1
|
Basnet N, Cho H, Sapkota A, Park S, Lim C, Gaire BP, Kim D, Lee JY, Been JH, Lee S, Lee BY, Choi JW, Kim S. Blocking S1P 4 signaling attenuates brain injury in mice with ischemic stroke. J Adv Res 2025:S2090-1232(25)00110-9. [PMID: 39952320 DOI: 10.1016/j.jare.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
INTRODUCTION The functions of S1P receptors have been revealed using genetic and pharmacological tools, including the potent non-selective modulator FTY720. However, studies on subtype-specific agonists and antagonists are limited; hence, the role of S1P4 remains unclear. OBJECTIVES To identify a novel function of S1P4 as a pathogenic factor in stroke using a newly developed S1P4-selective modulator and S1P4 knockdown. METHODS Heteroaromatic analogs of FTY720 were synthesized, a β-arrestin assay was conducted against S1P receptors, and the developed compound (NXC736) was characterized as a functional S1P4 antagonist. To clarify the function of S1P4, the therapeutic potential of NXC736 in ischemic stroke was determined using a transient middle cerebral artery occlusion (tMCAO) mouse model, which was validated using S1P4 knockdown. The S1P4-dependent pathogenic mechanisms were determined using immunohistochemical and biochemical analyses. RESULTS Molecular modeling studies provide valuable clues for understanding S1P4 selectivity of NXC736. NXC736 contains a triazole ring instead of a phenyl ring and exhibits S1P4-selective activity as a functional antagonist. Its action on S1P4 does not require phosphorylation by sphingosine kinase 2. Notably, NXC736 exhibited substantial therapeutic activity against ischemic stroke by attenuating tMCAO-induced acute brain injuries, including brain infarction, neurological deficits, and neuronal apoptosis. This suggested that S1P4 is a pathogenic factor in ischemic stroke. This function was confirmed using AAV-based S1P4 knockdown. NXC736 or S1P4 knockdown attenuated blood-brain barrier disruption, neutrophil infiltration, microglial activation and proliferation, and the upregulation of pro-inflammatory cytokines, thereby demonstrating that S1P4 influences neuroinflammatory responses in ischemic stroke. The underlying mechanisms were activation of NLRP3 inflammasome, NF-κB, and MAPKs. S1P4 also contributed to chronic brain injuries caused by ischemic stroke because NXC736 exerted long-term neuroprotective effects against tMCAO challenge. CONCLUSION Using a functional S1P4 antagonist (NXC736) and a genetic tool for S1P4 knockdown, we identified S1P4 as a novel pathogenic factor in ischemic stroke.
Collapse
Affiliation(s)
- Nikita Basnet
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Hyunkyung Cho
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Seungbae Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chaemin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Donghee Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae Hui Been
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seunghee Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Bong Yong Lee
- Nextgen Bioscience, 228-17 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13487, Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
2
|
Rasoulian B, Poormoghadam D, Hoveizi E, Rezayat SM, Tavakol S. Small but mighty: nanoemulsion particle size dictates bone regeneration potential of FTY720. NANOSCALE 2025; 17:2091-2104. [PMID: 39652087 DOI: 10.1039/d4nr02884h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The burgeoning field of nano-bone regeneration is yet to establish a definitive optimal particle size for nanocarriers. This study investigated the impacts of nanocarrier's particle size on the bone regeneration efficacy of fingolimod (FTY720)-loaded nanoemulsions. Two distinct particle sizes (60 and 190 nm, designated as NF60 and NF190, respectively) were produced using low-energy and high-energy emulsion techniques, maintaining a consistent surfactant, co-surfactant, and oil. In vitro studies using rat mesenchymal stem cells revealed that both NF60 and NF190 exhibited cell viability and reduced lactate dehydrogenase. Interestingly, NF60 demonstrated superior antioxidant properties, significantly reducing nitric oxide and intracellular reactive oxygen species (ROS) levels compared to NF190. Furthermore, NF60 significantly enhanced ALP activity and calcium deposition during osteogenic differentiation, indicating its potential to promote the early stages of bone formation. In vivo