1
|
McDermott MM, Sufit R, Domanchuk KJ, Volpe NJ, Kosmac K, Peterson CA, Zhao L, Tian L, Zhang D, Xu S, Ismaeel A, Ferrucci L, Parekh ND, Lloyd-Jones D, Kramer CM, Leeuwenburgh C, Ho K, Criqui MH, Polonsky T, Guralnik JM, Kibbe MR. Hepatocyte growth factor for walking performance in peripheral artery disease. J Vasc Surg 2025:S0741-5214(24)02320-6. [PMID: 39778757 DOI: 10.1016/j.jvs.2024.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND VM202 is a plasmid encoding two isoforms of hepatocyte growth factor. In preclinical studies, hepatocyte growth factor stimulated angiogenesis and muscle regeneration. This preliminary clinical trial tested the hypothesis that VM202 injections in gastrocnemius muscle would improve walking performance in people with mild to moderate and symptomatic lower extremity peripheral artery disease (PAD). METHODS In a double-blind clinical trial, patients with PAD were randomized to gastrocnemius muscle injections of either 4 mg of VM202 or placebo every 14 days for four treatments. The primary outcome was 6-month change in 6-minute walk distance. Secondary outcomes included 3-month change in treadmill walking time and gastrocnemius muscle biopsy measures. In this preliminary trial, statistical significance was prespecified as a one-sided P value of less than .10. RESULTS Thirty-nine participants with PAD (64.1% Black, 28.2% female) were randomized. Adjusting for age, race, smoking, and baseline performance, VM202 did not improve 6-minute walk at 6-month follow-up, compared with placebo (-13.5 m; 90% confidence interval [CI], -38.5 to +∞). At the 3-month follow-up, VM202 improved the maximum treadmill walking time (+2.38 minutes; 90% CI, +1.08 to +∞; P = .014) and increased central nuclei abundance in gastrocnemius muscle (+5.86; 90% CI, +0.37 to +∞; P = .088), compared with placebo. VM202 did not significantly improve pain-free walking distance (difference, +0.30 minutes; 90% CI, -1.10 to +∞; P = .39), calf muscle perfusion (difference, +1.80 mL/min per 100 g tissue; 90% CI, -3.80 to +∞; P = .33), or the Walking Impairment Questionnaire distance score (difference, +2.02; 90% CI, -8.11 to +∞; P = .40). In post hoc analyses, VM202 significantly improved 6-minute walk in PAD participants with diabetes mellitus at 6-month follow-up (+34.19; 90% CI, 4.04 to +∞; P = .075), but had no effect in people without diabetes (interaction P = .079). CONCLUSIONS These data do not support gastrocnemius injections of VM202 to improve 6-minute walk in PAD. Secondary outcomes suggested potential benefit of VM202 on skeletal muscle measures and treadmill walking, whereas post hoc analyses suggested benefit in PAD participants with diabetes.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Robert Sufit
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, IL
| | - Kathryn J Domanchuk
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicholas J Volpe
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, GA
| | | | - Lihui Zhao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lu Tian
- Department of Health Research and Policy, Stanford University, Palo Alto, CA
| | - Dongxue Zhang
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shujun Xu
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Luigi Ferrucci
- National Institute on Aging, Division of Intramural Research, Baltimore, Maryland
| | - Nishant D Parekh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Donald Lloyd-Jones
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher M Kramer
- Departments of Medicine and Radiology, University of Virginia Health, Charlottesville, VA
| | | | - Karen Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michael H Criqui
- Division of Preventive Medicine, University of California San Diego, La Jolla, CA
| | - Tamar Polonsky
- Department of Medicine, University of Chicago, Chicago, IL
