1
|
Della Bella C, Medici C, D'Elios S, Benagiano M, Ludovisi A, Gomez-Morales MA, D'Elios MM, Bruschi F. Interleukin 17 producing T cell responses in human chronic trichinellosis-insight from a case study. Cytokine 2024; 184:156795. [PMID: 39492146 DOI: 10.1016/j.cyto.2024.156795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION We studied the cellular immune response in a patient infected since 10 months (along with other 51 people) during a trichinellosis outbreak caused by Trichinella spp. METHODS A 46 years old female resulted serologically positive for trichinellosis. We isolated peripheral blood mononuclear cells (PBMCs) and incubated them with excretory/secretory antigens (ESA) of Trichinella spiralis (T1) or Trichinella pseudospiralis (T4) to produce antigen specific T cell lines and clones, analysed for the phenotype (T helper or cytotoxic cells), for their T4 or T1 antigens specificity and for their cytokine profile (IFNγ, IL-17A, IL-4) by flow cytometry, thymidine incorporation assay and ELISpot. RESULTS The test performed using ESA from T1 or T4 has identified the species responsible for infection as T. pseudospiralis since the proliferative responses (evaluated by CFSE, Carboxyfluorescein succinimidyl ester, FACS analysis) was higher for T4 (72,8%) than T1 (23.6 %) antigen. The cell lines produced significant levels of IFNγ, IL-4 and IL-17A after stimulation. From the T cell line obtained in response to T1 ESA, as regards CD4 + cells, 12 % Th2, 22.8 % Th1, 6.6 % Th17, 6 % Th0, 2.2 % Th1/Th17 and 0.7 % Th2/Th17, were obtained. From the T1-specific TCL we generated 15 clones. From the TCL specific for T4 ESA, as regards CD4+, 15.2 % Th2, 27.1 % Th1, 3 % Th17, 10.3 %Th0, 1.9 % Th1/Th17 and 1 % Th2/ Th17 were obtained. From such TCL 4 clones were isolated, 1Th2, 1 Th1, 1 Th17, 1 Th1/Th17 and no Th0 nor Th2/Th17. CONCLUSIONS By cellular immunology techniques the species responsible of the infection resulted T. pseudospiralis, confirming the results previously obtained by serology. For the first time it was revealed in a human chronic infection the presence of Th17 cells.
Collapse
Affiliation(s)
- Chiara Della Bella
- Department of Molecular and Developmental Medicine, University of Siena, Italy; Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Chiara Medici
- Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - Sofia D'Elios
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Alessandra Ludovisi
- Department of Infectious Diseases, Istituto Superiore di Sanità, European Union Reference Laboratory for Parasites, Rome, Italy
| | - Maria Angeles Gomez-Morales
- Department of Infectious Diseases, Istituto Superiore di Sanità, European Union Reference Laboratory for Parasites, Rome, Italy
| | - Mario M D'Elios
- Department of Molecular and Developmental Medicine, University of Siena, Italy; Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Fan YM, Shi WQ, Jin QW, Pan M, Hou ZF, Fu L, Tao JP, Huang SY. PruΔcdpk2 Protects Pigs Against Acute Toxoplasmosis Depending on T-Lymphocyte Subsets and Natural Killer Cell Responses. Foodborne Pathog Dis 2024; 21:673-680. [PMID: 39133119 DOI: 10.1089/fpd.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Toxoplasma gondii is a widespread protozoan parasite approximately infecting one-third of the world population and can cause serious public health problems. In this study, we investigated the protective effect of the attenuated vaccine Pru:Δcdpk2 against acute toxoplasmosis and explored the underlying immune mechanisms of the protection in pigs. The systemic T-cell and natural killer (NK) cell responses were analyzed, including kinetics, phenotype, and multifunctionality (interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and the IFN-γ levels were analyzed in PBMCs. Our results showed that T. gondii-specific antibodies were induced by Pru:Δcdpk2. After challenging with RH, the antibodies were able to respond quickly in the immunized group, and the expression level was significantly higher than that in the unimmunized group. The expression level of IFN-γ significantly increased after vaccination, and the CD3+ γδ-, NK, and CD3+ γδ+ cell subsets also significantly increased. At the same time, functional analysis indicated that these cells were polarized toward a Th1 phenotype, showing the ability to secrete IFN-γ and TNF-α. The CD4+CD8α-T cell population exhibited a higher frequency of IFN-γ+ producing cells compared with the CD4-CD8α+ and CD4+CD8α+ cell populations during the early days of vaccination. Our results indicated that the attenuated vaccine could induce the expression of NK, γδ, and CD3αβ cells in pigs, and IFN-γ and TNF-α secreted by these cells are important for resistance to T. gondii infection.
