1
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
2
|
Wu T, Huang C, Yao Y, Du Z, Liu Z. Suicide Gene Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Strategy for Cancer Therapy. Hum Gene Ther 2022; 33:1246-1259. [PMID: 36215248 DOI: 10.1089/hum.2022.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The treatment of malignant tumors has always been one of the challenges that have plagued researchers and clinicians. The ideal status in cancer treatment is to eliminate tumor cells while avoiding damage to normal tissues. Different approaches have been investigated to achieve such a goal, and suicide gene therapy has emerged as a novel mode of cancer treatment. This approach involves the delivery of genes encoding enzymes that activate non-toxic prodrugs into cytotoxic metabolites that cause the death of transfected cancer cells. Despite promising results obtained both in vitro and in vivo, this innovative approach has long been stalled in the clinic due to the lack of a suitable delivery system to introduce the suicide gene into cancer cells. Ultrasound-targeted microbubble destruction (UTMD) represents a valuable non-viral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents by increasing vascular and cell membrane permeability, especially in the presence of microbubbles. In this scenario, the true potential of suicide genes can be translated into clinically valuable treatments for patients. This review provides background information on suicide gene therapy and UTMD technology, summarizes the current state of knowledge about UTMD-mediated suicide gene delivery in cancer treatment, and presents an outlook on its future development.
Collapse
Affiliation(s)
- Tong Wu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Chi Huang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Yiran Yao
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhaolin Du
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| |
Collapse
|
3
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Elhelf IS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging 2018; 99:349-359. [DOI: 10.1016/j.diii.2018.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
5
|
Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm. Int J Med Microbiol 2017; 307:321-328. [DOI: 10.1016/j.ijmm.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/13/2017] [Accepted: 06/04/2017] [Indexed: 12/21/2022] Open
|
6
|
Maciulevičius M, Tamošiūnas M, Jakštys B, Jurkonis R, Venslauskas MS, Šatkauskas S. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2990-3000. [PMID: 27637933 DOI: 10.1016/j.ultrasmedbio.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R2 > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra.
Collapse
Affiliation(s)
| | | | | | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
7
|
Moncion A, Arlotta KJ, Kripfgans OD, Fowlkes JB, Carson PL, Putnam AJ, Franceschi RT, Fabiilli ML. Design and Characterization of Fibrin-Based Acoustically Responsive Scaffolds for Tissue Engineering Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:257-71. [PMID: 26526782 PMCID: PMC4666743 DOI: 10.1016/j.ultrasmedbio.2015.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 05/11/2023]
Abstract
Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors. Spatiotemporal patterns of growth factor signaling are critical for tissue regeneration, yet most scaffolds afford limited control of growth factor release, especially after implantation. We previously found that acoustic droplet vaporization can control growth factor release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, acoustic droplet vaporization and inertial cavitation thresholds ranged from 1.5 to 3.0 MPa and from 2.0 to 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying composition. Viability of C3H/10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus those with perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporally controlled release.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Keith J Arlotta
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul L Carson
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Keravnou CP, Izamis ML, Averkiou MA. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3001-3012. [PMID: 26320668 DOI: 10.1016/j.ultrasmedbio.2015.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound.
Collapse
Affiliation(s)
- Christina P Keravnou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Maria-Louisa Izamis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
9
|
Lee M, Lee EY, Lee D, Park BJ. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. SOFT MATTER 2015; 11:2067-79. [PMID: 25698443 DOI: 10.1039/c5sm00113g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbubbles with diameters ranging from a few micrometers to tens of micrometers have garnered significant attention in various applications including food processing, water treatment, enhanced oil recovery, surface cleaning, medical purposes, and material preparation fields with versatile functionalities. A variety of techniques have been developed to prepare microbubbles, such as ultrasonication, excimer laser ablation, high shear emulsification, membrane emulsification, an inkjet printing method, electrohydrodynamic atomization, template layer-by-layer deposition, and microfluidics. Generated bubbles should be immediately stabilized via the adsorption of stabilizing materials (e.g., surfactants, lipids, proteins, and solid particles) onto the gas-liquid interface to lower the interfacial tension. Such adsorption of stabilizers prevents coalescence between the microbubbles and also suppresses gas dissolution and resulting disproportionation caused by the presence of the Laplace overpressure across the gas-liquid interface. Herein, we comprehensively review three important topics of microbubbles: stabilization, fabrication, and applications.
