1
|
Barcenilla BB, Kundel I, Hall E, Hilty N, Ulianich P, Cook J, Turley J, Yerram M, Min JH, Castillo-González C, Shippen DE. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant. FRONTIERS IN PLANT SCIENCE 2024; 15:1351613. [PMID: 38434436 PMCID: PMC10908177 DOI: 10.3389/fpls.2024.1351613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Tobler M, Gómez-Blanco D, Hegemann A, Lapa M, Neto JM, Tarka M, Xiong Y, Hasselquist D. Telomeres in ecology and evolution: A review and classification of hypotheses. Mol Ecol 2022; 31:5946-5965. [PMID: 34865259 DOI: 10.1111/mec.16308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Research on telomeres in the fields of ecology and evolution has been rapidly expanding over the last two decades. This has resulted in the formulation of a multitude of, often name-given, hypotheses related to the associations between telomeres and life-history traits or fitness-facilitating processes (and the mechanisms underlying them). However, the differences (or similarities) between the various hypotheses, which can originate from different research fields, are often not obvious. Our aim here is therefore to give an overview of the hypotheses that are of interest in ecology and evolution and to provide two frameworks that help discriminate among them. We group the hypotheses (i) based on their association with different research questions, and (ii) using a hierarchical approach that builds on the assumptions they make, such as about causality of telomere length/shortening and/or the proposed functional consequences of telomere shortening on organism performance. Both our frameworks show that there exist parallel lines of thoughts in different research fields. Moreover, they also clearly illustrate that there are in many cases competing hypotheses within clusters, and that some of these even have contradictory assumptions and/or predictions. We also touch upon two topics in telomere research that would benefit from further conceptualization. This review should help researchers, both those familiar with and those new to the subject, to identify future avenues of research.
Collapse
Affiliation(s)
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Mariana Lapa
- Department of Biology, Lund University, Lund, Sweden
| | - Júlio M Neto
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | - Ye Xiong
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Čapková Frydrychová R, Mason JM, Peska V. Editorial: Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential. Front Genet 2021; 12:771938. [PMID: 34671387 PMCID: PMC8520972 DOI: 10.3389/fgene.2021.771938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
4
|
Prušáková D, Peska V, Pekár S, Bubeník M, Čížek L, Bezděk A, Čapková Frydrychová R. Telomeric DNA sequences in beetle taxa vary with species richness. Sci Rep 2021; 11:13319. [PMID: 34172809 PMCID: PMC8233369 DOI: 10.1038/s41598-021-92705-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
Collapse
Affiliation(s)
- Daniela Prušáková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Bubeník
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lukáš Čížek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Bezděk
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Eckhardt F, Pauliny A, Rollings N, Mutschmann F, Olsson M, Kraus C, Kappeler PM. Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evol Biol 2020; 20:160. [PMID: 33261558 PMCID: PMC7709289 DOI: 10.1186/s12862-020-01724-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms' position along a fast-slow continuum in interspecific comparisons. Labord's chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4-9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. RESULTS We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3-4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. CONCLUSION We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
Collapse
Affiliation(s)
- Falk Eckhardt
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Angela Pauliny
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Nicky Rollings
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Mats Olsson
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Cornelia Kraus
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Stindl R. Transgenerational telomere erosion in the monogametic sex: human telomeres progressively erode in the female germline and do not lengthen in aged testes. Mol Cytogenet 2019; 12:37. [PMID: 31462927 PMCID: PMC6708222 DOI: 10.1186/s13039-019-0450-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Long telomeres, the protective caps of eukaryotic chromosomes, which erode during aging, have been the symbol of youth and regenerative potential. It therefore came as a surprise, when several cross-sectional studies reported that telomeres in sperm cells of old men are longer than in young men and that paternal age is positively linked to telomere length of children. To explain the puzzling data, several theories have been put forward, from Darwinian selection to high telomerase activity or alternative telomere lengthening in sperms of geriatrics. Unfortunately, the idea of a birth-cohort effect has been ignored, despite existing theoretical models and despite findings of progressive telomere erosion between human generations. The old theoretical model of progressive telomere erosion in the female germline is discussed here and updated with the hypothesis that progressive telomere erosion is tied to the monogametic sex in all higher animals. Longitudinal studies of germline telomere length in humans are much needed, since a limited regenerative capacity of somatic tissues will most likely result in an increase in and earlier onset of the so-called age-associated diseases.