| | - Jack M Guralnik
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Melina R Kibbe
- Department of Surgery, University of Virginia Health, Charlottesville, VA
| |
Collapse
|
2
|
Di X, Liu C, Ni L, Ye W, Rong Z, Zhang R, Niu S, Li F, Zheng Y, Han C, Liu Y. Rationale and design for the study of recombinant human hepatocyte growth factor plasmid in the treatment of patients with chronic limb-threatening ischemia (HOPE CLTI): Randomized, placebo-controlled, double-blind, phase III clinical trials. Am Heart J 2022; 254:88-101. [PMID: 36002048 DOI: 10.1016/j.ahj.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although patients with CLTI have benefited from the rapid development of endovascular techniques, many patients are considered unsuitable for revascularization procedures. A previous phase II clinical trial has suggested that recombinant human hepatocyte growth factor plasmid (NL003) can salvage limbs during the treatment of patients with CLTI. However, the safety and efficacy of this drug need to be evaluated in a larger cohort. STUDY DESIGN HOPE CLTI is a multicenter, randomized, double-blind, placebo-controlled phase III clinical study to evaluate the efficacy and safety of intramuscular injection of NL003 in CLTI patients. This study consisted of 22 trials: HOPE CLTI-1, which includes patients with rest pain (Rutherford stage 4), and HOPE CLTI-2, which includes patients with limb ulcers (Rutherford stage 5). In both trials, patients are randomized with a 2:1 ratio of intramuscular injection of NL003 to placebo. The primary endpoint of HOPE CLTI-1 is the complete pain relief rate. The primary endpoint of HOPE CLTI-2 is the complete ulcer healing rate. The safety endpoint was assessed based on adverse events after injection of NL003. Enrollment began in July 2019. The HOPE CLTI-1 trial aims to complete the randomization of at least 300 patients, while the HOPE CLTI-2 trial aims to enroll at least 240 patients. Both trials are organized such that patients will be followed for 6 months after the first intramuscular injection. CONCLUSIONS HITOP CLTI, which is comprised of 2 multicenter, double-blind, placebo-controlled phase III clinical trials, aims to evaluate the efficacy and safety of the intramuscular administration of NL003 in patients with CLTI.
Collapse
Affiliation(s)
- Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China.
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Chengquan Han
- R&D Center of Beijing Northland Biotech. Co., Ltd., Beijing, China
| | - Yue Liu
- R&D Center of Beijing Northland Biotech. Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Korpela H, Järveläinen N, Siimes S, Lampela J, Airaksinen J, Valli K, Turunen M, Pajula J, Nurro J, Ylä-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290:567-582. [PMID: 34033164 DOI: 10.1111/joim.13308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
Collapse
Affiliation(s)
- H Korpela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Järveläinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Siimes
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Lampela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Airaksinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Valli
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Turunen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Pajula
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Nurro
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Morell RJ, Olszewski R, Tona R, Leitess S, Wafa TT, Taukulis I, Schultz JM, Thomason EJ, Richards K, Whitley BN, Hill C, Saunders T, Starost MF, Fitzgerald T, Wilson E, Ohyama T, Friedman TB, Hoa M. Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39. J Neurosci 2020; 40:2976-2992. [PMID: 32152201 PMCID: PMC7141880 DOI: 10.1523/jneurosci.2278-19.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.