Collapse
Affiliation(s)
- Mina Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin, 446-701, South Korea.
| | | | | | | |
Collapse
|
10
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|
11
|
Lattin JR, Pitt WG. Factors affecting ultrasonic release from eLiposomes. J Pharm Sci 2015; 104:1373-84. [PMID: 25641709 DOI: 10.1002/jps.24344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 11/07/2022]
Abstract
Liposomes containing emulsion droplets (eLiposomes) were studied as ultrasound-responsive liposomal drug carriers. This paper presents the effects of temperature, eLiposome size, and ultrasound parameters on the ultrasonically actuated release of calcein, to test hypotheses concerning the physics of acoustic droplet vaporization with regard to vapor pressure and Laplace pressure. Small (200 nm) eLiposomes containing 100-nm emulsion droplets were formed and compared with large (800 nm) eLiposomes containing 100- or 450-nm droplets. Calcein release was quantified by spectroscopic methods. Various experiments examined the influence of perfluorocarbon (PFC) droplet size, vesicle size, temperature, PFC composition and vapor pressure, insonation time, and insonation frequency. Results showed that eLiposome samples released significantly more calcein than their conventional liposome counterparts. Surprisingly, temperature (which directly controls vapor pressure) did not have a strong effect on ultrasound-induced calcein release. In general, calcein release decreased with decreasing droplet size, as hypothesized based on Laplace pressure. Release decreased with increased ultrasound frequency if the pressure amplitude and exposure time were maintained constant, indicating that the gas-phase nucleation rate may have an important role in rupture of eLiposomes. Interestingly, when ultrasound of the same mechanical index was applied at two frequencies, the amount of release correlated strongly with the mechanical index.
Collapse
Affiliation(s)
- James R Lattin
- Chemical Engineering Department, Brigham Young University, Provo, Utah, 84602
| | | |
Collapse
|
12
|
Keravnou CP, Mannaris C, Averkiou MA. Accurate measurement of microbubble response to ultrasound with a diagnostic ultrasound scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:176-184. [PMID: 25585401 DOI: 10.1109/tuffc.2014.006664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultrasound and microbubbles are often used to enhance drug delivery and the suggested mechanisms are extravasation and sonoporation. Drug delivery schemes with ultrasound and microbubbles at both low and high acoustic amplitudes have been suggested. A diagnostic ultrasound scanner may play a double role as both an imaging and a therapy device. It was not possible to accurately measure microbubble response with an ultrasound scanner for a large range of acoustic pressures and microbubble concentrations until now, mainly because of signal saturation issues. A method for continuously adjusting the receive gain of a scanner and limiting signal saturation was developed to accurately measure backscattered echoes from microbubbles for mechanical indexes (MIs) up to 2.1. The intensity of backscattered echoes from microbubbles increased quarticly with MI without reaching any limit. The signal intensity from microbubbles was found to be linear with concentration at both low and high MIs. However, at very high concentrations, acoustic shadowing occurs which limits the delivered acoustic pressure in deeper areas. The contrastto- tissue ratio was also measured and found to stay constant with MI. These results can be used to better guide drug delivery approaches and to also develop imaging techniques for therapy procedures.
