant rather than neuroanatomical or genetic properties may determine a species' olfactory sensitivity.
Collapse
|
8
|
Abstract
Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.
Collapse
|
9
|
Sarrafchi A, Odhammer AME, Hernandez Salazar LT, Laska M. Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLoS One 2013; 8:e80621. [PMID: 24278296 PMCID: PMC3835330 DOI: 10.1371/journal.pone.0080621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023] Open
Abstract
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species' olfactory sensitivity. Analysis of odor structure-activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity.
Collapse
Affiliation(s)
- Amir Sarrafchi
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Anna M. E. Odhammer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
10
|
Daev EV, Glinin TS, Dukelskaya AV. The balance hypothesis of the effect of socially important volatile chemosignals on reactivity of chromosome machinery of bone marrow dividing cells in the house mouse Mus musculus. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Løtvedt PK, Murali SK, Hernandez Salazar LT, Laska M. Olfactory sensitivity for “green odors” (aliphatic C6 alcohols and C6 aldehydes) — A comparative study in male CD-1 mice (Mus musculus) and female spider monkeys (Ateles geoffroyi). Pharmacol Biochem Behav 2012; 101:450-7. [DOI: 10.1016/j.pbb.2012.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/25/2012] [Accepted: 02/11/2012] [Indexed: 11/16/2022]
|
12
|
Can Güven S, Laska M. Olfactory sensitivity and odor structure-activity relationships for aliphatic carboxylic acids in CD-1 mice. PLoS One 2012; 7:e34301. [PMID: 22479594 PMCID: PMC3316622 DOI: 10.1371/journal.pone.0034301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific.
Collapse
Affiliation(s)
| | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
13
|
Hepper PG, Wells DL. Olfactory discrimination in the western lowland gorilla, Gorilla gorilla gorilla. Primates 2012; 53:121-6. [PMID: 22261746 DOI: 10.1007/s10329-011-0291-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
The olfactory abilities of great apes have been subject to little empirical investigation, save for a few observational reports. This study, using an habituation/dishabituation task, provides experimental evidence for a core olfactory ability, namely, olfactory discrimination, in the gorilla. In Experiment 1, six zoo-housed western lowland gorillas were individually presented with the same odour on four trials, and with a novel odour on the fifth trial. Odours (almond and vanilla) were presented on plastic balls, and behavioural responses of sniffing and chewing/licking the balls were recorded. A second experiment presented the same odour on four trials and no odour on the fifth to examine whether any dishabituation was due to the presence of a new odour or the absence of the familiar odour. Gorillas habituated their behaviour with repeated presentation of the same odour, but dishabituated, i.e. increased sniffing and chewing/licking, when presented with the novel odour. No dishabituation was noted when using water as the stimulus across all trials or when used as the novel odour. Overall, results show that gorillas are able to discriminate between odours.
Collapse
Affiliation(s)
- Peter G Hepper
- Animal Behaviour Centre, School of Psychology, Queen's University of Belfast, Belfast, BT7 1NN, UK.
| | | |
Collapse
|
14
|
Larsson L, Laska M. Ultra-high olfactory sensitivity for the human sperm-attractant aromatic aldehyde bourgeonal in CD-1 mice. Neurosci Res 2011; 71:355-60. [PMID: 21893110 DOI: 10.1016/j.neures.2011.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/27/2011] [Accepted: 08/16/2011] [Indexed: 11/15/2022]
Abstract
Recent studies have shown that certain aromatic aldehydes are ligands for olfactory receptors expressed in mammalian sperm cells and induce sperm chemotaxis. Using a conditioning paradigm, the olfactory sensitivity of five CD-1 mice for seven aromatic aldehydes was investigated. With all seven stimuli, the mice discriminated concentrations as low as 0.01 ppm (parts per million) from the solvent, and with bourgeonal the animals even detected concentrations as low as 0.1 ppq (parts per quadrillion) which constitutes the lowest olfactory detection threshold value reported in this species so far. The presence of a tertiary butyl group in para-position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the extraordinary sensitivity of the mice for bourgeonal.
Collapse
Affiliation(s)
- Linda Larsson
- IFM Biology, Section of Zoology, Linköping University, 58183 Linköping, Sweden
| | | |
Collapse
|
15
|
Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino Acids 2011; 42:1475-85. [PMID: 21647661 DOI: 10.1007/s00726-011-0951-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Using a conditioning paradigm, the olfactory sensitivity of five CD-1 mice for the L- and D-forms of cysteine, methionine, and proline was investigated. With all six stimuli, the animals discriminated concentrations ≤ 0.1 ppm (parts per million) from the odorless solvent, and with three of the six stimuli the best-scoring animals were even able to detect concentrations <0.1 ppb (parts per billion). Three spider monkeys tested in parallel were found to detect the same six stimuli at concentrations <1 ppm, and with four of the six stimuli the best-scoring animals detected concentrations ≤ 1 ppb. Both CD-1 mice and spider monkeys displayed a higher olfactory sensitivity with the L- and D-forms of cysteine and methionine than with the prolines, suggesting an important role of the sulfur-containing functional groups for detectability. Accordingly, the across-odorant patterns of detection thresholds obtained with mice and spider monkeys showed a significant positive correlation. A comparison of the detection thresholds between the two species tested here and those obtained in human subjects suggests that neither the number of functional olfactory receptor genes nor the absolute or the relative size of the olfactory bulbs reliably predicts a species' olfactory sensitivity for amino acids.
