1
|
Zhang Z, Zhang G, Xue J, Zhang Y, Liu Y, Yang W, Wang J. Synthesis and evaluation of a targeted PET radioligand [ 18F]FCOB02 for monoamine oxidase B. Bioorg Med Chem Lett 2025; 121:130157. [PMID: 40010442 DOI: 10.1016/j.bmcl.2025.130157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Monoamine oxidase B (MAO-B) is a membrane-bound flavinase that plays an important role in the regulation of monoamine neurotransmission. Positron emission tomography (PET) provides a way to study the molecular mechanisms of MAO-B-related diseases and to evaluate the effects of drugs. In this study, we designed and synthesized [18F]FCOB02, a 4-methylcoumarin-like targeting probe.[18F]FCOB02 is straightforward to synthesize and has a high affinity for MAO-B with an IC50 = 10.68 ± 3.25 nM. Successful radiolabeling with fluorine-18 was achieved, resulting in a labeling rate of 35 % along with favorable lipid solubility (log D7.4 = 2.4). Automated radiolabelling was achieved after optimization of the conditions. The radiochemical yield was 9.6 % ± 1.2 %(n = 3) with good radiochemical purity (>98 %), good stability in saline for 4 h and high specific activity (105.08 ± 19GBq/μmol,n = 3). Biodistribution studies conducted in mice revealed significant initial brain uptake of 8.22 ± 0.86 % ID/g at 2 min post-injection, followed by rapid metabolism primarily via the liver and kidneys. Brain uptake was comparable to the same type of probe [18F]SMBT-1 (brain 2min = 7.85 % ID/g). PET-CT images of [18F]FCOB02 in SD rats showed significant differences in brain uptake before and after inhibition by the inhibitor L-deprenyl. Whole brain uptake was reduced by 20 % after inhibition, indicating specific uptake of the probe in the brain, with a 40-min brain clearance rate of 81 %. The potential utility of [18F]FCOB02 for achieving specific MAO-B imaging as well as quantitative analysis in vivo warrants further investigation regarding its clinical translational value.
Collapse
Affiliation(s)
- Zhixiong Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Ge Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Jinan Laboratory of Applied Nuclear Science, Jinan 250131, China
| | - Yuxuan Zhang
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Jinan Laboratory of Applied Nuclear Science, Jinan 250131, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Jinan Laboratory of Applied Nuclear Science, Jinan 250131, China.
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
| |
Collapse
|
2
|
Nisha Aji K, Lalang N, Ramos-Jiménez C, Rahimian R, Mechawar N, Turecki G, Chartrand D, Boileau I, Meyer JH, Rusjan PM, Mizrahi R. Evidence of altered monoamine oxidase B, an astroglia marker, in early psychosis and high-risk state. Mol Psychiatry 2025; 30:2049-2058. [PMID: 39511452 DOI: 10.1038/s41380-024-02816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
A novel radiotracer, [11C]SL25.1188, targets monoamine oxidase-B (MAO-B) enzyme, found primarily in astrocytes, which metabolizes monoamines (including dopamine), particularly in subcortical regions. Altered astrocyte function in schizophrenia is supported by convergent evidence from post-mortem, genetic, transcriptomic, peripheral and preclinical findings. We aimed to test whether levels of MAO-B, an index of astrocyte function are low in the living brains of early psychosis and their high-risk states. Thirty-eight participants including antipsychotic-free/minimally exposed clinical participants with first-episode psychosis (FEP), clinical high-risk (CHR) individuals and healthy volunteers (HVs) underwent a 90-min positron emission tomography (PET) scan with [11C]SL25.1188, to measure MAO-B VT, an index of MAO-B concentration. Participants were excluded if tested positive on urine drug screen (except for cannabis). This study of 14 FEP (mean[SD] age, 25.7[5.7] years; 6 F), 7 CHR (mean[SD] age, 20.9[3.7] years; 4 F) and 17 HV (mean[SD] age, 31.2[13.9] years; 9 F) demonstrated significant group differences in regional MAO-B VT (F(2,37.42) = 4.56, p = 0.02, Cohen's f = 0.49), controlling for tobacco (F (1,37.42) = 5.37, p = 0.03) and cannabis use (F(1,37.42) = 5.11, p = 0.03) with significantly lower MAO-B VT in CHR compared to HV (Cohen's d = 0.99). We report a significant cannabis effect on MAO-B VT (F(1,39.19) = 12.57, p = 0.001, Cohen's f = 0.57), with a significant group-by-cannabis interaction (F(2,37.30) = 3.82, p = 0.03, Cohen's f = 0.45), indicating lower MAO-B VT in cannabis-using clinical groups. Lower MAO-B VT levels were more robust in striatal than cortical regions, in both clinical groups (F(12,46.84) = 2.08, p = 0.04, Cohen's f = 0.73) and in cannabis users (F(6,46.84) = 6.42, p < 0.001, Cohen's f = 0.91). Lower MAO-B concentration supports astrocyte dysfunction in cannabis-using CHR and FEP clinical populations. Lower MAO-B is consistent with replicated striatal dopamine elevation in psychosis, as well as astrocyte dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nittha Lalang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Christian Ramos-Jiménez
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Daniel Chartrand
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Montreal Neurological Institute, Montreal, QC, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo M Rusjan
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Lindberg A, Mokhatarinori N, Yang Z, Dai S, Popovs I, Vasdev N. Ionic Liquid Aided [ 11C]CO Fixation for Synthesis of 11C-carbonyls. ChemistryOpen 2025:e202400410. [PMID: 39831838 DOI: 10.1002/open.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Tributyl(ethyl)phosphonium oxopentenolate ([P4442][Pen]) is an ionic liquid developed to capture CO and has shown ability to catalyze carbonylation reactions in organic chemistry. Carbon-11 (11C, t1/2=20.4 min) labeled CO is a highly versatile building block for the synthesis of positron emission tomography (PET) radiotracers that are applied for medical imaging. The use of [11C]CO is limited by its low solubility in organic solvents. Herein, we report a proof-of-concept study evaluating a new method to prepare 11C-labeled amides, ureas and carbamates via reaction of [11C]CO in [P4442][Pen] and applied for fully automated radiosyntheses of Bruton's tyrosine kinase inhibitors, [11C]evobrutinib and [11C]ibrutinib.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, CAMH, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | | | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, CAMH, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
4
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Chassé M, Sen R, Goeppert A, Prakash GS, Vasdev N. Polyamine based solid CO2 adsorbents for [11C]CO2 purification and radiosynthesis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2022; 15:773404. [PMID: 35280341 PMCID: PMC8914088 DOI: 10.3389/fnins.2021.773404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is a high-density protein in the brain mainly found on outer mitochondrial membranes, primarily in astroglia, but additionally in serotonergic neurons and in the substantia nigra in the midbrain. It is an enzyme that participates in the oxidative metabolism of important monoamines including dopamine, norepinephrine, benzylamine, and phenylethylamine. Elevated MAO-B density may be associated with astrogliosis and inhibiting MAO-B may reduce astrogliosis. MAO-B density is elevated in postmortem sampling of pathology for many neuropsychiatric diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and alcohol use disorder. Initial development of positron emission tomography (PET) imaging agents focused on analogs of [11C]L-deprenyl, with the most commonly applied being the deuterium substituted [11C]L-deprenyl-D2. This latter radiotracer was modeled with an irreversible trapping compartment reflecting its irreversible binding to MAO-B. Subsequently, [11C]SL25.1188, a reversible binding MAO-B radioligand with outstanding properties including high specific binding and excellent reversibility was developed. [11C]SL25.1188 PET was applied to discover a substantive elevation of MAO-B binding in the prefrontal cortex in major depressive disorder (MDD) with an effect size of more than 1.5. Longer duration of MDD was associated with greater MAO-B binding throughout most gray matter regions in the brain, suggesting progressive astrogliosis. Important applications of [11C]L-deprenyl-D2 PET are detecting a 40% loss in radiotracer accumulation in cigarette smokers, and substantial occupancy of novel therapeutics like EVT301 and sembragiline. Given the number of diseases with elevations of MAO-B density and astrogliosis, and the advance of [11C]SL25.1188, clinical applications of MAO-B imaging are still at an early stage.