Collapse
|
13
|
Li F, Jin L, Wang H, Wei F, Bai M, Shi Q, Du L. The dual effect of ultrasound-targeted microbubble destruction in mediating recombinant adeno-associated virus delivery in renal cell carcinoma: transfection enhancement and tumor inhibition. J Gene Med 2014; 16:28-39. [PMID: 24464622 DOI: 10.1002/jgm.2755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) is recognized as a promising vector for cancer gene therapy, although its low transfer efficiency in less permissive cells limits extensive application. Our previous studies reported that ultrasound-targeted microbubble (MB) destruction (UTMD) enhanced rAAV transfer in its permissive retinal cells. In the present study, we investigated whether UTMD increased rAAV transfer in less permissive human renal cell carcinoma (hRCC) cells and tumors. METHODS hRCC cells were treated with rAAV2 under different conditions of UTMD, and the viral transfer efficiency and cell viability were analyzed. Fifty-two male nude mice (BALB/c) implanted with hRCC cells were randomly assigned to four groups consisting of rAAV, rAAV + ultrasound and rAAV + UTMD (20 µl and 40 µl of MBs). UTMD was initiated immediately after intratumoral viral injection, and viral transfer efficiency and tumor volumes were analyzed at 12 weeks after infection. RESULTS The efficiency of non-augmented transfer of rAAV2 into hRCC cells was low (17.28 ± 2.44%). The use of UTMD enhanced viral transfer efficiency by two- to three-fold, and enhanced viral genomic DNA by more than nine-fold, without decreasing cell viability. In vivo studies also showed that UTMD increased rAAV2 transfer in tumor. The enhancements were maintained for a period of 12 weeks. Tumor growth in mice was inhibited by UTMD treatment, and UTMD treatment augmented by MBs (40 µl) produced an even stronger effect. CONCLUSIONS UTMD enhanced rAAV2 transfer into less permissive RCC cells and tumors, resulting in inhibition of tumor growth, which suggests that UTMD may be a useful delivery tool for cancer gene therapy.
Collapse
Affiliation(s)
- Fan Li
- Department of Ultrasound, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sun RR, Noble ML, Sun SS, Song S, Miao CH. Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery. J Control Release 2014; 182:111-20. [PMID: 24650644 DOI: 10.1016/j.jconrel.2014.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application.
Collapse
Affiliation(s)
- Ryan R Sun
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Misty L Noble
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Samuel S Sun
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Shuxian Song
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA; Dept. of Pediatrics, University of Washington, Seattle, USA.
| |
Collapse
|
15
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
16
|
A novel plasmid and SonoVue formulation plus ultrasound sonication for effective gene delivery in nude mice. Life Sci 2013; 93:536-42. [DOI: 10.1016/j.lfs.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/13/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
|
17
|
Lepetit-Coiffé M, Yudina A, Poujol C, de Oliveira PL, Couillaud F, Moonen CTW. Quantitative Evaluation of Ultrasound-Mediated Cellular Uptake of a Fluorescent Model Drug. Mol Imaging Biol 2013; 15:523-33. [DOI: 10.1007/s11307-013-0615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Paproski RJ, Yao SYM, Favis N, Evans D, Young JD, Cass CE, Zemp RJ. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake. PLoS One 2013; 8:e56423. [PMID: 23441192 PMCID: PMC3575408 DOI: 10.1371/journal.pone.0056423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023] Open
Abstract
Gemcitabine is a hydrophilic clinical anticancer drug that requires nucleoside transporters to cross plasma membranes and enter cells. Pancreatic adenocarcinomas with low levels of nucleoside transporters are generally resistant to gemcitabine and are currently a clinical problem. We tested whether transfection of human concentrative nucleoside transporter 3 (hCNT3) using ultrasound and lipid stabilized microbubbles could increase gemcitabine uptake and sensitivity in HEK293 cells made nucleoside transport deficient by pharmacologic treatment with dilazep. To our knowledge, no published data exists regarding the utility of using hCNT3 as a therapeutic gene to reverse gemcitabine resistance. Our ultrasound transfection system - capable of transfection of cell cultures, mouse muscle and xenograft CEM/araC tumors - increased hCNT3 mRNA and 3H-gemcitabine uptake by >2,000– and 3,400–fold, respectively, in dilazep-treated HEK293 cells. Interestingly, HEK293 cells with both functional human equilibrative nucleoside transporters and hCNT3 displayed 5% of 3H-gemcitabine uptake observed in cells with only functional hCNT3, suggesting that equilibrative nucleoside transporters caused significant efflux of 3H-gemcitabine. Efflux assays confirmed that dilazep could inhibit the majority of 3H-gemcitabine efflux from HEK293 cells, suggesting that hENTs were responsible for the majority of efflux from the tested cells. Oocyte uptake transport assays were also performed and provided support for our hypothesis. Gemcitabine uptake and efflux assays were also performed on pancreatic cancer AsPC-1 and MIA PaCa-2 cells with similar results to that of HEK293 cells. Using the MTS proliferation assay, dilazep-treated HEK293 cells demonstrated 13-fold greater resistance to gemcitabine compared to dilazep-untreated HEK293 cells and this resistance could be reversed by transfection of hCNT3 cDNA. We propose that transfection of hCNT3 cDNA using ultrasound and microbubbles may be a method to reverse gemcitabine resistance in pancreatic tumors that have little nucleoside transport activity which are resistant to almost all current anticancer therapies.