studies using a rat calvarial bone defect model demonstrated that both NF60 and NF190 significantly upregulated the expression of key osteogenic genes, including Runx2, Col, ALP, OCN, and BMP2. Notably, NF60 induced significantly higher expression of Runx2 and BMP2. X-ray and histological investigations revealed significantly improved bone regeneration in the NF60 group, highlighting the superior bone healing potential of smaller FTY720 nanoemulsions, without infiltration of inflammatory cells. The smaller particle size demonstrated superior antioxidant properties, enhanced osteogenic differentiation, and improved bone regeneration, suggesting smaller nanoparticles, with their larger surface area, accelerated drug release rate, and lower viscosity, interact more effectively with cells, leading to increased and effective drug delivery and cellular uptake. Findings highlight the importance of nanocarrier size in optimizing drug delivery for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- School of biomedical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Delaram Poormoghadam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Elham Hoveizi
- Department of biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research and Develoment Departement, Tavakol BioMimetich Technologies Co (TMBT), Tehran, Iran
| |
Collapse
|
3
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Li S, Sakurai K, Ohgidani M, Kato TA, Hikida T. Ameliorative effects of Fingolimod (FTY720) on microglial activation and psychosis-related behavior in short term cuprizone exposed mice. Mol Brain 2023; 16:59. [PMID: 37438826 DOI: 10.1186/s13041-023-01047-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that affects around 1% of the population in widespread populations, with severe cases leading to long-term hospitalization and necessitation of lifelong treatment. Recent studies on schizophrenia have highlighted the involvement of inflammatory and immunoregulatory mechanisms with the onset of symptoms, and the usage of anti-inflammatory treatments are being tested against periods of rapid psychosis. In the central nervous system, microglia are the innate immune population which are activated in response to a wide range of physical and psychological stress factors and produce proinflammatory mediators such as cytokines. Microglial activation and neuroinflammation has been associated to numerous psychiatric disorders including schizophrenia, especially during psychotic episodes. Thus, novel treatments which dampen microglial activation may be of great relevance in the treatment of psychiatric disorders. Fingolimod (FTY720) is a drug used as an immunosuppressive treatment to multiple sclerosis. Recent clinical trials have focused on FTY720 as a treatment for the behavioral symptoms in schizophrenia. However, the mechanisms of Fingolimod in treating the symptoms of schizophrenia are not clear. In this study we use a recently developed neuroinflammatory psychosis model in mice: cuprizone short-term exposure, to investigate the effects of FTY720 administration. FTY720 administration was able to completely alleviate methamphetamine hypersensitivity caused by cuprizone exposure. Moreover, administration of FTY720 improved multiple measures of neuroinflammation (microglial activation, cytokine production, and leucocyte infiltration). In conclusion, our results highlight the future use of FTY720 as a direct anti-inflammatory treatment against microglial activation and psychosis.
Collapse
Affiliation(s)
- Siyao Li
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Masahiro Ohgidani
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
6
|
Ferret-Sena V, Capela C, Macedo A, Salgado AV, Derudas B, Staels B, Sena A. Fingolimod treatment modulates PPARγ and CD36 gene expression in women with multiple sclerosis. Front Mol Neurosci 2022; 15:1077381. [PMID: 36590913 PMCID: PMC9797671 DOI: 10.3389/fnmol.2022.1077381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Fingolimod is an oral immunomodulatory drug used in the treatment of multiple sclerosis (MS) that may change lipid metabolism. Peroxisome proliferator-activated receptors (PPAR) are transcription factors that regulate lipoprotein metabolism and immune functions and have been implicated in the pathophysiology of MS. CD36 is a scavenger receptor whose transcription is PPAR regulated. The objective of this study was to evaluate whether fingolimod treatment modifies PPAR and CD36 