1
|
Eleftherakos K, Polymeni RM, Mikropoulou EV, Vougogiannopoulou K, Georgiadis C, Petrakis EA, Skaltsounis LA, Halabalaki M. A skin secretion metabolome analysis of the Greek Dodecanese Lycian salamanders: Preliminary evidence of dietary alkaloid sequestration in urodeles. PLoS One 2024; 19:e0300278. [PMID: 39208286 PMCID: PMC11361651 DOI: 10.1371/journal.pone.0300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/25/2024] [Indexed: 09/04/2024] Open
Abstract
Lyciasalamandra species, like most amphibians, secrete a wide array of compounds from their granular and mucous skin glands, including the internally synthesized samandarine alkaloids, making their skin a complex organ performing a variety of functions. Lyciasalamandra helverseni and L. luschani basoglui are insular endemics of the Dodecanese islands of SE Greece, bearing distinct isolated populations, with well-documented phylogenetic profiles. Here, we employ a metabolomics approach, utilizing UPLC-ESI-HRMS/MS data of the skin secretions sampled from a number of specimens found in the islands of Karpathos, Kasos and Kastellorizo, in an effort to reveal aspects of their chemistry and diversity across populations. The results indicated statistically significant variation between all taxa examined, based on various secreted compounds. The underlying factors of variation highlighted by the multivariate analysis were differences in samandarine and other alkaloid content as well as in animal size. Metabolite annotation, based on dereplication tools and most importantly HRMS and HRMS/MS spectra, yielded a number of known samandarine alkaloids, reported for the first time in the currently studied Lyciasalamandra species. We also present documentation for novel members of the samandarine alkaloid family, as well as preliminary evidence for a possible dietary alkaloid sequestration. This work can set the basis for further research of this often-neglected endemic species of the Salamandridae, as well as the structural investigation of the samandarine alkaloid group.
Collapse
Affiliation(s)
- Karolos Eleftherakos
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Roza Maria Polymeni
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Georgiadis
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A. Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
3
|
DE Meester G, Šunje E, Prinsen E, Verbruggen E, VAN Damme R. Toxin variation among salamander populations: discussing potential causes and future directions. Integr Zool 2020; 16:336-353. [PMID: 32965720 DOI: 10.1111/1749-4877.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians produce defensive chemicals which provide protection against both predators and infections. Within species, populations can differ considerably in the composition and amount of these chemical defenses. Studying intraspecific variation in toxins and linking it to environmental variables may help us to identify the selective drivers of toxin evolution, such as predation pressure and infection risk. Recently, there has been a renewed interest in the unique toxins produced by salamanders from the genus Salamandra: the samandarines. Despite this attention, intraspecific variation has largely been ignored within Salamandra-species. The aim of this study was to investigate whether geographic variation in profiles of samandarines exists, by sampling 4 populations of Salamandra atra over its range in the Dinaric Alps. In addition, we preliminary explored whether potential variation could be explained by predation (counting the number of snake species) and infection risk (cultivation and genomic analyses of collected soil samples). Salamanders from the 4 populations differed in toxin composition and in the size of their poison glands, although not in overall toxin quantity. Nor predation nor infection risk could explain this variation, as populations barely differed in these variables. Sampling over a much broader geographic range, using better estimators for predation and infection risk, will contribute to an improved understanding of how environment may shape variation in chemical defenses. Nevertheless, as the 4 populations of S. atra did differ in their toxin profiles, we propose that this species provides an interesting opportunity for further ecological and evolutionary studies on amphibian toxins.
Collapse
Affiliation(s)
- Gilles DE Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| | - Emina Šunje
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, Bosnia-Hercegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, Bosnia-Hercegovina
| | - Els Prinsen
- Department of Biology, Impress, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plant and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Raoul VAN Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S, Burgess K, Mable BK, Elmer KR. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol Ecol 2020; 29:1284-1299. [PMID: 32159878 DOI: 10.1111/mec.15411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stefan K Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen M Gunter
- Edinburgh Genomics, King's Buildings, University of Edinburgh, Edinburgh, UK
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karl Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Knepper J, Lüddecke T, Preißler K, Vences M, Schulz S. Isolation and Identification of Alkaloids from Poisons of Fire Salamanders ( Salamandra salamandra). JOURNAL OF NATURAL PRODUCTS 2019; 82:1319-1324. [PMID: 31074997 DOI: 10.1021/acs.jnatprod.9b00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fire salamanders ( Salamandra salamandra) are conspicuously colored amphibians secreting a skin poison that contains unique steroid alkaloids such as samandarine (1) and samadarone (2), exhibiting toxic as well as antimicrobial activities. Because of their antipredatory and anti-infectious functions, alkaloids from Salamandra poison are of interest with regard to the threat that the lethal fungus Batrachochytrium salamandrivorans ( Bsal) poses to salamanders. Nevertheless, reliable data on the biological activity of Salamandra alkaloids are scarce, in part due to the difficulty to obtain and study those substances. Thus, isolation of pure salamander alkaloids is an important task that might directly contribute to the understanding of Bsal infections. Here we present a noninvasive isolation procedure for samandarine (1) and O-acetylsamandarine (3), as well as for two new alkaloids, O-3-hydroxybutanoylsamandarine (4) and samanone (6), using HPLC. For the first time, high-field NMR data are presented for these alkaloids. Analysis using GC/MS and ESI+-MS, provided important information on the structural variability of these salamander alkaloids.