Collapse
Affiliation(s)
- Jeffrey H. Meyer
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jeffrey H. Meyer,
| | - Joeffre Braga
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Imaging Biomarkers for Monitoring the Inflammatory Redox Landscape in the Brain. Antioxidants (Basel) 2021; 10:antiox10040528. [PMID: 33800685 PMCID: PMC8065574 DOI: 10.3390/antiox10040528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood–brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases. Interrogation of the interplay between inflammation, oxidative stress, and cell death in neurological tissue in vivo is very challenging. The complexity of the underlying biological process and the fragility of the brain limit our understanding of the cause and the adequate diagnostics of neuroinflammatory diseases. In recent years, advancements in the development of molecular imaging agents addressed this limitation and enabled imaging of biomarkers of neuroinflammation in the brain. Notable redox biomarkers for imaging with positron emission tomography (PET) tracers are the 18 kDa translocator protein (TSPO) and monoamine oxygenase B (MAO–B). These findings and achievements offer the opportunity for novel diagnostic applications and therapeutic strategies. This review summarizes experimental as well as established pharmaceutical and biotechnological tools for imaging the inflammatory redox landscape in the brain, and provides a glimpse into future applications.
Collapse
|
8
|
Narayanaswami V, Tong J, Schifani C, Bloomfield PM, Dahl K, Vasdev N. Preclinical Evaluation of TSPO and MAO-B PET Radiotracers in an LPS Model of Neuroinflammation. PET Clin 2021; 16:233-247. [PMID: 33648665 DOI: 10.1016/j.cpet.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discovery of novel PET radiotracers targeting neuroinflammation (microglia and astrocytes) is actively pursued. Employing a lipopolysaccharide (LPS) rat model, this longitudinal study evaluated the translocator protein 18-kDa radiotracer [18F]FEPPA (primarily microglia) and monoamine oxidase B radiotracers [11C]L-deprenyl and [11C]SL25.1188 (astrocytes preferred). Increased [18F]FEPPA binding peaked at 1 week in LPS-injected striatum whereas increased lazabemide-sensitive [11C]L-deprenyl binding developed later. No increase in radiotracer uptake was observed for [11C]SL25.1188. The unilateral intrastriatal LPS rat model may serve as a useful tool for benchmarking PET tracers targeted toward distinct phases of neuroinflammatory reactions involving both microglia and astrocytes.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 339, Toronto, Ontario M5T 1R8, Canada
| | - Christin Schifani
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Peter M Bloomfield
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B26A, Toronto, Ontario M5T 1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B02, Toronto, Ontario M5T 1R8, Canada
| | - Neil Vasdev
- Department of Psychiatry, Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room PET G2, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
9
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
10
|
|
11
|
Fukumura T, Mori W, Ogawa M, Fujinaga M, Zhang MR. [ 11C]phosgene: Synthesis and application for development of PET radiotracers. Nucl Med Biol 2021; 92:138-148. [PMID: 32546396 DOI: 10.1016/j.nucmedbio.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022]
Abstract
Carbon-11-labeled phosgene ([11C]phosgene, [11C]COCl2) is a useful labeling agent that connects two heteroatoms by inserting [11C]carbonyl (11C=O) function in carbamates, ureas, and carbonates, which are components of biologically important heterocyclic compounds and functional groups in drugs as a linker of fragments with in vivo stability. Development of 11C-labeled PET tracers has been performed using [11C]phosgene as a labeling agent. However, [11C]phosgene has not been frequently used for 11C-labeling because preparation of [11C]phosgene required dedicated synthesis apparatus (not commercially available) and had problems in reproducibility and reliability. In our laboratory, an improved method for synthesizing [11C]phosgene using a carbon tetrachloride detection tube kit in environmental air analysis and the automated synthesis system for preparing [11C]phosgene have been developed in 2009. This apparatus has been used for routine synthesis of 11C-labeled tracers 1-4 times/week. Using [11C]phosgene we have developed and produced many PET radiotracers containing [11C]urea and [11C]carbamate moieties. In this review, we report the performance of our method for preparing [11C]phosgene, including automated synthesis apparatus developed in house, and the application of [11C]phosgene for development and production of 11C-labeled PET tracers.