gene expression as part of its action mechanisms. Serum lipoprotein profiles and PPAR and CD36 gene expression levels in peripheral leukocytes were analysed in 17 female MS patients before and at 6 and 12 months after fingolimod treatment initiation. Clinical data during the follow-up period of treatment were obtained. We found that fingolimod treatment increased HDL-Cholesterol and Apolipoprotein E levels and leukocyte PPARγ and CD36 gene expression. No correlations were found between lipid levels and variations in PPARγ and CD36 gene expression. PPARγ and CD36 variations were significantly correlated during therapy and in patients free of relapse and stable disease. Our results suggest that PPARγ and CD36-mediated processes may contribute to the mechanisms of action of fingolimod in MS. Further studies are required to explore the relation of the PPARγ/CD36 pathway to the clinical efficacy of the drug and its involvement in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Véronique Ferret-Sena
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal
| | - Carlos Capela
- Departamento de Neurologia, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Ana Macedo
- Keypoint Consultora Científica, Algés, Portugal,Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Faro, Portugal
| | | | - Bruno Derudas
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Armando Sena
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal,Departamento de Neurologia, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal,*Correspondence: Armando Sena,
| |
Collapse
|
7
|
Milford EM, Meital L, Kuballa A, Reade MC, Russell FD. Fingolimod does not prevent syndecan-4 shedding from the endothelial glycocalyx in a cultured human umbilical vein endothelial cell model of vascular injury. Intensive Care Med Exp 2022; 10:34. [PMID: 35980492 PMCID: PMC9388705 DOI: 10.1186/s40635-022-00462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background Shedding of the endothelial glycocalyx (EG) is associated with poor outcomes in a range of conditions including sepsis. Fresh frozen plasma (FFP) restores the damaged EG to baseline thickness, however the mechanism for this effect is unknown, and some components of FFP have adverse effects unrelated to the EG. There is some limited evidence that sphingosine-1-phosphate (S1P) within FFP restores the EG by activating the endothelial cell S1P receptor 1 (S1PR1). However, there are disadvantages to using S1P clinically as an EG restorative therapy. A potential alternative is the S1PR agonist fingolimod (FTY720). The aim of this study was to assess whether FTY720 prevents EG shedding in injured cultured human umbilical vein endothelial cells. Methods Shedding of the EG was induced in cultured human umbilical vein endothelial cells (HUVECs) by exposure to adrenaline, TNF-α and H2O2. The cells were then assigned to one of six conditions for 4 h: uninjured and untreated, injured and untreated, injured and treated with FTY720 with and without the S1PR1 inhibitor W146, and injured and treated with 25% FFP with and without W146. Syndecan-4, a component of the EG, was measured in cell supernatants, and syndecan-4 and thrombomodulin mRNA expression was quantitated in cell lysates. Results The injury resulted in a 2.1-fold increase in syndecan-4 (p < 0.001), consistent with EG shedding. Syndecan-4 and thrombomodulin mRNA expression was increased (p < 0.001) and decreased (p < 0.05), respectively, by the injury. Syndecan-4 shedding was not affected by treatment with FTY720, whereas FFP attenuated syndecan-4 shedding back to baseline levels in the injured cells and this was unaffected by W146. Neither treatment affected syndecan-4 or thrombomodulin mRNA expression. Conclusions FTY720 did not prevent syndecan-4 shedding from the EG in the HUVEC model of endothelial injury, suggesting that activation of S1PR does not prevent EG damage. FFP prevented syndecan-4 shedding from the EG via a mechanism that was independent of S1PR1 and upregulation of SDC-4 production. Further studies to examine whether FTY720 or another S1PR agonist might have EG-protective effects under different conditions are warranted, as are investigations seeking the mechanism of EG protection conferred by FFP in this experimental model.
Collapse
Affiliation(s)
- Elissa M Milford
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia. .,Intensive Care Unit, Royal Brisbane and Women's Hospital, Butterfield St., Herston, QLD, Australia.