Collapse
Affiliation(s)
- Robert J. Paproski
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Y. M. Yao
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Favis
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James D. Young
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Carol E. Cass
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Dong Y, Chen S, Wang Z, Peng N, Yu J. Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm. J Antimicrob Chemother 2012; 68:816-26. [PMID: 23248238 DOI: 10.1093/jac/dks490] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Device-associated biofilm infections primarily caused by Staphylococcus epidermidis are difficult to treat effectively with conventional antibiotics. The aim of this study was to investigate the anti-biofilm effect of ultrasound-mediated microbubbles combined with vancomycin and to explore underlying mechanisms. METHODS Twenty-four hour S. epidermidis biofilms were established in OptiCell(TM) chambers to facilitate ultrasound exposure. Microbubbles were prepared and diluted to concentrations of 1% and 4% (v/v). Ultrasound was applied for 5 min at 300 kHz and 0.5 W/cm(2), with a 50% duty cycle. Vancomycin at the peak serum concentration of 32 mg/L was used on preformed biofilms for 24 h. Antibiotic susceptibility tests were conducted on biofilms to confirm the synergy between ultrasound and vancomycin. Biofilms exposed to ultrasound-mediated microbubbles combined with vancomycin were subjected to plate counting and microscopic examinations. A vancomycin penetration test was also performed. RESULTS Ultrasound and ultrasound-mediated microbubbles both enhanced biofilm susceptibility to vancomycin. Ultrasound-mediated microbubbles without vancomycin could exert a bactericidal effect on biofilms. A bubble dose-dependent bioeffect was also observed. In the presence of vancomycin, biofilms exposed to ultrasound-mediated microbubbles exhibited significantly more micropores and more reduction in biofilm thickness than other treatment groups (P<0.05). The transportation of vancomycin through S. epidermidis biofilms was significantly enhanced by ultrasound, and microbubbles could further increase biofilm permeability to vancomycin. CONCLUSIONS Ultrasound-mediated microbubbles may provide an efficient and non-invasive alternative to treat device-related biofilm infections. Future research is needed to optimize ultrasound parameters and microbubble concentrations so that this technology can be both effectively and safely applied in clinical practice.
Collapse
Affiliation(s)
- Ying Dong
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | | | | | | | | |
Collapse
|
21
|
Saliba Y, Mougenot N, Jacquet A, Atassi F, Hatem S, Farès N, Lompré AM. A new method of ultrasonic nonviral gene delivery to the adult myocardium. J Mol Cell Cardiol 2012; 53:801-8. [DOI: 10.1016/j.yjmcc.2012.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/27/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
22
|
Lattin JR, Pitt WG, Belnap DM, Husseini GA. Ultrasound-induced calcein release from eLiposomes. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2163-73. [PMID: 23062373 DOI: 10.1016/j.ultrasmedbio.2012.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 05/25/2023]
Abstract
Ultrasound is explored as a method of inducing the release of encapsulated materials from eLiposomes, defined as liposomes containing emulsion droplets. Emulsions were formed using perfluorohexane and perfluoropentane. eLiposomes were formed by folding interdigitated lipid sheets into closed vesicles around the emulsion droplets. Cryogenic transmission electron microscopy was used to verify droplet encapsulation. Self-quenched calcein was also encapsulated inside the vesicles. A fluorometer was used to measure baseline fluorescence, calcein release after ultrasound exposure, and total release from the vesicles. eLiposome samples released 3 to 5 times more of the encapsulated calcein than did controls when exposed to 20-kHz ultrasound. Calcein release increased with exposure time and intensity of ultrasound. eLiposomes with large (400 nm) droplets produced more calcein release than small (100 nm) droplets. These observations suggest that the emulsions are vaporized by ultrasound and that the Laplace pressure in the emulsions has an effect on droplet vaporization.