Collapse
Affiliation(s)
| | | | | | | | - Talah T Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | - Thomas Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan 48109-5674
| | - Matthew F Starost
- Division of Veterinarian Resources, National Institutes of Health, Maryland 20892, and
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Takahiro Ohyama
- Department of Otolaryngology, University of Southern California, Los Angeles, California 90033
| | | | - Michael Hoa
- Auditory Development and Restoration Program,
| |
Collapse
|
5
|
Gu Y, Cui S, Wang Q, Liu C, Jin B, Guo W, Liu C, Chu T, Shu C, Zhang F, Han C, Liu Y. A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Hepatocyte Growth Factor in the Treatment of Critical Limb Ischemia. Mol Ther 2019; 27:2158-2165. [PMID: 31805256 PMCID: PMC6904746 DOI: 10.1016/j.ymthe.2019.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
NL003 is a plasmid engineered to simultaneously express two isoforms of hepatocyte growth factor. This phase II study was performed to assess the clinical safety and efficacy of intramuscular injection of NL003 in critical limb ischemia (CLI) patients for 6 months. Two hundred patients (Rutherford scale 4-5) were randomly assigned: placebo (n = 50), low-dose NL003 (n = 50), middle-dose NL003 (n = 50), or high-dose NL003 (n = 50). The drug was administered in the affected limb of 197 patients on days 0, 14, and 28. No significant differences in the incidence of adverse events (AEs) or serious AEs were found among the groups. At 6 months, pain severity was significantly reduced in all NL003 groups, but not in the placebo group (p < 0.05). The proportion of patients with complete ulcer healing in the high-dose group was significantly higher than that of the placebo group (p = 0.0095). There were no statistically significant differences in transcutaneous oxygen pressure (TcPO2), ankle-brachial index (ABI), or toe-brachial index (TBI) value among the four groups throughout the study period. These results provide the first effective evidence of significant improvements in total healing of ulcers in treated legs, complete pain relief without analgesics, and safety for NL003 in patients with Rutherford stage 4-5.
Collapse
Affiliation(s)
- Yongquan Gu
- Vascular Surgery Department, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| | - Shijun Cui
- Vascular Surgery Department, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Vascular Surgery Department, First Hospital, Jilin University, Changchun, China
| | - Changjian Liu
- Vascular Surgery Department, Nanjing Drum Tower Hospital, Nanjing, China
| | - Bi Jin
- Vascular Surgery Department, Wuhan Union Hospital, Wuhan, China
| | - Wei Guo
- Vascular Surgery Department, Chinese PLA General Hospital, Beijing, China
| | - Changwei Liu
- Vascular Surgery Department, Peking Union Medical College Hospital, Beijing, China
| | - Tongbin Chu
- Diabetic Foot Treatment Center, Second Hospital of Dalian Medical University, Dalian, China
| | - Chang Shu
- Vascular Surgery Department, Second Xiang Ya Hospital, Central South University, Changsha, China
| | - Fuxian Zhang
- Vascular Surgery Department, Shi Ji Tan Hospital, Capital Medical University, Beijing, China
| | - Chengquan Han
- R&D Center of Beijing Northland Biotech. Co., Ltd., China
| | - Yue Liu
- R&D Center of Beijing Northland Biotech. Co., Ltd., China
| |
Collapse
|
6
|
Tarantino G, Citro V, Conforti P, Balsano C, Capone D. Is There a Link between Basal Metabolic Rate, Spleen Volume and Hepatic Growth Factor Levels in Patients with Obesity-Related NAFLD? J Clin Med 2019; 8:jcm8101510. [PMID: 31547124 PMCID: PMC6832562 DOI: 10.3390/jcm8101510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Recent pieces of research point to a link between basal metabolic rate (BMR) and non-alcoholic fatty liver disease (NAFLD) or hepatic steatosis (HS). The spleen in obese patients is associated with the cardiovascular system. Enlargement of the spleen is suggestive of nonalcoholic steatohepatitis (NASH). Patients with NASH present an increase in growth factor (HGF) as well as those with advanced heart failure. Interleukin-16 and interleukin-12p40 levels were found to correlate significantly with BMI, and waist circumference. Aim: We tried to find a relationship between BMR, spleen length and HGF. Methods: We analysed retrospective data from 80 obese patients with NAFLD. We evaluated indices of indirect calorimetry by the bioimpendance analysis; carotid intima-media thickness (IMT), spleen length (SLD) and HS by ultrasonography; serum HGF, IL-16, IL-12p40 and IL-6 concentrations by a magnetic bead-based multiplex immunoassays and the severity of NAFLD by BARD score > 2. Results: HGF levels of the obese were higher than those of controls, p < 0.001. At linear regression, BMR was foreseen by spleen length (p < 0.001), which was predicted by HGF (p = 0.04). BMR was predicted by IL-16 (p = 0.005), which predicted HGF, p = 0.034. Only fat mass, among other factors, predicted early atherosclerosis, p = 0.017; IL-12p40 did not predict IMT, HGF and BMR (p = 0.57, 0.09 and 0.59, respectively). The BARD score > 2 was negatively predicted by BMR and FFM (p =0.032 and 0.031, respectively), at the logistic regression. Interesting findings at the extended regression (mediation effect) were: IL-16 was likely causal in predicting BMR by HGF levels; HGF was influential in predicting BMR by SLD level. HS was predicted by SLD in males (p = 0.014), of advanced age (p < 0.001) and by BMR (p < 0.001). IL-6 concentrations, but not BMR were influential in the prediction of HS by SLD. Conclusion: These data reinforce the concept that the immune system is a sensor of the metabolic state, showing a link between HGF levels and BMR, which is mediated by IL-16 (cytokine inducing a cascade of inflammatory factors), and ascertaining the influential effect of the spleen, as main immune organ.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, 80131 Napoli NA, Italy.