| | - Lara Meital
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Anna Kuballa
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Reade
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia.,Intensive Care Unit, Royal Brisbane and Women's Hospital, Butterfield St., Herston, QLD, Australia.,Joint Health Command, Australian Defence Force, Canberra, ACT, Australia
| | - Fraser D Russell
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
8
|
Godinho-Pereira J, Lopes MD, Garcia AR, Botelho HM, Malhó R, Figueira I, Brito MA. A Drug Screening Reveals Minocycline Hydrochloride as a Therapeutic Option to Prevent Breast Cancer Cells Extravasation across the Blood-Brain Barrier. Biomedicines 2022; 10:1988. [PMID: 36009536 PMCID: PMC9405959 DOI: 10.3390/biomedicines10081988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Among breast cancer (BC) patients, 15-25% develop BC brain metastases (BCBM), a severe condition due to the limited therapeutic options, which points to the need for preventive strategies. We aimed to find a drug able to boost blood-brain barrier (BBB) properties and prevent BC cells (BCCs) extravasation, among PI3K, HSP90, and EGFR inhibitors and approved drugs. We used BCCs (4T1) and BBB endothelial cells (b.End5) to identify molecules with toxicity to 4T1 cells and safe for b.End5 cells. Moreover, we used those cells in mixed cultures to perform a high-throughput microscopy screening of drugs' ability to ameliorate BBB properties and prevent BCCs adhesion and migration across the endothelium, as well as to analyse miRNAs expression and release profiles. KW-2478, buparlisib, and minocycline hydrochloride (MH) promoted maximal expression of the junctional protein β-catenin and induced 4T1 cells nucleus changes. Buparlisib and MH further decreased 4T1 adhesion. MH was the most promising in preventing 4T1 migration and BBB disruption, tumour and endothelial cytoskeleton-associated proteins modifications, and miRNA deregulation. Our data revealed MH's ability to improve BBB properties, while compromising BCCs viability and interaction with BBB endothelial cells, besides restoring miRNAs' homeostasis, paving the way for MH repurposing for BCBM prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Margarida Dionísio Lopes
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Hugo M. Botelho
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
9
|
Homans C, Yalcin EB, Tong M, Gallucci G, Bautista D, Moriel N, de la Monte S. Therapeutic Effects of Myriocin in Experimental Alcohol-Related Neurobehavioral Dysfunction and Frontal Lobe White Matter Biochemical Pathology. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2022; 12:23-42. [PMID: 36815096 PMCID: PMC9942847 DOI: 10.4236/jbbs.2022.122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background & Objective Chronic excessive alcohol consumption causes white matter degeneration with myelin loss and impaired neuronal conductivity. Subsequent rarefaction of myelin accounts for the sustained deficits in cognition, learning, and memory. Correspondingly, chronic heavy or repeated binge alcohol exposures in humans and experimental models alter myelin lipid composition leading to build-up of ceramides which can be neurotoxic and broadly inhibitory to brain functions. Methods This study examined the effects of chronic + binge alcohol exposures (8 weeks) and intervention with myriocin, a ceramide inhibitor, on neurobehavioral functions (Open Field, Novel Object Recognition, and Morris Water Maze tests) and frontal lobe white matter myelin lipid biochemical pathology in an adult Long-Evans rat model. Results The ethanol-exposed group had significant deficits in executive functions with increased indices of anxiety and impairments in spatial learning acquisition. Myriocin partially remediated these effects of ethanol while not impacting behavior in the control group. Ethanol-fed rats had significantly smaller brains with broadly reduced expression of sulfatides and reduced expression of two of the three sphingomyelins detected in frontal white matter. Myriocin partially resolved these effects corresponding with improvements in neurobehavioral function. Conclusion Therapeutic strategies that support cerebral white matter myelin expression of sulfatide and sphingomyelin may help remediate cognitive-behavioral dysfunction following chronic heavy alcohol consumption in humans.
Collapse
Affiliation(s)
- Camilla Homans
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Gina Gallucci
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - David Bautista
- Warren Alpert Medical School of Brown University, Providence, RI, USA,Brown University, Providence, RI, USA
| | - Natalia Moriel
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne de la Monte
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Women and Infants Hospital of Rhode Island, Providence VA Medical Center, Providence, RI, USA,
| |
Collapse
|
10
|
Wang L, Letsiou E, Wang H, Belvitch P, Meliton LN, Brown ME, Bandela M, Chen J, Garcia JGN, Dudek SM. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am J Physiol Lung Cell Mol Physiol 2022; 322:L149-L161. [PMID: 35015568 PMCID: PMC8794017 DOI: 10.1152/ajplung.00100.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.