Collapse
|
16
|
Phillips M, Boman E, Österman H, Willhite D, Laska M. Olfactory and visuospatial learning and memory performance in two strains of Alzheimer's disease model mice--a longitudinal study. PLoS One 2011; 6:e19567. [PMID: 21573167 PMCID: PMC3088679 DOI: 10.1371/journal.pone.0019567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/10/2011] [Indexed: 12/03/2022] Open
Abstract
Using a longitudinal study design, two strains of Alzheimer's disease (AD) model mice, one expressing β-amyloid plaques and one expressing Tau protein-associated neurofibrillary tangles were assessed for olfactory and visuospatial learning and memory and their performance compared to that of age-matched controls. No significant difference between AD and control mice was found in the initial set of olfactory tasks performed at 6 months of age whereas both strains of AD mice performed significantly poorer than the controls in visuospatial learning at this age. Subsequent tests performed on the same individual animals at 7, 8, 9, 11, 13, 15, and 18 months of age also failed to find systematic differences in olfactory performance between AD and control mice. In contrast, the AD mice performed consistently poorer than the controls in visuospatial re-learning tests performed at these ages. With most olfactory tasks, both AD and control mice displayed a marked decrease in performance between testing at 15 and 18 months of age. These results show that the two strains of AD model mice do not display an olfactory impairment in a time course consistent with human AD, but are impaired in visuospatial capabilities. The marked age-related changes observed with the olfactory tasks in both AD and control mice suggest that the observed lack of an AD-related olfactory impairment is not due to an insensitivity of the tests employed. Rather, they suggest that the olfactory system of the two AD mouse model strains may be surprisingly robust against AD-typical neuropathologies.
Collapse
Affiliation(s)
- Matthew Phillips
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Erik Boman
- Department of Physics, Chemistry and Biology, Section of Zoology, Linköping University, Linköping, Sweden
| | - Hanna Österman
- Department of Physics, Chemistry and Biology, Section of Zoology, Linköping University, Linköping, Sweden
| | - David Willhite
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Matthias Laska
- Department of Physics, Chemistry and Biology, Section of Zoology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
17
|
Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:15-23. [PMID: 20820786 DOI: 10.1007/s00359-010-0580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/29/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
Using a three-alternative forced-choice ascending staircase procedure, we determined olfactory detection thresholds in 20 human subjects for seven aromatic aldehydes and compared them to those of four spider monkeys tested in parallel using an operant conditioning paradigm. With all seven odorants, both species detected concentrations <1 ppm, and with several odorants single individuals of both species even discriminated concentrations <1 ppb from the solvent. No generalizable species differences in olfactory sensitivity were found despite marked differences in neuroanatomical and genetic features. The across-odorant patterns of sensitivity correlated significantly between humans and spider monkeys, and both species were more sensitive to bourgeonal than to lilial, cyclamal, canthoxal, helional, lyral, and 3-phenylpropanal. No significant correlation between presence/absence of an oxygen-containing moiety attached to the benzene ring or presence/absence of an additional alkyl group next to the functional aldehyde group, and olfactory sensitivity was found in any of the species. However, the presence of a tertiary butyl group in para position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the finding that both species were most sensitive to bourgeonal.
Collapse
|
18
|
How big is the gap between olfactory detection and recognition of aliphatic aldehydes? Atten Percept Psychophys 2010; 72:806-12. [PMID: 20348584 DOI: 10.3758/app.72.3.806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to determine the magnitude of the difference in concentration between olfactory detection and recognition thresholds of aliphatic aldehydes. To this end, we first determined olfactory detection thresholds for n-butanal, n-pentanal, n-hexanal, n-heptanal, and n-octanal in a group of 16 subjects and then assessed their ability to discriminate between all possible binary pairs of the same odorants presented at different concentrations above their individual detection thresholds. We found that the gap between detection and recognition of aliphatic aldehydes is odorant pair dependent and, at the group level, spans at least a factor of 100. However, single subjects successfully discriminated between certain aldehyde pairs presented at a factor as low as 3 above detection threshold. Our approach to determining olfactory recognition thresholds, using a performance-based measure rather than verbal labeling, not only avoids the problem of semantic ambiguity and arguable criteria, but also is applicable to nonhuman species, allowing for interspecific comparisons of recognition thresholds and of the gap between detection and recognition of odorants. The raw discrimination data from this study are available as a supplement from http://app.psychonomic-journals.org/content/supplemental.
Collapse
|