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore (Sa), 84014 Nocera Inferiore SA, Italy.
| | - Paolo Conforti
- "Federico II" University Medical School of Naples, 80131 Napoli NA, Italy.
| | - Clara Balsano
- Department of Clinical Medicine, Life, Health & Environmental Sciences-MESVA, University of L'Aquila, 67100 L'Aquila AQ, Italy.
| | - Domenico Capone
- Care Department of Public Health and Drug-Use, Section of Medical Pharmacology and Toxicology, "Federico II" University, 80131 Naples NA, Italy.
| |
Collapse
|
7
|
Lee SH, Lee N, Kim S, Lee J, Choi W, Yu SS, Kim JH, Kim S. Intramuscular delivery of HGF-expressing recombinant AAV improves muscle integrity and alleviates neurological symptoms in the nerve crush and SOD1-G93A transgenic mouse models. Biochem Biophys Res Commun 2019; 517:452-457. [DOI: 10.1016/j.bbrc.2019.07.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022]
|
8
|
Choi W, Lee J, Lee J, Lee SH, Kim S. Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Front Physiol 2019; 10:914. [PMID: 31404148 PMCID: PMC6672745 DOI: 10.3389/fphys.2019.00914] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/04/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatocyte growth factor (HGF) is well known for its role in the migration of embryonic muscle progenitors and the activation of adult muscle stem cells, yet its functions during the adult muscle regeneration process remain to be elucidated. In this study, we showed that HGF/c-met signaling was activated during muscle regeneration, and that among various infiltrated cells, the macrophage is the major cell type affected by HGF. Pharmacological inhibition of the c-met receptor by PHA-665752 increased the expression levels of pro-inflammatory (M1) macrophage markers such as IL-1β and iNOS while lowering those of pro-regenerative (M2) macrophage markers like IL-10 and TGF-β, resulting in compromised muscle repair. In Raw 264.7 cells, HGF decreased the RNA level of LPS-induced TNF-α, IL-1β, and iNOS while enhancing that of IL-10. HGF was also shown to increase the phosphorylation of AMPKα through CaMKKβ, thereby overcoming the effects of the LPS-induced deactivation of AMPKα. Transfection with specific siRNA to AMPKα diminished the effects of HGF on the LPS-induced gene expressions of M1 and M2 markers. Exogenous delivery of HGF through intramuscular injection of the HGF-expressing plasmid vector promoted the transition to M2 macrophage and facilitated muscle regeneration. Taken together, our findings suggested that HGF/c-met might play an important role in the transition of the macrophage during muscle repair, indicating the potential use of HGF as a basis for developing therapeutics for muscle degenerative diseases.