Collapse
Affiliation(s)
- Lichun Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Eleftheria Letsiou
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Huashan Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick Belvitch
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lucille N. Meliton
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mary E. Brown
- 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mounica Bandela
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Steven M. Dudek
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Guglielmetti C, Levi J, Huynh TL, Tiret B, Blecha J, Tang R, VanBrocklin H, Chaumeil MM. Longitudinal Imaging of T Cells and Inflammatory Demyelination in a Preclinical Model of Multiple Sclerosis Using 18F-FAraG PET and MRI. J Nucl Med 2022; 63:140-146. [PMID: 33837066 PMCID: PMC8717198 DOI: 10.2967/jnumed.120.259325] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Lymphocytes and innate immune cells are key drivers of multiple sclerosis (MS) and are the main target of MS disease-modifying therapies (DMT). Ex vivo analyses of MS lesions have revealed cellular heterogeneity and variable T cell levels, which may have important implications for patient stratification and choice of DMT. Although MRI has proven valuable to monitor DMT efficacy, its lack of specificity for cellular subtypes highlights the need for complementary methods to improve lesion characterization. Here, we evaluated the potential of 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine (18F-FAraG) PET imaging to noninvasively assess infiltrating T cells and to provide, in combination with MRI, a novel tool to determine lesion types. Methods: We used a novel MS mouse model that combines cuprizone and experimental autoimmune encephalomyelitis to reproducibly induce 2 brain inflammatory lesion types, differentiated by their T cell content. 18F-FAraG PET imaging, T2-weighted MRI, and T1-weighted contrast-enhanced MRI were performed before disease induction, during demyelination with high levels of innate immune cells, and after T cell infiltration. Fingolimod immunotherapy was used to evaluate the ability of PET and MRI to detect therapy response. Ex vivo immunofluorescence analyses for T cells, microglia/macrophages, myelin, and blood-brain barrier (BBB) integrity were performed to validate the in vivo findings. Results:18F-FAraG signal was significantly increased in the brain and spinal cord at the time point of T cell infiltration. 18F-FAraG signal from white matter (corpus callosum) and gray matter (cortex, hippocampus) further correlated with T cell density. T2-weighted MRI detected white matter lesions independently of T cells. T1-weighted contrast-enhanced MRI indicated BBB disruption at the time point of T cell infiltration. Fingolimod treatment prevented motor deficits and decreased T cell and microglia/macrophage levels. In agreement, 18F-FAraG signal was decreased in the brain and spinal cord of fingolimod-treated mice; T1-weighted contrast-enhanced MRI revealed intact BBB, whereas T2-weighted MRI findings remained unchanged. Conclusion: The combination of MRI and 18F-FAraG PET enables detection of inflammatory demyelination and T cell infiltration in an MS mouse model, providing a new way to evaluate lesion heterogeneity during disease progression and after DMT. On clinical translation, these methods hold great potential for stratifying patients, monitoring MS progression, and determining therapy responses.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, California;
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jelena Levi
- CellSight Technologies, Inc., San Francisco, California
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ryan Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
12
|
Zhu C, Wen S, Li J, Meng H, Zhang J, Zhao K, Wang L, Zhang Y. FTY720 Inhibits the Development of Collagen-Induced Arthritis in Mice by Suppressing the Recruitment of CD4 + T Lymphocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1981-1992. [PMID: 34007158 PMCID: PMC8123953 DOI: 10.2147/dddt.s293876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
Background Fingolimod (FTY720), a novel immunomodulator, was found to suppress the severity of collagen-induced arthritis (CIA) in mice. However, the potential molecular mechanisms are still unknown, and the effect of FTY720 on the recruitment of immune cells in the affected joints in the CIA model is not clear. Materials and Methods Following the oral administration of FTY720 (2 mg/kg) was treated into CIA mice per day for 35 days, intravital microscopy and immunofluorescence assays were performed to examine immune cell recruitment in the affected joints. Human MH7A synoviocytes were stimulated with tumour necrosis factor (TNF)-α and incubated with FTY720. Interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) mRNA and protein expression were evaluated using RT-PCR and enzyme-linked immunosorbent assay, respectively. Signal transduction pathway protein expression was measured by Western blotting. Nuclear translocation of nuclear factor (NF)-κB was also analyzed by fluorescence microscopy. Results In vivo experiments showed that FTY720 inhibited the recruitment of CD4+ lymphocytes in the affected joints of CIA mice. FTY720 reduced the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. FTY720 also inhibited TNF-α-induced phosphorylation of NF-κBp65 and IκBα, as well as NF-κBp65 nuclear translocation, in a dose- and time-dependent manner. Interestingly, FTY720 blocked PI3K/Akt, the upstream targets of the NF-κB pathway. Conclusion Our findings demonstrated that oral administration of FTY720 exerted beneficial effects in CIA mice by inhibiting CD4+ T lymphocyte recruitment to the affected joints. Our data also indicated that FTY720 inhibited TNF-α-induced inflammation by suppressing the AKT/PI3K/NF-κB pathway in MH7A cells.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junyong Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Hongyu Meng
