1
|
Qi X, Guo H, Xia X, Liu Y, Qiu S, Lin T, He W, Jin L, Cheng J, Hao L, Liu W, Hu H. Paeoniflorin alleviated STZ-induced diabetic retinopathy via regulation of the PDI/ADAM17/MerTK pathway. Int Immunopharmacol 2025; 155:114571. [PMID: 40209310 DOI: 10.1016/j.intimp.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and a leading cause of vision impairment in diabetic patients. The accumulation of apoptotic cells and inflammation are key pathological mechanisms in DR. The Mer tyrosine kinase (MerTK) receptor plays a critical role in maintaining retinal homeostasis. Proteolytic cleavage of MerTK by disintegrin and metalloproteinase-17 (ADAM17) disrupts MerTK-dependent clearance of apoptotic cells and diminishes its anti-inflammatory effects. Therefore, reducing the cleavage activity ADAM17's and promoting MerTK-dependent anti-inflammatory effects may represent potent strategy to alleviate DR. METHODS The DR mouse model was established using streptozotocin (STZ), and a high-glucose (HG)-induced in vitro model was developed using human retinal pigment epithelial (ARPE-19) cells. Relevant signaling molecules were analyzed through western blotting and immunohistochemistry. RESULTS Hyperglycemia promoted the accumulation of apoptotic cells and disrupted retinal microvascular growth. In both vivo and vitro model, MerTK expression was significantly reduced, while ADAM17 phosphorylation levels were markedly increased. In STZ-treated mice, protein disulfide isomerase (PDI) secretion initially rose but subsequently declined, whereas PDI secretion decreased under HG conditions. We then utilized paeoniflorin to increase the expression of this endogenous inhibitor of ADAM17. Results showed that paeoniflorin upregulated PDI production, suppressed ADAM17 expression, and enhanced MerTK phosphorylation in the eye tissues of STZ-induced mice. Additionally, paeoniflorin elevated the expression of suppressor of cytokine signaling 3 (SOCS3) and decreased the level of matrix metalloproteinase 9 (MMP9) both in vivo and in vitro. CONCLUSION Paeoniflorin may alleviate diabetic retinopathy by suppressing inflammation through modulation of the PDI/ADAM17/MerTK signaling pathway.
Collapse
Affiliation(s)
- Xiuting Qi
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Haiyue Guo
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xinyue Xia
- The First Clinical College, Nanjing Medical University, Nanjing 211166, China
| | - Yanmei Liu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China
| | - Shenghui Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Tongtong Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligence Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenqi He
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Jing Cheng
- Department of Gastroenterology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, China; Department of Gastroenterology,Shanghai General Hospial of Nanjing Medical University, Shanghai, China
| | - Lanxiang Hao
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| | - Wentao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Haitao Hu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| |
Collapse
|
2
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu C, Wu X, Zhao Y, Ren J. Osteopontin regulation of MerTK + macrophages promotes Crohn's disease intestinal fibrosis. iScience 2024; 27:110226. [PMID: 39021800 PMCID: PMC11253513 DOI: 10.1016/j.isci.