Collapse
Affiliation(s)
- James R Lattin
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | | | | | | |
Collapse
|
23
|
Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203969 DOI: 10.1152/ajpheart.00265.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential clinical value of developing a novel, nonviral, ultrasound-directed gene and drug delivery system is immense. Investigators soon will initiate clinical trials with the goal of treating a wide variety of maladies using noninvasive, ultrasound-based technology. The ongoing, scientific validation associated with promising preclinical success portents a novel range of therapeutics. The clinical utility and eventual clinical successes await vigorous testing. This review highlights the recent successes and challenges within the field of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jason Castle
- General Electric Global Research, Niskayuna, New York, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mannaris C, Averkiou MA. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:681-91. [PMID: 22341047 DOI: 10.1016/j.ultrasmedbio.2011.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 05/05/2023]
Abstract
In current drug delivery approaches, microbubbles and drugs can be co-administered while ultrasound is applied. The mechanism of microbubble interaction with ultrasound, the drug and the cells is not fully understood. The aim of this study was to investigate microbubble response to long ultrasonic pulses used in drug delivery approaches. Two different in vitro set-ups were considered: with the microbubbles diluted in an enclosure and with the microbubbles flowing in a capillary tube. Acoustic streaming, which influences the observed bubble response, was observed in "typical" drug delivery conditions in the first set-up. With the capillary set-up, streaming effects were avoided and accurate bubble responses were recorded. The diffraction pattern of the source greatly influences the bubble response and in different locations of the field different bubble responses are observed. At low nondestructive pressures, microbubbles can oscillate for thousands of cycles repeatedly. At high acoustic pressures (at 1 MHz), most bubble activity disappeared within about 100 μs despite the length of the pulse, mainly due to violent bubble destruction and subsequent accelerated diffusion.
Collapse
|
25
|
Hensel K, Mienkina MP, Schmitz G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2105-15. [PMID: 22107908 DOI: 10.1016/j.ultrasmedbio.2011.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 05/24/2023]
Abstract
Ultrasound is an established therapy method for bone fracture healing, hyperthermia and the ablation of solid tumors. In this new emerging field, ultrasound is further used for microbubble-enhanced drug delivery, gene therapy, sonoporation and thrombolysis. To study selected therapeutic effects in defined experimental conditions, in vitro setups are designed for cell and tissue therapy. However, in vitro studies often lack reproducibility and the successful transfer to other experimental conditions. This is partly because of the uncertainty of the experimental conditions in vitro. In this paper, the ultrasound wave propagation in the most common in vitro ultrasound therapy setups for cell culture wells is analyzed in simulations and verified by hydrophone measurements. The acoustic parameters of the materials used for culture plates and growth media are determined. The appearance and origin of standing waves and ring interference patterns caused by reflections at interfaces is revealed in simulations and measurements. This causes a local maximal pressure amplitude increase by up to the factor of 5. Minor variations of quantities (e.g., growth medium volume variation of 2.56%) increase or decrease the peak rarefaction pressure at a cell layer by the factor of 2. These pressure variations can affect cell therapy results to a large extent. A sealed cell culture well submersed in a water bath provides the best reproducibility and therefore promises transferable therapy results.
Collapse
Affiliation(s)
- Karin Hensel
- Faculty of Electrical Engineering and Information Technology, Ruhr-Universitaet Bochum, Germany
| | | | | |
Collapse
|
26
|
Site-specific sonoporation of human melanoma cells at the cellular level using high lateral-resolution ultrasonic micro-transducer arrays. Biosens Bioelectron 2011; 27:25-33. [PMID: 21783355 DOI: 10.1016/j.bios.2011.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/23/2022]
Abstract
We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly-confined ultrasonic waves produced by high lateral-resolution ultrasonic micro-transducer arrays (UMTAs). The method enables cellular-level site-specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30-MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic-acid-derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer-generated ultrasound radiation pressure, the ultrasound-inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound-pressure-dependent wound size and enhanced cellular uptake of nanoparticles. Model-based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound-induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post-sonoporation intracellular quantum-dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ∼0.12 MPa.