Collapse
Affiliation(s)
- Janosch Knepper
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Tim Lüddecke
- Animal Venomics Research Group , Fraunhofer Institute for Molecular Biology and Applied Ecology , Winchesterstraße 2 , 35394 Gießen , Germany
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Kathleen Preißler
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Miguel Vences
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Stefan Schulz
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| |
Collapse
|
6
|
Lüddecke T, Schulz S, Steinfartz S, Vences M. A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Naturwissenschaften 2018; 105:56. [DOI: 10.1007/s00114-018-1579-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022]
|
7
|
Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS One 2018; 13:e0199295. [PMID: 30020936 PMCID: PMC6051575 DOI: 10.1371/journal.pone.0199295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Recently emerged fungal diseases, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are an increasing threat to amphibians worldwide. In Europe, the threat of Bsal to salamander populations is demonstrated by the rapid decline of fire salamander populations in Germany, the Netherlands and Belgium. Although most European urodelans are susceptible to infection in infection trials, recent evidence suggests marked interspecific differences in the course of infection, with potentially far reaching implications for salamander conservation. As a salamander's skin is the first line of defense against such pathogens, interspecific differences in innate immune function of the skin may explain differential susceptibility. Here we investigate if compounds present on a salamander's skin can kill Bsal spores and if there is variation among species. We used a non-invasive assay to compare killing ability of salamander mucosomes of four different species (captive and wild Salamandra salamandra and captive Ichtyosaura alpestris, Cynops pyrrhogaster and Lissotriton helveticus) by exposing Bsal zoospores to salamander mucosomes and determining spore survival. In all samples, zoospores were killed when exposed to mucosomes. Moreover, we saw a significant variation in this Bsal killing ability of mucosomes between different salamander host species. Our results indicate that mucosomes of salamanders might provide crucial skin protection against Bsal, and could explain why some species are more susceptible than others. This study represents a step towards better understanding host species variation in innate immune function and disease susceptibility in amphibians.
Collapse
Affiliation(s)
- Hannah Keely Smith
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg, Gontrode, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
8
|
Sanchez E, Küpfer E, Goedbloed DJ, Nolte AW, Lüddecke T, Schulz S, Vences M, Steinfartz S. Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander,Salamandra salamandra. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:96-108. [DOI: 10.1002/jez.b.22792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/14/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Eliane Küpfer
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Daniel J. Goedbloed
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Arne W. Nolte
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Biology; Plön Germany
- Ecological Genomics; Institute for Biology and Environmental Sciences; Carl von Ossietzky Universität Oldenburg; Oldenburg Germany
| | - Tim Lüddecke
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Stefan Schulz
- Institute of Organic Chemistry; Technische Universität Braunschweig; Braunschweig Germany
| | - Miguel Vences
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | | |
Collapse
|
9
|
Vences M, Sanchez E, Hauswaldt JS, Eikelmann D, Rodríguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfartz S. Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol Phylogenet Evol 2014; 73:208-16. [DOI: 10.1016/j.ympev.2013.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/27/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
|
10
|
Mebs D, Pogoda W. Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon 2005; 45:603-6. [PMID: 15777956 DOI: 10.1016/j.toxicon.2005.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 01/10/2005] [Indexed: 11/15/2022]
Abstract
The two major alkaloids, samandarine and samandarone, were identified in the skin secretion of individual specimens from two populations of the European fire salamander (Salamandra salamandra terrestris) by gas chromatography/mass spectrometry. High intraspecific variability in the ratio of both alkaloids was observed, but also in individual specimens over a period of 4 months suggesting separate metabolic pathways of the compounds. Alkaloid synthesis appears to take place also in liver, testes and ovaries, whereas the larvae of the salamanders are entirely free of alkaloids.
Collapse
Affiliation(s)
- Dietrich Mebs
- Zentrum der Rechtsmedizin, University of Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany.
| | | |
Collapse
|
11
|
|
12
|
|
13
|
Habermehl G, Haaf A. Über Samandarin und verwandte Alkaloide, XIX1)Konstitution und Synthese des Samanins. ACTA ACUST UNITED AC 1969. [DOI: 10.1002/jlac.19697220115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
|
15
|
Habermehl G, Haaf A. [Cholesterol as the first step in the biosynthesis of the salamander alkaloids]. CHEMISCHE BERICHTE 1968; 101:198-200. [PMID: 5681941 DOI: 10.1002/cber.19681010126] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
|