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The pathogenesis of intestinal fibrosis in Crohn's disease (CD) remains unclear. Mer receptor tyrosine kinase (MerTK) is an immunosuppressive protein specifically expressed in macrophages. Osteopontin (OPN), also known as secreted phosphoprotein 1, contributes to inflammation and wound repair. This study investigates the potential profibrotic pathway in MerTK+ macrophages in order to provide a possible therapeutic target for intestinal fibrosis. MerTK expression in the inflamed and stenotic bowels was evaluated. The MerTK/ERK/TGF-β1 pathway was overactivated in the fibrotic intestinal tissues of patients with CD. This pathway was induced by epithelial cell apoptosis, resulting in activated fibroblasts with increased TGF-β1 secretion. OPN upregulated TGF production by altering ERK1/2 phosphorylation, as evidenced by OPN or MerTK knockdown and OPN overexpression in vitro. MerTK inhibitor UNC2025 alleviated intestinal fibrosis in mouse colitis models, suggesting a potential therapeutic target for intestinal fibrosis in patients with CD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenbin Gong
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Cunxia Wu
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Li J, Shao R, Xie Q, Qin K, Ming S, Xie Y, Du X. Ulinastatin promotes macrophage efferocytosis and ameliorates lung inflammation via the ERK5/Mer signaling pathway. FEBS Open Bio 2022; 12:1498-1508. [PMID: 35778889 PMCID: PMC9340873 DOI: 10.1002/2211-5463.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury (ALI) is a pneumonic response characterized by neutrophil infiltration. Macrophage efferocytosis is the process whereby macrophages remove apoptotic cells, and is required for ALI inflammation to subside. The glycoprotein ulinastatin (UTI) has an anti‐inflammatory effect during the acute stages of ALI, but its effect on efferocytosis and the subinflammatory stage of ALI is unclear. Extracellular signal‐regulated kinase 5 (ERK5) is a key protein in efferocytosis, and we thus hypothesized that it may be activated by UTI to regulate efferocytosis and the resolution of pneumonia. To test this hypothesis, here we monitored phagocytosis of macrophages through in vivo and in vitro experiments. Pulmonary edema, neutrophil infiltration, protein exudation, and inflammatory factor regression were observed on days 1, 3, 5, and 7 in vivo. RAW264.7 cells were pretreated with different concentrations of UTI and ERK5 inhibitors, and the expression of tyrosine‐protein kinase Mer (Mer) protein on macrophage membrane was detected. UTI increased the phagocytosis of apoptotic neutrophils by macrophages in vitro and in vivo, and promoted the resolution of pneumonia. The protein expression of ERK5 and Mer increased with UTI concentration, while the expression of Mer was down‐regulated by ERK5 inhibitors. Therefore, our results suggest that UTI enhances efferocytosis and reduces lung inflammation and injury through the ERK5/Mer signaling pathway, which may be one of the targets of UTI in the treatment of lung injury.
Collapse
Affiliation(s)
- Jinju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.,Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury and Prevention, Nanning, 530021, China.,Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, 530021, China
| | - Rongge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.,Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury and Prevention, Nanning, 530021, China.,Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, 530021, China
| | - Qiuwen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.,Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury and Prevention, Nanning, 530021, China.,Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, 530021, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - ShaoPeng Ming
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Yongguo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - XueKe Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.,Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury and Prevention, Nanning, 530021, China.,Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, 530021, China
| |
Collapse
|
4
|
Study of the Role of the Tyrosine Kinase Receptor MerTK in the Development of Kidney Ischemia-Reperfusion Injury in RCS Rats. Int J Mol Sci 2021; 22:ijms222212103. [PMID: 34829984 PMCID: PMC8618874 DOI: 10.3390/ijms222212103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.