Collapse
Affiliation(s)
- Reinhard Stindl
- Alpharm GesmbH, apo-med-center, Plättenstrasse 7-9, 2380 Perchtoldsdorf, Austria
| |
Collapse
|
7
|
Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol 2019; 30:197-202. [PMID: 29664790 DOI: 10.1097/gco.0000000000000451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to analyze what is known to date about the relation between telomeres and male fertility, and if it is possible for telomeres, or elements related to them, to be used as new prognostic biomarkers in fertility treatment. RECENT FINDINGS Cells in germ series, including spermatozoids, have longer telomeres (10-20 kb), and do not seem to undergo the shortening that takes place in somatic cells with age as they present telomerase activity. Longer telomere length found in the sperm of older fathers, influences their offspring possessing cells with longer telomere length. Infertile patients have spermatozoids with shorter telomere length than fertile people, but telomere length does neither correlate with the sperm concentration, mobility or morphology, nor with the DNA fragmentation indices (DFI) of spermatozoids. Embryo quality rate and transplantable embryo rate are related with the telomere length of spermatozoids (STL), but pregnancy rates are not affected. SUMMARY Telomere length and telomerase levels can be used as biomarkers of male fertility. Higher STL can have beneficial effects on fertility, thus the use of spermatozoids with longer telomere length in an assisted reproduction technique (ART) could be one way of solving some infertility cases.
Collapse
|
8
|
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Adv Clin Chem 2019; 90:81-132. [PMID: 31122612 DOI: 10.1016/bs.acc.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ever since their discovery, the telomeres and the telomerase have been topics of intensive research, first as a mechanism of cellular aging and later as an indicator of health and diseases in humans. By protecting the chromosome ends, the telomeres play a vital role in preserving the information in our genome. Telomeres shorten with age and the rate of telomere erosion provides insight into the proliferation history of cells. The pace of telomere attrition is known to increase at the onset of several pathological conditions. Telomere shortening has been emerging as a potential contributor in the pathogenesis of several neurological disorders including autism spectrum disorders (ASD), schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD) and depression. The rate of telomere attrition in the brain is slower than that of other tissues owing to the low rate of cell proliferation in brain. Telomere maintenance is crucial for the functioning of stem cells in brain. Taking together the studies on telomere attrition in various neurological disorders, an association between telomere shortening and disease status has been demonstrated in schizophrenia, AD and depression, in spite of a few negative reports. But, studies in ASD and PD have failed to produce conclusive results. The cause-effect relationship between TL and neurological disorders is yet to be elucidated. The factors responsible for telomere erosion, which have also been implicated in the pathogenesis of neurological disorders, need to be explored in detail. Telomerase activation is now being considered as a potential therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Ismail Thanseem
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mahesh Mundalil Vasu
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Vijitha Viswambharan
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Suresh A Poovathinal
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| |
Collapse
|
9
|
Stindl R. The Paradoxical Lengthening of Telomeres in Somatic Tissues of the Very Old: Aging Effect Meets Birth-Cohort Effect. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:213-4. [PMID: 27245263 DOI: 10.1002/jez.b.22677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Stindl R. The paradox of longer sperm telomeres in older men's testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet 2016; 9:12. [PMID: 26858775 PMCID: PMC4745172 DOI: 10.1186/s13039-016-0224-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
Longer telomeres in the somatic cells of an individual have been regarded as a marker of youth and biological fitness within a population. Yet, several research groups have reported the surprising findings of longer telomeres in the germ cells of older men, which translated into longer leukocyte telomere length in their offspring. Although all these studies were purely cross-sectional, a longitudinal trend in the aging testes of individual males was taken for granted. Recently, a high-profile study reported a negative birth-cohort effect on leukocyte mean telomere length in human populations, namely the progressive loss of telomeric sequence between healthy human generations. This is what I based my theory of telomere-driven macroevolution on, 12 years ago. On the basis of published data on telomere length inheritance, I identified the source of human intergenerational telomere erosion in the female germline. Accordingly, because of the resulting birth-cohort effect, there is no need for any paradoxical telomere lengthening in older men’s gonads to interpret the old-father-long-telomered-offspring data.
Collapse
Affiliation(s)
- Reinhard Stindl
- apo-med-center, Alpharm, Plättenstrasse 7-9, 2380 Perchtoldsdorf, Austria, Europe
| |
Collapse
|
11
|
Stindl R. The telomeric sync model of speciation: species-wide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the saltatory appearance of nonadaptive characters. Naturwissenschaften 2014; 101:163-86. [PMID: 24493020 PMCID: PMC3935097 DOI: 10.1007/s00114-014-1152-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
Charles Darwin knew that the fossil record is not overwhelmingly supportive of genetic and phenotypic gradualism; therefore, he developed the core of his theory on the basis of breeding experiments. Here, I present evidence for the existence of a cell biological mechanism that strongly points to the almost forgotten European concept of saltatory evolution of nonadaptive characters, which is in perfect agreement with the gaps in the fossil record. The standard model of chromosomal evolution has always been handicapped by a paradox, namely, how speciation can occur by spontaneous chromosomal rearrangements that are known to decrease the fertility of heterozygotes in a population. However, the hallmark of almost all closely related species is a differing chromosome complement and therefore chromosomal rearrangements seem to be crucial for speciation. Telomeres, the caps of eukaryotic chromosomes, erode in somatic tissues during life, but have been thought to remain stable in the germline of a species. Recently, a large human study spanning three healthy generations clearly found a cumulative telomere effect, which is indicative of transgenerational telomere erosion in the human species. The telomeric sync model of speciation presented here is based on telomere erosion between generations, which leads to identical fusions of chromosomes and triggers a transposon-mediated genomic repatterning in the germline of many individuals of a species. The phenotypic outcome of the telomere-triggered transposon activity is the saltatory appearance of nonadaptive characters simultaneously in many individuals. Transgenerational telomere erosion is therefore the material basis of aging at the species level.