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Junzhe Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Kuo Zhao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Ling Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Orthopaedic Research Institution of Hebei Province, Shijiazhuang, People's Republic of China.,Chinese Academy of Engineering, Beijing, People's Republic of China
| |
Collapse
|
13
|
Abarca-Zabalía J, García MI, Lozano Ros A, Marín-Jiménez I, Martínez-Ginés ML, López-Cauce B, Martín-Barbero ML, Salvador-Martín S, Sanjurjo-Saez M, García-Domínguez JM, López Fernández LA. Differential Expression of SMAD Genes and S1PR1 on Circulating CD4+ T Cells in Multiple Sclerosis and Crohn's Disease. Int J Mol Sci 2020; 21:ijms21020676. [PMID: 31968593 PMCID: PMC7014376 DOI: 10.3390/ijms21020676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
The Th17 immune response plays a key role in autoimmune diseases such as multiple sclerosis (MS) and inflammatory bowel disease (IBD). Expression of Th17-related genes in inflamed tissues has been reported in autoimmune diseases. However, values are frequently obtained using invasive methods. We aimed to identify biomarkers of MS in an accessible sample, such as blood, by quantifying the relative expression of 91 Th17-related genes in CD4+ T lymphocytes from patients with MS during a relapse or during a remitting phase. We also compared our findings with those of healthy controls. After confirmation in a validation cohort, expression of SMAD7 and S1PR1 mRNAs was decreased in remitting disease (-2.3-fold and -1.3-fold, respectively) and relapsing disease (-2.2-fold and -1.3-fold, respectively). No differential expression was observed for other SMAD7-related genes, namely, SMAD2, SMAD3, and SMAD4. Under-regulation of SMAD7 and S1PR1 was also observed in another autoimmune disease, Crohn's disease (CD) (-4.6-fold, -1.6-fold, respectively), suggesting the presence of common markers for autoimmune diseases. In addition, expression of TNF, SMAD2, SMAD3, and SMAD4 were also decreased in CD (-2.2-fold, -1.4-fold, -1.6-fold, and -1.6-fold, respectively). Our study suggests that expression of SMAD7 and S1PR1 mRNA in blood samples are markers for MS and CD, and TNF, SMAD2, SMAD3, and SMAD4 for CD. These genes could prove useful as markers of autoimmune diseases, thus obviating the need for invasive methods.
Collapse
Affiliation(s)
- Judith Abarca-Zabalía
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Ma Isabel García
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Alberto Lozano Ros
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
| | - Ignacio Marín-Jiménez
- Unidad de Enfermedad Inflamatoria Intestinal, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (I.M.-J.); (B.L.-C.)
| | - Maria L. Martínez-Ginés
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
| | - Beatriz López-Cauce
- Unidad de Enfermedad Inflamatoria Intestinal, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (I.M.-J.); (B.L.-C.)
| | - María L. Martín-Barbero
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - María Sanjurjo-Saez
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Jose M. García-Domínguez
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
- Correspondence: (J.M.G.-D.); (L.A.L.F.)
| | - Luis A. López Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
- Correspondence: (J.M.G.-D.); (L.A.L.F.)
| |
Collapse
|
14
|
Fingolimod promotes angiogenesis and attenuates ischemic brain damage via modulating microglial polarization. Brain Res 2019; 1726:146509. [PMID: 31626784 DOI: 10.1016/j.brainres.2019.146509] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Microglial activation plays a crucial role in the pathology of ischemic stroke. Recently, we demonstrated that fingolimod (FTY720) exerted neuroprotective effects via immunomodulation in ischemic white matter damage induced by chronic cerebral hypoperfusion, which was accompanied by robust microglial activation. In this study, we assessed the pro-angiogenic potential of FTY720 in a murine model of acute cortical ischemic stroke. METHODS The photothrombotic (PT) method was used to induce cortical ischemic stroke in mice. We evaluated cortical damage, behavioral deficits, microglial polarization, and angiogenesis to identify the neuroprotective effects and possible molecular mechanisms of FTY720 in acute ischemic stroke. RESULTS In vivo, a reduction in neuronal loss and improved motor function were observed in FTY720-treated mice after PT stroke. Immunofluorescence staining revealed that robust microglial activation and the associated neuroinflammatory response in the peri-infarct area were ameliorated by FTY720 via its ability to polarize microglia toward the M2 phenotype. Furthermore, both in vivo and in vitro, angiogenesis was enhanced in the microglial M2 phenotype state. Behaviorally, a significant improvement in the FTY720-treated group compared to the control group was evident from days 7 to 14. CONCLUSIONS Our research indicated that FTY720 treatment promoted angiogenesis via microglial M2 polarization and exerted neuroprotection in PT ischemic stroke.