Collapse
|
5
|
Yang SR, Hung SC, Chu LJ, Hua KF, Wei CW, Tsai IL, Kao CC, Sung CC, Chu P, Wu CY, Chen A, Wu ATH, Liu FC, Huang HS, Ka SM. NSC828779 Alleviates Renal Tubulointerstitial Lesions Involving Interleukin-36 Signaling in Mice. Cells 2021; 10:3060. [PMID: 34831283 PMCID: PMC8623783 DOI: 10.3390/cells10113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Taipei 23142, Taiwan;
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 33302, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433304, Taiwan;
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Pauling Chu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Alexander T. H. Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
6
|
Zhen Y, McGaha TL, Finkelman FD, Shao WH. The Akt-mTORC1 pathway mediates Axl receptor tyrosine kinase-induced mesangial cell proliferation. J Leukoc Biol 2021; 111:563-571. [PMID: 34218441 DOI: 10.1002/jlb.2a1220-850rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glomerulonephritis (GN), an important pathologic feature of many renal diseases, is frequently characterized by mesangial cell proliferation. We and others have previously shown that the TAM family receptor tyrosine kinases Axl, Mer, and Tyro-3 contribute to cell survival, proliferation, migration, and clearance of apoptotic cells (ACs); that Axl contributes to GN by promoting mesangial cell proliferation; and that small molecule inhibition of Axl ameliorates nephrotoxic serum-induced GN in mice. We now show that stimulation of renal mesangial cell Axl causes a modest increase in intracellular Ca2+ and activates NF-κB, mTOR, and the mTOR-containing mTORC1 complex, which phosphorylates the ribosomal protein S6. Axl-induction of Akt activation is upstream of NF-κB and mTOR activation, which are mutually codependent. Axl-induced NF-κB activation leads to Bcl-xl up-regulation. Axl is more important than Mer at mediating AC phagocytosis by mesangial cells, but less important than Mer at mediating phagocytosis of ACs by peritoneal macrophages. Taken together, our data suggest the possibility that Axl mediates mesangial cell phagocytosis of ACs and promotes mesangial cell proliferation by activating NF-κB and mTORC1.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tracy L McGaha
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wen-Hai Shao
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Mancardi D, Arrigo E, Cozzi M, Cecchi I, Radin M, Fenoglio R, Roccatello D, Sciascia S. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur J Clin Invest 2021; 51:e13441. [PMID: 33128260 DOI: 10.1111/eci.13441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
In systemic lupus erythematosus (SLE) patients, most of the clinical manifestation share a vascular component triggered by endothelial dysfunction. Endothelial cells (ECs) activation occurs both on the arterial and venous side, and the high vascular density of kidneys accounts for the detrimental outcomes of SLE through lupus nephritis (LN). Kidney damage, in turn, exerts a negative feedback on the cardiovascular (CV) system aggravating risk factors for CV diseases such as hypertension, stroke and coronary syndrome among others. Despite the intensive investigation on SLE and LN, the role of endothelial dysfunction, as well as the underlying mechanisms, remains to be fully understood, with no specifically targeted pharmacological treatment. It is not known, in fact, if the activation pathway(s) in venous ECs are similar to the one in arterial ECs and doubts persist on the shared manifestation of microcirculation compared to macrocirculation. In this work, we aim to review the recent literature about the role of endothelial activation and dysfunction in the development of CV complications in SLE and LN patients. We, therefore, focus on arteriovenous similarities and differences and on specific pathways of great vessels compared to capillaries. Critically summarising the available data is of pivotal importance for both basic researchers and clinicians in order to develop and test new pharmacological approaches in the treatment of basic components of SLE and LN.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Martina Cozzi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy.,School of Specialization in Nephrology, University of Verona, Verona, Italy
| | - Irene Cecchi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Massimo Radin
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Roberta Fenoglio
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Savino Sciascia
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L, Lu J, Mei S, Wang X, Guo X, Wang Y, Zhao Z, Zhang J. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 2021; 18:2. [PMID: 33402181 PMCID: PMC7787000 DOI: 10.1186/s12974-020-02041-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. METHODS The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. RESULTS Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation. CONCLUSIONS Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.
Collapse
Affiliation(s)
- Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Jianxiong Zeng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Yirong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90089, USA.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Brain Research Institute, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Hsu WH, Hua KF, Tuan LH, Tsai YL, Chu LJ, Lee YC, Wong WT, Lee SL, Lai JH, Chu CL, Ho LJ, Chiu HW, Hsu YJ, Chen CH, Ka SM, Chen A. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol Dial Transplant 2020; 35:74-85. [PMID: 31065699 DOI: 10.1093/ndt/gfz073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.