Collapse
|
27
|
Abstract
Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.
Collapse
Affiliation(s)
- Sheeba Alam
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | |
Collapse
|
28
|
Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA. Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1470-80. [PMID: 20800174 PMCID: PMC2930891 DOI: 10.1016/j.ultrasmedbio.2010.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/27/2010] [Accepted: 06/12/2010] [Indexed: 05/11/2023]
Abstract
We investigated a method for gene delivery to vascular smooth muscle cells using ultrasound triggered delivery of plasmid DNA from electrostatically coupled cationic microbubbles. Microbubbles carrying reporter plasmid DNA were acoustically ruptured in the vicinity of smooth muscle cells in vitro under a range of acoustic pressures (0 to 950 kPa) and pulse durations (0 to 100 cycles). No effect on gene transfection or viability was observed from application of microbubbles, DNA or ultrasound alone. Microbubbles in combination with ultrasound (500-kPa, 1-MHz, 50-cycle bursts at a pulse repetition frequency [PRF] of 100 Hz) significantly reduced viability both with DNA (53 +/- 27%) and without (19 +/- 8%). Maximal gene transfection ( approximately 1% of cells) occurred using 50-cycle, 1-MHz pulses at 300 kPa, which resulted in 40% viability of cells. We demonstrated that we can locally deliver DNA to vascular smooth muscle cells in vitro using microbubble carriers and focused ultrasound.
Collapse
Affiliation(s)
- Linsey C. Phillips
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Alexander L. Klibanov
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA
| | - Brian R. Wamhoff
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - John A. Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
29
|
Phillips LC, Klibanov AL, Bowles DK, Ragosta M, Hossack JA, Wamhoff BR. Focused in vivo delivery of plasmid DNA to the porcine vascular wall via intravascular ultrasound destruction of microbubbles. J Vasc Res 2009; 47:270-4. [PMID: 19923850 PMCID: PMC2865392 DOI: 10.1159/000258905] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 08/04/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Safety concerns associated with drug-eluting stents have spurred interest in alternative vessel therapeutics following angioplasty. Microbubble contrast agents have been shown to increase gene transfection in vivo in the presence of ultrasound. OBJECTIVES/METHODS The purpose of this study was to determine whether an intravascular ultrasound (IVUS) catheter could mediate plasmid DNA transfection from microbubble carriers to the porcine coronary artery wall following balloon angioplasty. RESULTS In the presence of plasmid-coupled microbubbles in vitro only cells exposed to ultrasound from the modified IVUS catheter significantly expressed the transgene. A porcine left anterior descending coronary artery underwent balloon angioplasty followed by injection and insonation of microbubbles from the IVUS catheter at the site of angioplasty. After 3 days, an approximately 6.5-fold increase in transgene expression was observed in arteries that received microbubbles and IVUS compared to those that received microbubbles with no IVUS. CONCLUSIONS The results of this study demonstrate for the first time that IVUS is required to enhance gene transfection from microbubble carriers to the vessel wall in vivo. This technology may be applied to both drug and gene therapy to reduce vessel restenosis.