Collapse
|
15
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
16
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
17
|
Kong W, Qi Z, Xia P, Chang Y, Li H, Qu Y, Pan S, Yang X. Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv 2019; 9:17801-17811. [PMID: 35520542 PMCID: PMC9064641 DOI: 10.1039/c9ra01717h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level. FTY720, also known as fingolimod, has recently been reported to exert a positive effect on the recovery from a spinal cord injury. Through local delivery to the lesion site, FTY720 effectively integrates with biomaterials, and the systemic adverse effects are alleviated. However, the effects of the proper mass ratio of FTY720 in biomaterials on neural stem cell (NSC) proliferation and differentiation, as well as functional recovery after SCI, have not been thoroughly investigated. In our study, we fabricated electrospun poly (lactide-co-glycolide) (PLGA)/FTY720 scaffolds at different mass ratios (0.1%, 1%, and 10%) and characterized these scaffolds. The effects of electrospun PLGA/FTY720 scaffolds on NSC proliferation and differentiation were measured. Then, a rat model of spinal transection was established to investigate the effects of PLGA/FTY720 scaffolds loaded with NSCs. Notably, 1% PLGA/FTY720 scaffolds exerted the best effects on the proliferation and differentiation of NSCs and 10% PLGA/FTY720 was cytotoxic to NSCs. Based on the Basso, Beattie, and Bresnahan (BBB) score, HE staining and immunofluorescence staining, the PLGA/FTY720 scaffold loaded with NSCs effectively promoted the recovery of spinal cord function. Thus, FTY720 properly integrated with electrospun PLGA scaffolds, and electrospun PLGA/FTY720 scaffolds loaded with NSCs may have potential applications for SCI as a nerve implant. Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level.![]()
Collapse
Affiliation(s)
- Weijian Kong
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Peng Xia
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Hongru Li
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yunpeng Qu
- Department of Cardiovascular Medicine
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
18
|
Annunziata P, Cioni C, Masi G, Tassi M, Marotta G, Severi S. Fingolimod reduces circulating tight-junction protein levels and in vitro peripheral blood mononuclear cells migration in multiple sclerosis patients. Sci Rep 2018; 8:15371. [PMID: 30337577 PMCID: PMC6193926 DOI: 10.1038/s41598-018-33672-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023] Open
Abstract
There are no data on the effects of fingolimod, an immunomodulatory drug used in treatment of multiple sclerosis (MS), on circulating tight-junction (TJ) protein levels as well as on peripheral blood mononuclear cells (PBMC) migration. Serum TJ protein [occludin (OCLN), claudin-5 (CLN-5) and zonula occludens-1 (ZO-1)] levels, sphingosine-1 phosphate 1 (S1P1) receptor expression on circulating leukocyte populations as well as in vitro PBMC migration were longitudinally assessed in 20 MS patients under 12-months fingolimod treatment and correlated with clinical and magnetic resonance imaging (MRI) parameters. After 12 months of treatment, a significant reduction of mean relapse rate as well as number of active lesions at MRI was found. TJ protein levels significantly decreased and were associated with reduction of S1P1 expression as well as of PBMC in vitro migratory activity. A significant correlation of CLN-5/OCLN ratio with new T2 MRI lesions and a significant inverse correlation of CLN-5/ZO-1 ratio with disability scores were found. These findings support possible in vivo effects of fingolimod on the blood-brain barrier (BBB) functional activity as well as on peripheral cell trafficking that could result in avoiding passage of circulating autoreactive cells into brain parenchyma. Circulating TJ protein levels and respective ratios could be further studied as a novel candidate biomarker of BBB functional status to be monitored in course of fingolimod as well as of other immunomodulatory treatments in MS.
Collapse
Affiliation(s)
- Pasquale Annunziata
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| | - Chiara Cioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gianni Masi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maristella Tassi
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Sauro Severi
- Neurology Unit, San Donato Hospital, Arezzo, Italy
| |
Collapse
|