Collapse
Affiliation(s)
- Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Li-Heng Tuan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Jenn-Haung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Li Y, Wittchen ES, Monaghan-Benson E, Hahn C, Earp HS, Doerschuk CM, Burridge K. The role of endothelial MERTK during the inflammatory response in lungs. PLoS One 2019; 14:e0225051. [PMID: 31805065 PMCID: PMC6894824 DOI: 10.1371/journal.pone.0225051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial for efferocytosis, a process that requires remodeling of the cell membrane and adjacent actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial cells during inflammation, particularly during neutrophil transendothelial migration (TEM) and during changes in permeability. However, MERTK’s function in endothelial cells remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil TEM and endothelial barrier function. In vitro experiments using primary human pulmonary microvascular endothelial cells found that neutrophil TEM across the endothelial monolayers was enhanced when MERTK expression in endothelial cells was reduced by siRNA knockdown. Examination of endothelial barrier function revealed increased passage of dextran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain endothelial barrier function. MERTK knockdown also altered adherens junction structure, decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, providing potential mechanisms of how MERTK regulates endothelial barrier function. To study MERTK’s function in vivo, inflammation in the lungs of global Mertk-/- mice was examined during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tissue was also greater in Mertk-/- mice. To analyze endothelial MERTK’s involvement in these processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When similarly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutrophil TEM into the inflamed lungs or in vascular permeability compared to control mice. These results suggest that deletion of MERTK in human pulmonary microvascular endothelial cells in vitro and in all cells in vivo aggravates the inflammatory response. However, selective MERTK deletion in endothelial cells in vivo failed to replicate this response.
Collapse
Affiliation(s)
- Yitong Li
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cornelia Hahn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
11
|
Korovina I, Neuwirth A, Sprott D, Troullinaki M, Poitz DM, Deussen A, Klotzsche-von Ameln A. Myeloid SOCS3 Deficiency Regulates Angiogenesis via Enhanced Apoptotic Endothelial Cell Engulfment. J Innate Immun 2019; 12:248-256. [PMID: 31574508 DOI: 10.1159/000502645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Mononuclear phagocytes, such as macrophages and microglia, are key regulators of organ homeostasis including vascularization processes. Here, we investigated the role of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells as a regulator of mononuclear phagocyte function and their interaction with endothelial cells in the context of sprouting angiogenesis. As compared to SOCS3-sufficient counterparts, SOCS3-deficient microglia and macrophages displayed an increased phagocytic activity toward primary apoptotic endothelial cells, which was associated with an enhanced expression of the opsonin growth arrest-specific 6 (Gas6), a major prophagocytic molecule. Furthermore, we found that myeloid SOCS3 deficiency significantly reduced angiogenesis in an ex vivo mouse aortic ring assay, which could be reversed by the inhibition of the Gas6 receptor Mer. Together, SOCS3 in myeloid cells regulates the Gas6/Mer-dependent phagocytosis of endothelial cells, and thereby angiogenesis-related processes. Our findings provide novel insights into the complex crosstalk between mononuclear phagocytes and endothelial cells, and may therefore provide a new platform for the development of new antiangiogenic therapies.
Collapse
Affiliation(s)
- Irina Korovina
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Troullinaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany, .,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany,
| |
Collapse
|
12
|
Gas6/TAM Receptors in Systemic Lupus Erythematosus. DISEASE MARKERS 2019; 2019:7838195. [PMID: 31360267 PMCID: PMC6652053 DOI: 10.1155/2019/7838195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease associated with impaired immune system regulation. The exact mechanisms of SLE development remain to be elucidated. TAM receptor tyrosine kinases (RTKs) are important for apoptotic cell clearance, immune homeostasis, and resolution of immune responses. TAM deficiency leads to lupus-like autoimmune diseases. Activation of TAM receptors leads to proteolytic cleavage of the receptors, generating soluble forms of TAM. Circulating TAM receptors have an immunoregulatory function and may also serve as biomarkers for disease prognosis. Here, we review the biological function and signaling of TAM RTKs in the development and pathogenesis of lupus and lupus nephritis. Targeting Gas6/TAM pathways may be of therapeutic benefit. A discussion of potential TAM activation and inhibition in the treatment of lupus and lupus nephritis is included.
Collapse
|