Collapse
Affiliation(s)
- Toshimitsu Fukumura
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service, Ltd., Tokyo 141-8686, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
12
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
15
|
Fowler JS, Logan J, Shumay E, Alia-Klein N, Wang GJ, Volkow ND. Monoamine oxidase: radiotracer chemistry and human studies. J Labelled Comp Radiopharm 2015; 58:51-64. [PMID: 25678277 DOI: 10.1002/jlcr.3247] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/31/2014] [Indexed: 11/09/2022]
Abstract
Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serotonin, norepinephrine, and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson's disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 years since the first radiotracers were developed and the first positron emission tomography (PET) images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables that have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe the following: (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological, and psychiatric disorders; and (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers that are currently used and possible new applications.
Collapse
Affiliation(s)
- Joanna S Fowler
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hicks JW, Sadovski O, Parkes J, Houle S, Hay BA, Carter RL, Wilson AA, Vasdev N. Radiosynthesis and ex vivo evaluation of [18F]-(S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one for imaging MAO-B with PET. Bioorg Med Chem Lett 2015; 25:288-91. [DOI: 10.1016/j.bmcl.2014.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
|
17
|
Kersemans K, Van Laeken N, De Vos F. Radiochemistry devoted to the production of monoamine oxidase (MAO-A and MAO-B) ligands for brain imaging with positron emission tomography. J Labelled Comp Radiopharm 2014; 56:78-88. [PMID: 24285313 DOI: 10.1002/jlcr.3007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/11/2022]
Abstract
Monoamine oxidase (MAO) belongs to a family of flavin-containing integral enzymes that are present in the outer mitochondrial membrane in neurons and glial cells in the central nervous system. These enzymes catalyze the oxidative deamination of various neurotransmitters, biogenic amines, and xenobiotics, thereby influencing their availability and physiological activity in brain and body. Over the past decades, many potential positron emission tomography tracers have been put forward to visualize MAO in the brain with varying success, and recent publications on the topic illustrate the continuing interest in the field. The present review gives an overview of the compounds that have been put forward as possible MAO tracers in the brain and focuses on the radiochemical procedures that have been developed to produce them up till now. Relevant radioligands are grouped by the main radiochemical strategies that have been employed to synthesize them, and some interesting details and findings that are crucial to the radiosyntheses are provided.