Collapse
Affiliation(s)
- Linsey C. Phillips
- Biomedical Engineering, University of Virginia, Charlottesville, Va., USA
| | - Alexander L. Klibanov
- Biomedical Engineering, University of Virginia, Charlottesville, Va., USA
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Va., USA
| | - Douglas K. Bowles
- Department of Biomedical Sciences, University of Missouri, Columbia, Mo., USA
| | - Michael Ragosta
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Va., USA
| | - John A. Hossack
- Biomedical Engineering, University of Virginia, Charlottesville, Va., USA
| | - Brian R. Wamhoff
- Biomedical Engineering, University of Virginia, Charlottesville, Va., USA
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Va., USA
| |
Collapse
|
30
|
Zheng XZ, Li HL, Du LF, Wang HP, Gu Q. Comparative analysis of gene transfer to human and rat retinal pigment epithelium cell line by a combinatorial use of recombinant adeno- associated virus and ultrasound or/and microbubbles. Bosn J Basic Med Sci 2009; 9:174-81. [PMID: 19754469 DOI: 10.17305/bjbms.2009.2802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-targeted microbubble destruction has been utilized to deliver a drug/gene into cells in both in vitro and in vivo studies. This work was performed to investigate the feasibility of gene transfer to human retinal pigment epithelium cell line(ARPE-19) and rat retinal pigment epithelium cell line(RPE-J) by a combinatorial use of recombinant adeno-associated virus (rAAV) and ultrasound (US) or/and microbubbles (MBs) and compare the difference between them. Different doses of serotype 2 rAAV encoding a enhanced green fluorescent protein (rAAV2-EGFP) gene and MBs was administered to ARPE-19 and RPE-J cells under different US conditions. Transfection efficiency and cell viability were assessed by fluorescence microscopy, flow cytometry (FCM) analysis, trypan blue staining. The results indicated that US and MBs could respectively improve rAAV2-mediated gene transfer to RPE-J cells, but neither US nor MBs could do so in ARPE-19 cells. US plus MBs could significantly enhance rAAV2-mediated gene transfer to ARPE-19 cells, however, the same effects were not seen in RPE-J cells. These findings demonstrated it is not always coincident that US, MBs and US plus MBs exert the similar effects on gene transfer in vitro RPE cells. So, it is necessary to choose appropriate RPE cell line for the study of US or/and MBs-mediated rAAV gene transfer in retinal gene therapy.
Collapse
Affiliation(s)
- Xiao-Zhi Zheng
- Department of Medical Ultrasound, Shanghai Jiaotong University Affiliated First People's Hospital, China
| | | | | | | | | |
Collapse
|
31
|
Tsai KC, Fang SY, Yang SJ, Shieh MJ, Lin WL, Chen WS. Time dependency of ultrasound-facilitated gene transfection. J Gene Med 2009; 11:729-36. [DOI: 10.1002/jgm.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 2009; 47:893-900. [DOI: 10.1007/s11517-009-0507-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
|
33
|
Affiliation(s)
- Eric C Pua
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27705, USA
| | | |
Collapse
|
34
|
Microvascular free tissue transfer for gene delivery: in vivo evaluation of different routes of plasmid and adenoviral delivery. Gene Ther 2008; 16:78-92. [PMID: 18784747 DOI: 10.1038/gt.2008.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transfer of healthy autologous tissue as a microvascular free flap facilitates reconstruction during ablative cancer surgery. In addition to filling surgical defects, free flaps might concentrate viral vectors at the tumour bed and mediate local therapeutic effects. We evaluated the magnitude, topography and duration of luciferase gene expression after plasmid and adenoviral delivery in rat superficial inferior epigastric (SIE) flaps. For plasmid delivery, luciferase expression was significantly increased by all transduction routes (topical, intraflap injection, intravascular) (P<0.01) at day 1, but not at day 7. The spread of luciferase expression was significantly different between the 4 groups at 1 day (P=0.026) and was greatest for flaps transduced by intravascular injection. For adenoviral transduction, total radiance was significantly different between the transduced groups at 1, 14 and 28 days (P<0.05 for all comparisons). The highest levels of radiance were seen in the intravascular group. There was a statistically significant difference in the spread of light emission between the 3 groups at 1 (P=0.009) and 14 (P=0.013) days, but this was no longer evident at 28 days. Intravascular adenoviral delivery yields high-level, diffuse and durable gene expression in rat SIE flaps and is suitable for examination in therapeutic models.