Collapse
Affiliation(s)
- Wooshik Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jaeman Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Junghun Lee
- R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| | - Sang Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| |
Collapse
|
9
|
Hepatocyte Growth Factor Regulates the miR-206-HDAC4 Cascade to Control Neurogenic Muscle Atrophy following Surgical Denervation in Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:568-577. [PMID: 30195792 PMCID: PMC6077135 DOI: 10.1016/j.omtn.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022]
Abstract
Hepatocyte growth factor (HGF) has been well characterized for its roles in the migration of muscle progenitors during embryogenesis and the differentiation of muscle stem cells, but its function in adult neurogenic muscle atrophic conditions is poorly understood. Here we investigated whether HGF/c-met signaling has any effects on muscle-atrophic conditions. It was found that HGF expression was upregulated in skeletal muscle tissue following surgical denervation and in hSOD1-G93A transgenic mice showing severe muscle loss. Pharmacological inhibition of the c-met receptor decreased the expression level of pri-miR-206, enhanced that of HDAC4 and atrogenes, and resulted in increased muscle atrophy. In C2C12 cells, HGF inhibited phosphorylation of Smad3 and relieved TGF-β-mediated suppression of miR-206 expression via JNK. When extra HGF was exogenously provided through intramuscular injection of plasmid DNA expressing HGF, the extent of muscle atrophy was reduced, and the levels of all affected biochemical markers were changed accordingly, including those of primary and mature miR-206, HDAC4, and various atrogenes. Taken together, our finding suggested that HGF might play an important role in regard to neurogenic muscle atrophy and that HGF might be used as a platform to develop therapeutic agents for neuromuscular disorders.
Collapse
|
10
|
Nho B, Lee J, Lee J, Ko KR, Lee SJ, Kim S. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model. FASEB J 2018; 32:5119-5131. [PMID: 29913557 PMCID: PMC6113864 DOI: 10.1096/fj.201800476r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional protein that contains angiogenic and neurotrophic properties. In the current study, we investigated the analgesic effects of HGF by using a plasmid DNA that was designed to express 2 isoforms of human HGF—pCK-HGF-X7 (or VM202)—in a chronic constriction injury (CCI) –induced mouse neuropathic pain model. Intramuscular injection of pCK-HGF-X7 into proximal thigh muscle induced the expression of HGF in the muscle, sciatic nerve, and dorsal root ganglia (DRG). This gene transfer procedure significantly attenuated mechanical allodynia and thermal hyperalgesia after CCI. Injury-induced expression of activating transcription factor 3, calcium channel subunit α2δ1, and CSF1 in the ipsilateral DRG neurons was markedly down-regulated in the pCK-HGF-X7–treated group, which suggested that HGF might exert its analgesic effects by inhibiting pain-mediating genes in the sensory neurons. In addition, suppressed CSF1 expression in DRG neurons by pCK-HGF-X7 treatment was accompanied by a noticeable suppression of the nerve injury–induced glial cell activation in the spinal cord dorsal horn. Taken together, our data show that pCK-HGF-X7 attenuates nerve injury–induced neuropathic pain by inhibiting pain-related factors in DRG neurons and subsequent spinal cord glial activation, which suggests its therapeutic efficacy in the treatment of neuropathic pain.—Nho, B., Lee, J., Lee, J., Ko, K. R., Lee, S. J., Kim, S. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model.