Collapse
Affiliation(s)
- Ken Kersemans
- Laboratory for Radiopharmacy, Gent University, Gent, Belgium
| | | | | |
Collapse
|
18
|
Rusjan PM, Wilson AA, Miler L, Fan I, Mizrahi R, Houle S, Vasdev N, Meyer JH. Kinetic modeling of the monoamine oxidase B radioligand [¹¹C]SL25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab 2014; 34:883-9. [PMID: 24517979 PMCID: PMC4013770 DOI: 10.1038/jcbfm.2014.34] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/25/2013] [Accepted: 01/20/2014] [Indexed: 11/09/2022]
Abstract
This article describes the kinetic modeling of [(11)C]SL25.1188 ([(S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)-benzo[d]isoxazol-3-yl]-oxazolidin-2-[(11)C]one]) binding to monoamine oxidase B (MAO-B) in the human brain using high-resolution positron emission tomography (PET). Seven healthy subjects underwent two separate 90- minute PET scans after an intravenous injection of [(11)C]SL25.1188. Complementary arterial blood sampling was acquired. Radioactivity was quickly eliminated from plasma with 80% of parent compound remaining at 90 minutes. Metabolites were more polar than the parent compound. Time-activity curves showed high brain uptake, early peak and washout rate consistent with known regional MAO-B concentration. A two-tissue compartment model (2-TCM) provided better fits to the data than a 1-TCM. Measurement of total distribution volume (VT) showed very good identifiability (based on coefficient of variation (COV)) for all regions of interest (ROIs) (COV(VT)<8%), low between-subject variability (∼20%), and quick temporal convergence (within 5% of final value at 45 minutes). Logan graphical method produces very good estimation of VT. Regional VT highly correlated with previous postmortem report of MAO-B level (r(2)= ≥ 0.9). Specific binding would account from 70% to 90% of VT. Hence, VT measurement of [(11)C]SL25.1(1)88 PET is an excellent estimation of MAO-B concentration.
Collapse
Affiliation(s)
- Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Alan A Wilson
- 1] Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Ian Fan
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1] Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- 1] Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey H Meyer
- 1] Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada [2] Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem 2014; 6:697-717. [DOI: 10.4155/fmc.14.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-discovery and -development efforts focused on the MAOs have increased at an accelerated rate over the past decade. Since the first crystal structure of human MAO-B was solved in 2002, over 40 additional structures have been reported and have helped define new, or confirm speculative, binding modes of inhibitors. The detailed mechanism of the MAO-catalyzed oxidation of amine substrates has not been fully elucidated, but its significance is central in the development of new mechanism-based inactivators. Novel fungal MAO-N variants derived from directed evolution strategies are enabling the production of new chiral amine products. Robust assays have been established for measuring MAO status in tissue and cells, while improved MAO radioligands are being deployed for PET imaging studies. This review will attempt to highlight the more recent and salient aspects of MAO research in drug discovery and development, with emphasis on substrates 'probing the pathway'.
Collapse
|
20
|
Rotstein BH, Liang SH, Holland JP, Collier TL, Hooker JM, Wilson AA, Vasdev N. 11CO2 fixation: a renaissance in PET radiochemistry. Chem Commun (Camb) 2013; 49:5621-9. [PMID: 23673726 PMCID: PMC5604310 DOI: 10.1039/c3cc42236d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [(11)C]CO2. In recent years, [(11)C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [(11)C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [(11)C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.
Collapse
Affiliation(s)
- Benjamin H Rotstein
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Vasdev N, Sadovski O, Moran MD, Parkes J, Meyer JH, Houle S, Wilson AA. Development of new radiopharmaceuticals for imaging monoamine oxidase B. Nucl Med Biol 2011; 38:933-43. [DOI: 10.1016/j.nucmedbio.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/14/2011] [Accepted: 03/30/2011] [Indexed: 01/06/2023]
|
22
|
Vasdev N, Sadovski O, Garcia A, Dollé F, Meyer JH, Houle S, Wilson AA. Radiosynthesis of [11C]SL25.1188 via [11C]CO2 fixation for imaging monoamine oxidase B. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1908] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Oleg Sadovski
- PET Centre; Centre for Addiction and Mental Health; 250 College Street; Toronto; Ontario; Canada; M5T 1R8
| | - Armando Garcia
- PET Centre; Centre for Addiction and Mental Health; 250 College Street; Toronto; Ontario; Canada; M5T 1R8
| | - Frédéric Dollé
- CEA, I²BM; Service Hospitalier Frédéric Joliot; Orsay; France
| | | | | | | |
Collapse
|
23
|
|
24
|
Saba W, Valette H, Peyronneau MA, Bramoullé Y, Coulon C, Curet O, George P, Dollé F, Bottlaender M. [11C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: Preclinical characterisation in nonhuman primate. Synapse 2010; 64:61-9. [DOI: 10.1002/syn.20703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|