1
|
Bidikian A, Bewersdorf JP, Kewan T, Stahl M, Zeidan AM. Acute Promyelocytic Leukemia in the Real World: Understanding Outcome Differences and How We Can Improve Them. Cancers (Basel) 2024; 16:4092. [PMID: 39682277 DOI: 10.3390/cancers16234092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has revolutionized the treatment of acute promyelocytic leukemia (APL), resulting in excellent rates of remission and long-term survival. However, real-world outcomes often fall short of those observed in clinical trials due to various factors related to patient demographics and clinical practices. This review examines APL treatment outcomes in real-world settings and highlights the phenomenon of APL clusters. Clinical trials frequently exclude older patients and individuals with significant comorbidities, yet these groups represent a substantial portion of patients in clinical practice. Early mortality remains high in real-world settings, compounded by delayed diagnosis and treatment initiation, as well as the inexperience of some community providers and limited resources of their centers in managing APL and its associated complications. High rates of disease and induction-related complications further exacerbate early mortality. Continuous education and collaboration between community healthcare centers and expert institutions are essential, and international partnerships between resource-limited settings and expert centers can improve global APL outcomes. Ongoing monitoring for measurable residual disease (MRD) recurrence and long-term treatment toxicity, coupled with comprehensive patient evaluations, and experienced management, can enhance long-term outcomes. The clustered incidence of APL, while frequently reported, remains poorly understood. Regular reporting of these clusters could provide valuable insights into disease pathology and aid in developing predictive models for APL incidence, which would guide future resource allocation.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Yale School of Medicine, Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Jan Philipp Bewersdorf
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine, Yale Comprehensive Cancer Center, New Haven, CT 06510, USA
| | - Tariq Kewan
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine, Yale Comprehensive Cancer Center, New Haven, CT 06510, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amer M Zeidan
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine, Yale Comprehensive Cancer Center, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Foster D, Nair HK, Robbins K, Rajeh N. Therapy-Related Acute Promyelocytic Leukemia: A Case Report and a Review of Literature. Cureus 2023; 15:e42008. [PMID: 37593318 PMCID: PMC10429419 DOI: 10.7759/cureus.42008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a subgroup of acute myeloid leukemia (AML), and while not a common form of cancer, it does make up a modest portion of acute leukemia. The genetic hallmark of APL is the t(15;17)(q24.1;q21.2) promyelocytic leukemia/retinoic acid receptor alpha (PML/RARA) protein. We present the case of a patient who had undergone prior therapy for stage IIIC squamous cell carcinoma of the anorectal region with 5-fluorouracil, mitomycin C, and radiation and developed therapy-related acute promyelocytic leukemia about 18 months later. We also review the clinical features and management of APL while also highlighting that therapy-related APL, although uncommon, can develop from chemoradiation. The specific diagnosis of therapy-related APL is its own distinct diagnosis, but its treatment remains the same as primary APL.
Collapse
Affiliation(s)
- Dawson Foster
- Internal Medicine, St. Luke's Hospital, Chesterfield, USA
| | - Hari K Nair
- Hematology Oncology, Saint Louis University School of Medicine, St. Louis, USA
| | - Katherine Robbins
- Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - Nabeel Rajeh
- Internal Medicine-Oncology, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
3
|
Kincaid JWR, Weiss G, Hill-Baskin AE, Schmidt HM, Omoijuanfo O, Thompson CL, Beck RC, Berger NA. Obesity accelerates acute promyelocytic leukemia in mice and reduces sex differences in latency and penetrance. Obesity (Silver Spring) 2022; 30:1420-1429. [PMID: 35610936 PMCID: PMC9256765 DOI: 10.1002/oby.23435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Obesity has emerged as a prominent risk factor for multiple serious disease states, including a variety of cancers, and is increasingly recognized as a primary contributor to preventable cancer risk. However, few studies of leukemia have been conducted in animal models of obesity. This study sought to characterize the impact of obesity, diet, and sex in a murine model of acute promyelocytic leukemia (APL). METHODS Male and female C57BL/6J.mCG+/PR mice, genetically predisposed to sporadic APL development, and C57BL/6J (wild type) mice were placed on either a high-fat diet (HFD) or a low-fat diet (LFD) for up to 500 days. RESULTS Relative to LFD-fed mice, HFD-fed animals displayed increased disease penetrance and shortened disease latency as indicated by accelerated disease onset. In addition, a diet-responsive sex difference in APL penetrance and incidence was identified, with LFD-fed male animals displaying increased penetrance and shortened latency relative to female counterparts. In contrast, both HFD-fed male and female mice displayed 100% disease penetrance and insignificant differences in disease latency, indicating that the sexual dimorphism was reduced through HFD feeding. CONCLUSIONS Obesity and obesogenic diet promote the development of APL in vivo, reducing sexual dimorphisms in disease latency and penetrance.