Collapse
Affiliation(s)
- Reinhard Stindl
- apo-med-center, Alpharm GesmbH, Plättenstrasse 7-9, 2380, Perchtoldsdorf, Austria,
| |
Collapse
|
12
|
Shalaby T, Fiaschetti G, Nagasawa K, Shin-ya K, Baumgartner M, Grotzer M. G-quadruplexes as potential therapeutic targets for embryonal tumors. Molecules 2013; 18:12500-37. [PMID: 24152672 PMCID: PMC6269990 DOI: 10.3390/molecules181012500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
Embryonal tumors include a heterogeneous group of highly malignant neoplasms that primarily affect infants and children and are characterized by a high rate of mortality and treatment-related morbidity, hence improved therapies are clearly needed. G-quadruplexes are special secondary structures adopted in guanine (G)-rich DNA sequences that are often present in biologically important regions, e.g. at the end of telomeres and in the regulatory regions of oncogenes such as MYC. Owing to the significant roles that both telomeres and MYC play in cancer cell biology, G-quadruplexes have been viewed as emerging therapeutic targets in oncology and as tools for novel anticancer drug design. Several compounds that target these structures have shown promising anticancer activity in tumor xenograft models and some of them have entered Phase II clinical trials. In this review we examine approaches to DNA targeted cancer therapy, summarize the recent developments of G-quadruplex ligands as anticancer drugs and speculate on the future direction of such structures as a potential novel therapeutic strategy for embryonal tumors of the nervous system.
Collapse
Affiliation(s)
- Tarek Shalaby
- Division of Oncology, University Children's Hospital of Zurich, Zurich 8032, Switzerland.
| | | | | | | | | | | |
Collapse
|
13
|
Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging? Med Hypotheses 2010; 75:387-90. [DOI: 10.1016/j.mehy.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 03/27/2010] [Accepted: 04/01/2010] [Indexed: 11/18/2022]
|
14
|
Zhdanova NS, Rubtsov NB, Minina YM. Terminal regions of mammal chromosomes: Plasticity and role in evolution. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bekaert S, Derradji H, Baatout S. Telomere biology in mammalian germ cells and during development. Dev Biol 2004; 274:15-30. [PMID: 15355785 DOI: 10.1016/j.ydbio.2004.06.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 01/12/2023]
Abstract
The development of an organism is a strictly regulated program in which controlled gene expression guarantees the establishment of a specific phenotype. The chromosome termini or so-called telomeres preserve the integrity of the genome within developing cells. In the germline, during early development, and in highly proliferative organs, human telomeres are balanced between shortening processes with each cell division and elongation by telomerase, but once terminally differentiated or mature the equilibrium is shifted to gradual shortening by repression of the telomerase enzyme. Telomere length is to a large extent genetically determined and the neonatal telomere length equilibrium is, in fact, a matter of evolution. Gradual telomere shortening in normal human somatic cells during consecutive rounds of replication eventually leads to critically short telomeres that induce replicative senescence in vitro and probably in vivo. Hence, a molecular clock is set during development, which determines the replicative potential of cells during extrauterine life. Telomeres might be directly or indirectly implicated in longevity determination in vivo, and information on telomere length setting in utero and beyond should help elucidate presumed causal connections between early growth and aging disorders later in life. Only limited information exists concerning the mechanisms underlying overall telomere length regulation in the germline and during early development, especially in humans. The intent of this review is to focus on recent advances in our understanding of telomere biology in germline cells as well as during development (pre- and postimplantation periods) in an attempt to summarize our knowledge about telomere length determination and its importance for normal development in utero and the occurrence of the aging and abnormal phenotype later on.
Collapse
Affiliation(s)
- Sofie Bekaert
- Laboratory for Biochemistry and Molecular Cytology, Department for Molecular Biotechnology, FLTBW-Ghent University, Belgium
| | | | | |
Collapse
|
16
|
Abstract
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
| | | | | |
Collapse
|