Collapse
Affiliation(s)
- Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Wen-Qian Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Zhao-Feng Hou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, PR China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Chongqing Academy of Animal Sciences, Chongqing, PR China
| |
Collapse
|
3
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
4
|
Paiva IA, Familiar-Macedo D, Badolato-Corrêa J, Carvalho FR, Dias HG, Pauvolid-Corrêa A, dos Santos CF, Silva AA, de Azeredo EL, Vianna RADO, Cardoso CAA, Grifoni A, Sette A, Weiskopf D, de-Oliveira-Pinto LM. Involvement of Th1Th17 Cell Subpopulations in the Immune Responses of Mothers Who Gave Birth to Children with Congenital Zika Syndrome (CZS). Viruses 2022; 14:v14020250. [PMID: 35215843 PMCID: PMC8879837 DOI: 10.3390/v14020250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
High levels of T helper 17 cell (Th17)-related cytokines have been shown in acute Zika virus (ZIKV) infection. We hypothesized that the high levels of Th17-related cytokines, associated with a regulatory environment during pregnancy, create a favorable milieu for the differentiation of CD4+Th17 cells. We present data from a cross-sectional study on mothers who confirmed ZIKV infection by qRT-PCR and their children. We also recruited non-pregnant women infected with ZIKV in the same period. ZIKV infection occurred between 2015 and 2017. We collected samples for this study between 2018 and 2019, years after the initial infection. We highlight that, after in vitro stimulation with ZIKV CD4 megapool (ZIKV MP), we found a lower frequency of IL-17-producing CD4+ T cells (Th17), especially in the mothers, confirmed by the decrease in IL-17 production in the supernatant. However, a higher frequency of CD4+ IL-17+ IFN-γ+ T cells (Th1Th17) responding to the ZIKV MP was observed in the cells of the mothers and children but not in those of the non-pregnant women. Our data indicate that the priming of CD4 T cells of the Th1Th17 phenotype occurred preferentially in the mothers who gave birth to children with CZS and in the children.
Collapse
Affiliation(s)
- Iury Amancio Paiva
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Débora Familiar-Macedo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
| | - Helver Gonçalves Dias
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA;
- Laboratory of Respiratory Viruses and Measles, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Caroline Fernandes dos Santos
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Andréa Alice Silva
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
| | - Elzinandes Leal de Azeredo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | | | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
- Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil;
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
- Correspondence:
| |
Collapse
|
5
|
Familiar-Macedo D, Amancio Paiva I, Badolato-Corrêa da Silva J, de Carvalho FR, Dias HG, Pauvolid-Corrêa A, dos Santos CF, Gandini M, Silva AA, Baeta Cavalcanti SM, Artimos de Oliveira S, Artimos de Oliveira Vianna R, Leal de Azeredo E, Grifoni A, Sette A, Weiskopf D, Araújo Cardoso CA, de-Oliveira-Pinto LM. Evaluation of the Expression of CCR5 and CX3CR1 Receptors and Correlation with the Functionality of T Cells in Women infected with ZIKV during Pregnancy. Viruses 2021; 13:191. [PMID: 33525328 PMCID: PMC7912595 DOI: 10.3390/v13020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
There have been reports of neurological abnormalities associated with the Zika virus (ZIKV), such as congenital Zika syndrome (CZS) in children born to mothers infected during pregnancy. We investigated how the immune response to ZIKV during pregnancy is primed and conduct a thorough evaluation of the inflammatory and cytotoxic profiles as well as the expression of CCR5 and CX3CR1. We compared the reactivity of T cells to ZIKV peptides in convalescent mothers infected during pregnancy. The child's clinical outcome (i.e., born with or without CZS) was taken to be the variable. The cells were stimulated in vitro with ZIKV peptides and evaluated using the ELISPOT and flow cytometry assays. After in vitro stimulation with ZIKV peptides, we observed a tendency toward a higher Interferon gamma (IFN-γ)-producing T cell responses in mothers who had asymptomatic children and a higher CD107a expression in T cells in mothers who had children with CZS. We found a higher frequency of T cells expressing CD107a+ and co-expressing CX3CR1+CCR5+, which is much clearer in the T cells of mothers who had CZS children. We suggest that this differential profile influenced the clinical outcome of babies. These data need to be further investigated, including the evaluation of other ZIKV peptides and markers and functional assays.
Collapse
Affiliation(s)
- Débora Familiar-Macedo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Iury Amancio Paiva
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Jessica Badolato-Corrêa da Silva
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Fabiana Rabe de Carvalho
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (F.R.d.C.); (A.A.S.); (C.A.A.C.)
| | - Helver Gonçalves Dias
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas TX, 77843, USA;
- Laboratory of Respiratory Viruses and Measles, SARS-CoV-2 National Reference Laboratory and Regional Reference Laboratory in Americas (PAHO/WHO), Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Caroline Fernandes dos Santos
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Andréa Alice Silva
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (F.R.d.C.); (A.A.S.); (C.A.A.C.)
| | - Silvia Maria Baeta Cavalcanti
- Laboratory of Virological Diagnosis, Biomedical Institute, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 110-130, Brazil;
| | - Solange Artimos de Oliveira
- Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (S.A.d.O.); (R.A.d.O.V.)
| | - Renata Artimos de Oliveira Vianna
- Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (S.A.d.O.); (R.A.d.O.V.)
| | - Elzinandes Leal de Azeredo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.); (D.W.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (F.R.d.C.); (A.A.S.); (C.A.A.C.)
- Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24 033-900, Brazil; (S.A.d.O.); (R.A.d.O.V.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 1040-900, Brazil; (D.F.-M.); (I.A.P.); (J.B.-C.d.S.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| |
Collapse
|