Collapse
|
35
|
de Carvalho LP, Takeshita D, Carillo BA, Lisbôa BCG, Molina G, Beutel A, Yasumura EG, Takiya CM, Valero VB, de Campos, Jr. RR, Dohmann HF, Han SW. Hydrodynamics- and Ultrasound-Based Transfection of Heart with Naked Plasmid DNA. Hum Gene Ther 2007; 18:1233-43. [DOI: 10.1089/hum.2007.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Leonardo Pinto de Carvalho
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
- PROCEP, ProCardiaco Hospital, Rio de Janeiro-RJ, 22280-000, Brazil
| | - Daniela Takeshita
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
| | - Bruno A. Carillo
- Department of Physiology, Federal University of São Paulo, São Paulo-SP, 04023-062, Brazil
| | - Bianca Cristina Garcia Lisbôa
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
| | - Gustavo Molina
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
| | - Abram Beutel
- Department of Physiology, Federal University of São Paulo, São Paulo-SP, 04023-062, Brazil
| | - Eduardo Gallatti Yasumura
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
| | - Christina Maeda Takiya
- Department of Histopathology, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, 21949-900, Brazil
| | - Valderez Bastos Valero
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
| | | | | | - Sang Won Han
- Interdisciplinary Center for Gene Therapy (CINTERGEN), Federal University of São Paulo, São Paulo-SP, 04044-010, Brazil
- Department of Biophysics, Federal University of São Paulo, São Paulo-SP, 04023-062, Brazil
| |
Collapse
|
36
|
Abstract
Interest in microbubbles as vehicles for drug delivery has grown in recent years, due in part to characteristics that make them well suited for this role and in part to the need the for localized delivery of drugs in a number of applications. Microbubbles are inherently small, allowing transvascular passage, they can be functionalized for targeted adhesion, and can be acoustically driven, which facilitates ultrasound detection, production of bioeffects and controlled release of the cargo. This article provides an overview of related microbubble biofluid mechanics and reviews recent developments in the application of microbubbles for targeted drug delivery. Additionally, related advances in non-bubble microparticles for drug delivery are briefly described in the context of targeted adhesion.
Collapse
Affiliation(s)
- Joseph L Bull
- The University of Michigan, Department of Biomedical Engineering, 2142 Lurie Biomedical Engineering Building, 1107 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Taylor SL, Rahim AA, Bush NL, Bamber JC, Porter CD. Targeted retroviral gene delivery using ultrasound. J Gene Med 2007; 9:77-87. [PMID: 17310476 DOI: 10.1002/jgm.1003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration.
Collapse
Affiliation(s)
- Sarah L Taylor
- The Institute of Cancer Research, Section of Cell and Molecular Biology, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
38
|
Kinoshita M, Hynynen K. Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation. Biochem Biophys Res Commun 2007; 359:860-5. [PMID: 17568561 PMCID: PMC4012532 DOI: 10.1016/j.bbrc.2007.05.153] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 11/19/2022]
Abstract
Ultrasound-induced intracellular drug delivery, sonoporation, is an appealing and promising technique for next generation drug delivery system. Many types of molecules, such as plasmid DNAs, siRNAs and peptides, have been demonstrated to be delivered into the cell by ultrasound with the aid of microbubbles both in vitro and in vivo. Although there are many reports on in vitro sonoporation, the efficiency of successful sonoporation and the viabilities of cells after the procedure documented in each report vary in a wide range, and the reasons for these differences are not fully understood. In this study, we have investigated how different experimental settings would affect sonoporation efficiency and cell viabilities after the procedure. Our results show that the fashion of cell culture (e.g. in suspension or in monolayer culture) and the presence of standing wave have a great impact on the overall results. These results indicate that in vitro sonoporation settings should be carefully evaluated in each experiment. The fact that standing wave is necessary to achieve high sonoporation efficiency may be a problematic issue for clinical application of sonoporation, as it may be difficult (although not impossible) to create standing wave in a human body.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Abstract
Ultrasound exposure (USE) in the presence of microbubbles (MCB) (e.g. contrast agents used to enhance ultrasound imaging) increases plasmid transfection efficiency in vitro by several orders of magnitude. Formation of short-lived pores in the plasma membrane ('sonoporation'), up to 100 nm in effective diameter lasting a few seconds, is implicated as the dominant mechanism, associated with acoustic cavitation. Ultrasound enhanced gene transfer (UEGT) has also been successfully achieved in vivo, with reports of spatially restricted and therapeutically relevant levels of transgene expression. Loading MCB with nucleic acids and/or disease-targeting ligands may further improve the efficiency and specificity of UEGT such that clinical testing becomes a realistic prospect.
Collapse
Affiliation(s)
- C M H Newman
- Cardiovascular Research Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|