Collapse
Affiliation(s)
- Boram Nho
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| | - Junsub Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeong Ryang Ko
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Seoul National University, Seoul, South Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| |
Collapse
|
11
|
Sufit RL, Ajroud-Driss S, Casey P, Kessler JA. Open label study to assess the safety of VM202 in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:269-278. [PMID: 28166654 DOI: 10.1080/21678421.2016.1259334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess safety and define efficacy measures of hepatocyte growth factor (HGF) DNA plasmid, VM202, administered by intramuscular injections in patients with amyotrophic lateral sclerosis (ALS). METHODS Eighteen participants were treated with VM202 administered in divided doses by injections alternating between the upper and lower limbs on d 0, 7, 14, and 21. Subjects were followed for nine months to evaluate possible adverse events. Functional outcome was assessed using the ALS Functional Rating Scale-Revised (ALSFRS-R) as well as by serially measuring muscle strength, muscle circumference, and forced vital capacity. RESULTS Seventeen of 18 participants completed the study. All participants tolerated 64 mg of VM202 well with no serious adverse events (SAE) related to the drug. Twelve participants reported 26 mild or moderate injection site reactions. Three participants experienced five SAEs unrelated to VM202. One subject died from respiratory insufficiency secondary to ALS progression. CONCLUSIONS Multiple intramuscular injection of VM202 into the limbs appears safe in ALS subjects. Future trials with retreatment after three months will determine whether VM202 treatment alters the long-term course of ALS.
Collapse
Affiliation(s)
- Robert L Sufit
- a Ken & Ruth Davee Department of Neurology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Senda Ajroud-Driss
- a Ken & Ruth Davee Department of Neurology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Patricia Casey
- a Ken & Ruth Davee Department of Neurology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - John A Kessler
- a Ken & Ruth Davee Department of Neurology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
12
|
Chen S, Chen X, Wu X, Wei S, Han W, Lin J, Kang M, Chen L. Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther 2016; 24:3-11. [DOI: 10.1038/gt.2016.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
|
13
|
Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Ther 2015; 23:306-12. [DOI: 10.1038/gt.2015.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022]
|
14
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
15
|
Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, Ajroud-Driss S, Vinik A. Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol 2015; 2:465-78. [PMID: 26000320 PMCID: PMC4435702 DOI: 10.1002/acn3.186] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of a plasmid (VM202) containing two human hepatocyte growth factor isoforms given by intramuscular injections in patients with painful diabetic neuropathy. METHODS In a double-blind, placebo-controlled study, patients were randomized to receive injections of 8 or 16 mg VM202 per leg or placebo. Divided doses were administered on Day 0 and Day 14. The prospective primary outcome was change in the mean pain score measured by a 7 day pain diary. Secondary outcomes included a responder analysis, quality of life and pain measures, and intraepidermal nerve fiber density. RESULTS There were no significant adverse events attributable to VM202. Eighty-four patients completed the study. Patients receiving 8 mg VM202 per leg improved the most in all efficacy measures including a significant (P = 0.03) reduction at 3 months in the mean pain score and continued but not statistically significant reductions in pain at 6 and 9 months. Of these patients, 48.4% experienced a ≥50% reduction in pain compared to 17.6% of placebo patients. There were also significant improvements in the brief pain inventory for patients with diabetic peripheral neuropathy and the questionnaire portion of the Michigan Neuropathy Screening Instrument. Patients not on pregabalin or gabapentin had the largest reductions in pain. INTERPRETATION VM202 was safe, well tolerated and effective indicating the feasibility of a nonviral gene therapy approach to painful diabetic neuropathy. Two days of treatment were sufficient to provide symptomatic relief with improvement in quality of life for 3 months. VM202 may be particularly beneficial for patients not taking gabapentin or pregabalin.