Collapse
Affiliation(s)
- John W R Kincaid
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gretchen Weiss
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anne E Hill-Baskin
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Heidi M Schmidt
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ovwoioise Omoijuanfo
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rose C Beck
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan A Berger
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Medicine, Biochemistry, Genetics, and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Brazel D, Kumar P, Benjamin DJ, Brem E. Eponyms in Malignant Hematology. Cancer Treat Res Commun 2022; 32:100594. [PMID: 35835706 DOI: 10.1016/j.ctarc.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Eponyms have been traditionally used in the field of medicine to honor the contributions of an individual or group of individuals in understanding a disease. However, many eponyms have come under scrutiny given the personal backgrounds of individuals for whom they intend to honor. As we previously reviewed commonly used eponyms in medical oncology, we now aim to review commonly used eponyms in malignant hematology in order to highlight the individuals for whom they are named after. In this review, we discuss the pathophysiology of each disease, epidemiology, and the historical background for the individual or individuals for which the eponym honors.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California, Irvine Medical Center, Orange, California, United States.
| | - Priyanka Kumar
- Department of Medicine, University of California, Irvine Medical Center, Orange, California, United States
| | - David J Benjamin
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine Medical Center, Orange, California, United States.
| | - Elizabeth Brem
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine Medical Center, Orange, California, United States
| |
Collapse
|
5
|
Marley AR, Domingues A, Ghosh T, Turcotte LM, Spector LG. Maternal BMI, Diabetes, and Gestational Weight Gain and Risk for Pediatric Cancer in Offspring: A Systematic Review and Meta-Analysis. JNCI Cancer Spectr 2022; 6:6537542. [PMID: 35603850 PMCID: PMC8982388 DOI: 10.1093/jncics/pkac020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pediatric cancer incidence has steadily increased concurrent with rising adult obesity, but associations between maternal obesity and associated comorbidities and pediatric cancer risk remain understudied. We aimed to quantitatively characterize associations of pediatric cancer risk with maternal prepregnancy body mass index (BMI), gestational weight gain, and maternal diabetes. Methods We performed a comprehensive and systematic literature search in Ovid and EMBASE from their inception to March 15, 2021. Eligible studies reported risk estimates and sample sizes and provided sufficient description of outcome and exposure ascertainment. Random effects models were used to estimate pooled effects. Results Thirty-four studies were included in the analysis. Prepregnancy BMI was positively associated with leukemia risk in offspring (odds ratio [OR] per 5-unit BMI increase =1.07, 95% confidence intervals [CI] = 1.04 to 1.11; I2 = 0.0%). Any maternal diabetes was positively associated with acute lymphoblastic leukemia risk (OR = 1.46, 95% CI = 1.28 to 1.67; I2 = 0.0%), even after restricting to birthweight-adjusted analyses (OR = 1.74, 95% CI = 1.29 to 2.34; I2 = 0.0%), and inversely associated with risk of central nervous system tumors (OR = 0.73, 95% CI = 0.55 to 0.97; I2 = 0.0%). Pregestational diabetes (OR = 1.57, 95% CI = 1.11 to 2.24; I2 = 26.8%) and gestational diabetes (OR = 1.40, 95% CI = 1.12 to 1.75; I2 = 0.0%) were also positively associated with acute lymphoblastic leukemia risk. No statistically significant associations were observed for gestational weight gain. Conclusions Maternal obesity and diabetes may be etiologically linked to pediatric cancer, particularly leukemia and central nervous system tumors. Our findings support weight management and glycemic control as important components of maternal and offspring health. Further validation is warranted.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Allison Domingues
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Taumoha Ghosh
- Division of Hematology/Oncology, Department of Pediatrics, University of Miami, Miami, FL, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Logan G Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|