Collapse
Affiliation(s)
| | | | - Bong-Soo Cha
- Yonsei University College of Medicine Severence Hospital Seoul, South Korea
| | - Sung Hee Choi
- Seoul National University Bundang Hospital Seoul, South Korea
| | | | | | | | - Aaron Vinik
- Eastern Virginia Medical School Norfolk, Virginia
| | | |
Collapse
|
16
|
Abstract
Snapshot of key developments in the patent literature accompanied by explanatory synopses
Collapse
|
17
|
Hu ZP, Bao Y, Chen DN, Cheng Y, Song B, Liu M, Li D, Wang BN. Effects of recombinant adenovirus hepatocyte growth factor gene on myocardial remodeling in spontaneously hypertensive rats. J Cardiovasc Pharmacol Ther 2013; 18:476-80. [PMID: 23739651 DOI: 10.1177/1074248413490832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Myocardial hypertrophy and fibrosis are important determinants of congestive heart failure. Previous work has shown that hepatocyte growth factor (HGF) can reduce acute myocardial injury and tissue fibrosis. This study was designed to examine the effects of HGF on myocardial remodeling following sustained hypertension. METHODS AND RESULTS There were 4 experimental groups (n = 6) that included spontaneously hypertensive rats (SHRs) injected with 0.1 mL of adenovirus (Ad)-null into the left ventricular (LV) free wall, SHR injected with 0.1 mL of Ad-HGF gene (5 × 10(9) pfu/mL), and SHR injected with 0.1 mL of normal saline, and Wistar Kyoto rats injected with 0.1 mL of Ad-null served as control. At 4 weeks after injection, rats were sacrificed, and HGF expression, myocardial fibrosis, and LV function were determined. We observed that HGF protein expression was reduced in the hearts of SHR (P < .05 vs normal control) and it was markedly increased in SHR injected with Ad-HGF (P < .01 vs SHR injected with Ad-null). Myocardial fibrosis, collagen I, LV mass index (LVMI), and LV end-diastolic pressure (LVEDP) were increased and -dP/dtmax was decreased in SHR injected with Ad-null or normal saline (P < .01 vs normal control). Upregulation of myocardial HGF expression in SHR significantly suppressed myocardial fibrosis, collagen I content, LVMI, LVEDP, and increased -dP/dtmax (all P < .05 vs SHR-Ad-null, n = 6). CONCLUSIONS These findings indicate that HGF expression is attenuated in hypertrophic and fibrotic myocardium of SHR. The forced increase in HGF exerts a salutary effect on myocardial fibrosis, collagen I expression, and hemodynamic parameters.
Collapse
Affiliation(s)
- Ze-Ping Hu
- Division of Cardiology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Phase 1/2 open-label dose-escalation study of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with painful diabetic peripheral neuropathy. Mol Ther 2013; 21:1279-86. [PMID: 23609019 DOI: 10.1038/mt.2013.69] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed to evaluate the safety and preliminary efficacy of intramuscular injections of plasmid DNA (VM202) expressing two isoforms of hepatocyte growth factor (HGF) in subjects with painful diabetic peripheral neuropathy (PDPN). Twelve patients in three cohorts (4, 8, and 16 mg) received two sets of VM202 injections separated by two weeks. Safety and tolerability were evaluated and the visual analog scale (VAS), the short form McGill questionnaire (SF-MPQ), and the brief pain inventory for patients with diabetic peripheral neuropathy (BPI-DPN) measured pain level throughout 12 months after treatment. No serious adverse events (AEs) were observed. The mean VAS was reduced from baseline by 47.2% (P = 0.002) at 6 months and by 44.1% (P = 0.005) at 12 months after treatment. The VAS scores for the 4, 8, and 16 mg dose cohorts at 6 months follow-up decreased in a dose-responsive manner, by 21% (P = 0.971), 53% (P = 0.014), and 62% (P = 0.001), respectively. The results with the BPI-DPN and SF-MPQ showed patterns similar to the VAS scores. In conclusion, VM202 treatment appeared to be safe, well tolerated, and sufficient to provide long term symptomatic relief and improvement in the quality of life in patients with PDPN.
Collapse
|
19
|
Kim JS, Hwang HY, Cho KR, Park EA, Lee W, Paeng JC, Lee DS, Kim HK, Sohn DW, Kim KB. Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study. Gene Ther 2012; 20:717-22. [PMID: 23151518 DOI: 10.1038/gt.2012.87] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/31/2012] [Accepted: 10/08/2012] [Indexed: 11/09/2022]
Abstract
The purpose of this phase I clinical trial was to evaluate the safety, tolerability and potential efficacy of VM202, naked DNA expressing two isoforms of hepatocyte growth factor, as an adjunct therapy to coronary artery bypass grafting (CABG) in patients with ischemic heart disease (IHD). Nine patients were assigned to receive increasing doses (0.5 to 2.0 mg) of VM202 injected into the right coronary artery (RCA) territory following completion of CABG for the left coronary artery territory. Patients were evaluated for safety and tolerability, and changes in myocardial functions were monitored via echocardiography, cardiac magnetic resonance imaging and myocardial single photon emission computed tomography throughout 6-month follow-up period. No serious complication related to VM202 was observed throughout the 6-month follow-up period. Global myocardial functions (wall motion score index, P=0.0084; stress perfusion, P=0.0002) improved during the follow-up period. In the RCA region, there was an increase in the stress perfusion (baseline vs 3-month, P=0.024; baseline vs 6-month, P=0.024) and also in the wall thickness of the diastolic and systolic phases. Intramyocardial injection of VM202 can be safely used in IHD patients with the tolerable dose of 2.0 mg. In addition, VM202 might appear to have improved regional myocardial perfusion and wall thickness in the injected region.
Collapse
Affiliation(s)
- J S Kim
- Seoul National University Bundang Hospital, Gyeonggi, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Madonna R, Rokosh G. Insights into gene therapy for critical limb ischemia: the devil is in the details. Vascul Pharmacol 2012; 57:10-4. [PMID: 22580542 DOI: 10.1016/j.vph.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Patients with critical limb ischemia (CLI) without potential for revascularization are currently without alternate therapies. Several gene therapy trials have tested angiogenesis factors, hepatic growth factor, vascular endothelial growth factor, and basic fibroblast growth factor, in rescuing CLI patients from amputation and mortality, and for improved quality of life including decreased pain, improved healing, and blood flow. Trial results have been variable, with HGF gene therapy being the most successful. New studies examining each of these angiogenic factors provide insights that will be useful for the design of effective therapeutic strategies.
Collapse
|
21
|
Gu Y, Zhang J, Guo L, Cui S, Li X, Ding D, Kim JM, Ho SH, Hahn W, Kim S. A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia. J Gene Med 2012; 13:602-10. [PMID: 22015632 DOI: 10.1002/jgm.1614] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The purpose of the present phase I clinical trial was to evaluate the safety, tolerability, and preliminary efficacy of naked DNA therapy expressing two isoforms of hepatocyte growth factor (pCK-HGF-X7) in critical limb ischemia (CLI) patients. MATERIALS AND METHODS Twenty-one patients with CLI were consecutively assigned to receive increasing doses (cohort I: 4 mg; cohort II: 8 mg; cohort III: 12 mg; and cohort IV: 16 mg) of pCK-HGF-X7, which was administered into the ischemic calf and/or thigh muscle at days 1 and 15. A safety and tolerability evaluation and measurement of pain severity score using a visual analog scale (VAS), ulcer status, transcutaneous oxygen (TcPO(2) ) and ankle-brachial index (ABI) were performed throughout a 3-month follow-up period. RESULTS No serious adverse events were observed in any of the 21 patients for the 3-month follow-up period. A significant reduction in pain was observed in the treated patients, with the mean VAS decreasing from 5.95-1.64 (p < 0.001). The mean ABI value increased from 0.49-0.63 (p = 0.026) at 3-month follow-up. The mean TcPO(2) value on the dorsum of the foot, the anterior calf and posterior calf significantly increased from 28.25-39.28 mmHg (p = 0.012), from 22.00-30.63 mmHg (p = 0.046) and 32.05-47.19 mmHg (p = 0.001) at 3-month follow-up, respectively. Wound healing improvement was observed in the six of nine patients that had an ulcer at baseline. CONCLUSIONS These results support the performance of a phase II randomized controlled trial with pCK-HGF-X7.
Collapse
Affiliation(s)
- Yongquan Gu
- Vascular Surgery Department of Xuan Wu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|